PCFGs:
Parsing & Evaluation

LING 571 — Deep Processing Technigues for NLP
October 9, 2019
Shane Steinert-Threlkeld

WA UNIVERSITY of WASHINGTON

e PCFG Parsing (PCKY)

Recap:
e CKY + back-pointers
o PCFGs

Inducing a PCFG
Evaluation
[Earley parsing]

HWS3 + collaboration

Roadmap

CKY Follow-up: Backpointers

Backpointers

e |nstead of list of possible nonterminals for that node, each cell should
have:

e Nonterminal for the node

e Pointer to left and right children cells
e Either direct pointer to cell, or indices

WA UNIVERSITY of WASHINGTON y.|

cky table[0,6][S] = {{((NP, (0,1);
vP, (1,6))}

da

NP,
Pronoun
[0,2]

[1,2]

NP VP

flight

on

[0,3]

[1,3]

[2,3]

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[2,6]

[3,6]

[4,6]

[5,6]

NP,) S S
Pronoun
Verb, VP, S VP, X2, S VP, X2, S
Det NP NP
Noun, Nom Nom
Prep PP
NNP, NP

YA UNIVERSITY of WASHINGTON

cky table[0,6]]:

VP, (
cky table

cky table[l,6][VP] = {(Verb,

(0,1),
1,6))).

P,1L]1[NP] = {('I")}

(1,2),

NP,
(X2,
PP,

(2,6)),
(1,4),

(4,6))}

da

[0,1]

[0,2]

Verb, VP, S
[1,3]

NP

I

Verb

flight

VP

NP

on

[0,3]

[2,3]

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[1.6]

[3,6]

[4,6]

[5,6]

cky table[0,6][S] = {(NP, (O0,1),

VP, (1,6)). [0,1] [0,2] [0,3]
cky table[0,1]] = {('I")}
cky_ table[l,6][V (Verb, (1,2),
NP, (2,6)), 12 -
(X2, (1,4),
V) PP, (4,6))} S [2,3]
cky table[l,2][Verb] = {(’'prefer’)}
NP VP
| Verb NP
brefer

I brefer a flight on

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[1.6]

[2,6]

[3,6]

[4,6]

[5,6]

cky table[0,6][S] = {(NP, (O0,1),
VP, (1,6)). o1
cky table[0,1][NP] = {(‘'I")}
cky table[l,6][VP] = rb, (1,2),
NP, (2,6)),
(X2, (1,4),
| PP, (4,6))}
cky table[l,2j[Verb] = {(‘prefer’)}
cky table[2,6][NP] = |{(Det, (2,3),
Nom, (3,6)} NP

I

I brefer a

[0,2]

[1,2]

Verb

brefer

flight

VP

Det

[0,3]

[1,3]

NP

on

Nom

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[1.6]

[2,6]

[4,6]

[5,6]

cky table[0,6][S] = {(NP, (O0,1),
vP, (1,6)). [0,1]
cky table[0,1][NP] = {('I")}
cky table[l1l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
(X2, (1,4),
PP, (4,6))}
cky table[l,2][V
cky_table[2,6]/ (Det, (2,3),
P Nom, (3,6)} NP
cky table[2,3][Det] = {(‘a’)}

I

I brefer a

[0,2]

[1,2]

Verb

brefer

flight

VP

Det

[0,3]

[1,3]

[2,3]

NP

on

Nom

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[1.6]

[2,6]

[3,6]

[4,6]

[5,6]

cky table[0,6][S] = {(NP, (O0,1),
vP, (1,6)). [0,1]
cky table[0,1][NP] = {('I")}
cky table[l1l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
(X2, (1,4),
PP, (4,6))}
cky table[l,2][V
cky_table[2,6]/ (Det, (2,3),
P Nom, (3,6)} NP
cky table[2,3][Det] = {(‘a’)}

I

I brefer a

[0,2]

[1,2]

Verb

brefer

flight

VP

Det

[0,3]

[1,3]

[2,3]

NP

on

Nom

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[1.6]

[2,6]

[3,6]

[4,6]

[5,6]

cky table[0,6][S] = {(NP, (O0,1),

VP, (1,6))}

cky table[0,1][NP] = {(‘'I")}
cky table[1l,6][VP] = {R/izke< NG

NP, (2,6))
(X2, (1,4
PP, (4,6))
S
NP VP
| Verb NP

[brefer

}

da

[0,1]

[0,2]

[0,3]

Verb, VP, S
[1,3]

NP

flight

VP

PP

on

[2,3]

[0,4]

[1,4]

[2,4]

[3,4]

TWA

[0,3]

[1,5]

[2,5]

[3,5]

[4,3]

[0,6]

[1.6]

[3,6]

[4.6]

[5,6]

PCFGs: Recap

NNNNNNNNNNNNNNNNNNNNNN

N a set of non-terminal symbols (or variables)

>, a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — f|p|, where A is a non-terminal where

R A is a non-terminal, § is a string of symbols from the infinite set of strings (X UN)* and p
is a number between 0 and 1 expressing P(f|A)

S a designated start symbol

Disambiguation

e A PCFG assigns probability to each parse tree T for input S

e Probability of T product of all rules used to derive T

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:
e Must use 10+-grams... too sparse

e Approximate using conditioning on limited context:

e PCFGs are able to give probability of entire string without as bad sparsity

e Model probability of syntactically valid sentences

e Not just probability of sequence of words

WA UNIVERSITY of WASHINGTON

16

NP VP
Pron Verb NP
I prefer Det Nom

a Noun

flight

S = NPVP
NP — Pron
Pron — |
VP =V NP PP
V — prefer
NP — Det Nom
Det — a
Nom — N
N — flight
PP — P NP
P — on
NP — NNP
NNP — NWA

~|.452 x |06

PP

on

[0.8]
[0.35]
0.4
0.1°
0.4
0.2
0.3
[0.75]
0.3
1.0
0.2
0.3
0.4

NP

NNP

TWA

VP

NP

Pron Verb

I brefer
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP 0.2]
V — prefer 0.4]
NP — Det Nom 0.2
Det — a 0.3]
Nom = Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3]
PP — P NP [1.0]
P — on 0.2
NP — NNP 0.3]
NNP — NWA 0.4]

~1.452 x 10~/

Det

NP

Nom

Noun PP

fight P NP
on NNP

TWA

Parsing Problem for PCFGs

Select T such that (s.t.)

String of words s of parse tree
Select the tree that maximizes the probability of the parse

Extend existing algorithms: e.g. CKY

PCFGs: Parsing

NNNNNNNNNNNNNNNNNNNNNN

Probabilistic CKY (PCKY)

e Like regular CKY

e Assumes grammar in Chomsky Normal Form (CNF)
o A > BC(C
o A w

e Represent input with indices b/t words:
e , Book ; that . flight ; through . Houston s

YA UNIVERSITY of WASHINGTON

20

Probabilistic CKY (PCKY)

e For input string length n and non-terminals V
o Cell[i,j,Alin(n+1) x (n+1) x V matrix

e (Contains probability that A spans [i, |]

PCKY Algorithm
function PROBABILISTIC-CKY-PARSE (words, gmmmafr)_

for j « from 1 to LENGTH(words) do

for all { A | A = words[j] € grammar }
table| 1-1, 5, A | « P(A = words[j/)
for :+ < from 32 downto 0 do
for k< 1+ 1 to 71 do
for all { A| A = B C € grammar,
and table|i, k, Bl > 0 and table| k, 5, C'| > 0 }
if (table| 1, j, A | < P(A = BC)Xtable| 1, k, B |Xtable| k,5,C'|) then

backl i, j, A| < { K, B, €'}

W UNIVERSITY of WASHINGTON 22

S = NP VP
NP — Det N
VP = VNP

10.80]
10.30]
[0.20]

Det — the [0.40]
Det — a [0.40]
V — includes [0.05]
N — meal [0.01]
N — flight [0.02]

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det = the [0.40]
Det = a |0.40]
V' = includes [0.05]
N = meal [0.01]
N — flight |0.02]

The flight includes a meal
0 | 2 3 4 5

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det = the [0.40]
Det = a |0.40]
V' = includes [0.05]
N = meal [0.01]
N — flight [0.02]

The flight includes a meal
0 | 2 3 4 5

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

| P = P(NP — Det N)-
Det = the [0.40] P(Det — a) :

Det = a 0.40] P(N — flight)
V' = includes [0.05]

N = meal [0.01] P=03-04-0.02=0.00024
N — flight [0.02]

The flight includes a meal
0 | 2 3 4 5

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

| P = P(NP — Det N)-
Det = the [0.40] P(Det — a) :

Det = a 0.40] P(N — flight)
V' = includes [0.05]

N = meal [0.01] P=03-04-0.02=0.00024
N — flight [0.02]

The flight includes a meal
0 | 2 3 4 5

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det = the [0.40]
Det = a |0.40]
V' = includes [0.05]
N = meal [0.01]
N — flight |0.02]

The flight includes a meal
0 | 2 3 4 5

Inducing a PCFQG

NNNNNNNNNNNNNNNNNNNNNN

Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e To compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a— f)

e Alternative: Learn probabilities by re-estimating
e (Later)

WA UNIVERSITY of WASHINGTON £10)

Large Small/Med

Small
(eg. WS] 2-21, (e.g. WSJ, 23,
39,830 sentences) (e.8: W3] 22) 2,416 sentences)
Estimate rule Tuning/Verification, Held Out,

probabilities Check for Overfit Final Evaluation

Parser Evaluation

NNNNNNNNNNNNNNNNNNNNNN

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

e Partial credit:
e Constituents in output match those in reference

e Same start point, end point, non-terminal symbol

YA UNIVERSITY of WASHINGTON 33

of correct constituents in hypothetical parse

Labeled Recall (LR) =
(LR) # of total constituents in reference parse

of correct constituents in hypothetical parse
Labeled Precision (LP) = YP P

of total consituents in hypothetical parse

Parseval

e F-measure:

e Combines precision and recall
o LetBe R, B > 0thatadjusts Pvs. R s.t.

e [;-measure is then:

e With F1-measure as

YA UNIVERSITY of WASHINGTON 35

Evaluation: Example

5(0,4)
NP(0, 1)
VP(1,4)
NP(2,3)

PP(3,4)

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,4)
PP(3,4)

Parser Evaluation

e Crossing Brackets:

e # of constituents where produced parse has bracketings that overlap for the

siblings:

and hyp. has

(ABC)) —{(0,1),(1,3)}

/* crossing is counted based on the brackets x/
/* in test rather than gold file (by Mike) x/
for(j=0;j<bn2;j++){
for(i=0;i<bnl;i++){
if(bracketl[i].result != 5 &&
bracket2[j]l.result != 5 &&

((bracketl[i]l.start < bracket2[jl.start &&
bracketl[il.end > bracket2[j]l.start &&
bracketl[i].end < bracket2[jl.end) ||

(bracketl[i].start > bracket2[j].start &&
bracketl[i].start < bracket2[jl.end &&
bracketl[il.end > bracket2[jl.end))){

from evalb.c

WA UNIVERSITY of WASHINGTON 37

State-of-the-Art Parsing

e Parsers trained/tested on Wall Street Journal PTB
e | R:90%+;
o LP:90%+;

e (Crossing brackets: 1%

e Standard implementation of Parseval:

® evalb

WA UNIVERSITY of WASHINGTON

Evaluation Issues

e Only evaluating constituency

e There are other grammar formalisms:
e LFG (Constraint-based)

e Dependency Structure

e EXxtrinsic evaluation

e How well does getting the correct parse match the
semantics, etc?

YA UNIVERSITY of WASHINGTON 39

Earley Parsing

NNNNNNNNNNNNNNNNNNNNNN

Earley vs. CKY

e CKY doesn’t capture full original structure
e (Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY

e Earley algorithm
e Supports parsing efficiently with arbitrary grammars
e Jop-down search
e Dynamic programming
e Tabulated partial solutions

e Some bottom-up constraints

WA UNIVERSITY of WASHINGTON 4]

Earley Algorithm

e Another dynamic programming solution
e Partial parses stored in “chart”

e Compactly encodes ambiguity
o O(NB3)

e Chart entries contain:
e Subtree for a single grammar rule
e Progress in completing subtree

e Position of subtree w.r.t. input

WA UNIVERSITY of WASHINGTON 42

Earley Algorithm

o First, left-to-right pass fills out a chart with N+1 states
e Chart entires — sit between words in the input string
e Keep track of states of the parse at those positions

e For each word position, chart contains set of states representing all partial parse
trees generate so far

e e.gd.chart[0] contains all partial parse trees generated at the beginning of
sentence

WA UNIVERSITY of WASHINGTON 43

Chart Entries

e Three types of constituents:
e Predicted constituents
® In-progress constituents

e Completed constituents

WA UNIVERSITY of WASHINGTON

Parse Progress

e Represented by Dotted Rules

e Position of * indicates type of constituent

e o Book 1 that 2 flight 3

o S— VP [0,0] (predicted)
e NP — Det-Nom [1,2] (inprogress)
e VP - VNP- [0,3] (completed)

e [Xx,y] tells us what portion of the input is spanned so far by rule

e Each state si: <dotted rule>, [<back pointer>, <current position>]

WA UNIVERSITY of WASHINGTON

o Book 1 that 2 flight 3

e S — VP, [0,0]
e First 0 means S constituent begins at the start of input
e Second 0 means the dot is here too

® 350, this is a top-down prediction

e NP — Det* Nom, [1,2]
e the NP begins at position 1
e the dot is at position 2

e SO, Det has been successfully parsed

e Nom predicted next

WA UNIVERSITY of WASHINGTON 46

o Book 1 that 2 flight 3 (continued)

e V= VNP -[0,3]

e Successful VP parse of entire input

Successful Parse

e Final answer found by looking at last entry in chart
e If entry resembles S — a ¢ [0,N] then input parsed successfully

e Chart will also contain record of all possible parses of input string, given
the grammar

Parsing Procedure for the Earley Algorithm

e Move through each set of states in order, applying one of three operations:
e predictor: add predictions to the chart
e scanner: read input and add corresponding state to chart

e completer. move dot to right when new constituent found
e Results (new states) added to current or next set of states in chart

e No backtracking and no states removed: keep complete history of parse

WA UNIVERSITY of WASHINGTON

Earley Algorithm

function EARLEY-PARSE(words, grammar) returns chart
ENQUEUE((y— e S, [0,0]), chart|0])
for i «— from 0 to LENGTH(words) do
for each state in chart|i| do
if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then

(state)
elseif INCOMPLETE? (state) and

NEXT-CAT(state) is a part of speech then

(state)
else
(state)
end
end

return(chart)

YA UNIVERSITY of WASHINGTON 50

Earley Algorithm

procedure (A2a e Bf, [i,j]))
for each (B = v) in GRAMMAR-RULES-FOR(B,grammar) do

ENQUEUE((B—e p, [1,5/), chart[j])
end

procedure (A = ae Bp[ij))
if B ¢ PARTS-OF-SPEECH(word/j/) then

ENQUEUE((B = word[j| e, [j,7+1]), chart[j+1])

procedure ((B e)@ /JJk/))
for each (A @ a e B p, [i,j]) in chart/j] do
ENQUEUE((A = a B e f, [i,k]), chart[k])
end

YA UNIVERSITY of WASHINGTON 51

3 Main Subroutines of Earley

e Adds predictions into the chart
e Reads the input words and enters states representing those words into the chart

e Moves the dot to the right when new constituents are found

WA UNIVERSITY of WASHINGTON

Predictor

e Intuition:

e (Create new state for top-down prediction of new phrase

e Applied when non part-of-speech non-terminals are to the right of a dot:
o S — VP]IO,0]

e Adds new states to current chart

e One new state for each expansion of the non-terminal in the grammar
VP =« V [0,0]
VP = +V NP [0,0]

WA UNIVERSITY of WASHINGTON 53

SO

S
S2
S3

S4
S5
S6

S7
S8
S9
S10
S11

Y S

S — NP VP
S — « Aux NP VP
S — VP

NP — <« Pronoun
NP — - Proper-Noun
NP — « Det Nominal

VP — - Verb

VP — « Verb NP
VP — « Verb NP PP
VP — < Verb PP
VP — « VP PP

0,0]

[0.0]
0,0]
0,0]

[0,0]
[0,0]
[0,0]

[0,0]
[0,0]
[0,0]
[0,0]
0,0]

Dummy start state

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor
Predictor
Predictor

S12

S13
S14
S15
S16

S17
>18
S19
S20

S21
S22

Verb — book -

VP — Verb

VP — Verb - NP
VP — Verb - NP PP
VP — Verb « PP

S—>VP-

VP —- VP - PP

NP — < Pronoun

NP — « Proper-Noun

NP — « Det Nominal
PP — < Prep NP

0,1]

0,1]
0,1]
0,1]
0,1]

0,1]
0,1]
[1,1]
[1,1]

[1,1]
[1,1]

Scanner

Completer
Completer
Completer
Completer

Completer
Completer
Predictor
Predictor

Predictor
Predictor

Book that flight

Book that flight

Book that flight

S0: y— +S[0,0]

S3: S — - VP [0,0]

S8: VP — < Verb NP [0,0]
S12: Verb — « book [0,0]

VP

Verb NP

e book

S0: y— +S[0,0]

S3: S — - VP [0,0]

S8: VP — < Verb NP [0,0]
S12: Verb — book ¢ [0,1]

VP

Verb NP

book

Book that flight

Book that flight

S0: y— +S[0,0] Y
S3: S — VP« [0,1]

S8: VP — Verb - NP [0,1] S
S21: NP — « Det Nominal [1,1]

VP
Verb NP

book ¢ Det Nominal

SO0: y — S [0,0] Y
S3: S — VP« [0,1]

S8: VP — Verb - NP [0,1] S
S21: NP — « Det Nominal [1,1]

S23: Det — « “that” [1,1] "

Verb NP
book Det Nominal

e that

SO0: y — S [0,0] Y
S3: S — VP« [0,1]

S8: VP — Verb - NP [0,1] S
S21: NP — « Det Nominal [1,1]

S23: Det — “that” - [1,2] e

Verb NP
book Det Nominal

that e

SO0: y — S [0,0] Y
S3: S — VP« [0,1]

S8: VP — Verb - NP [0,1] S
S21: NP — Det - Nominal [1,2]

VP
Verb NP
book Dete Nominal

that

S0: y — + S[0,0] .
S3: S —» VP «[0,1]

S8: VP — Verb « NP [0,1] S
S21: NP — Det - Nominal [1,2]

S25: Nominal — < Noun [2,2] VP

Verb NP
book Det Nominal

that * Noun

S0: y— +S[0,0]
S3: S — VP« [0,1]
S8: VP — Verb - NP [0,1]
S21: NP — Det - Nominal [1,2]
S25: Nominal = « Noun [2,2] VP
S28: Noun — “flight” - [2,3]

Verb NP

book Det Nominal

that Noun

flight *

SO0: y = - S[0,0]
S3: S — VP - [0,1]

S
S8: VP — Verb - NP [0,1]
S21: NP — Det - Nominal [1,2]
S25: Nominal = Noun - [2,3] VP
Verb NP

book Det Nominal

that Noun

flight

S0: y— +S[0,0]
S3: S — VP« [0,1]
S8: VP — Verb - NP [0,1]

S21: NP — Det Nominal ¢ [1,3]
VP

Verb NP

book Det Nominal ¢

that Noun

flight

Book that flight

Book that flight

NNNNNNNNNNNNNNNNNNNNNN

What About Dead Ends?

NNNNNNNNNNNNNNNNNNNNNN

S0: y — S [0,0]
S1: S — « NP VP [0,0]

« NP

book

VP

What About Recursion?

NNNNNNNNNNNNNNNNNNNNNN

What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end

EXxercise: parse ‘table and chair’ using the very simple grammar
Nom -> Nom ‘and’ Nom | ‘table’ | “‘chair’

WA UNIVERSITY of WASHINGTON 76

HW #3

WA UNIVERSITY of WASHINGTON 77

CKY Parsing: Goals

e Complete implementation of CKY parser
e Implement dynamic programming approach

e Incorporate/follow backpointers to recover parse

Implementation

e Build full parser
e Can use any language, per course policies

e You may use existing data structures for rules, trees
e e.g. NLTK has nice tree data structure

e CKY algorithm must be your own
e Dynamic programming table filling crucial
e Will use smaller grammar (similar to HW #1)

e Back to ATIS for HW #4

WA UNIVERSITY of WASHINGTON

Implementation

e For CKY Implementation:

e NLTK’S CFG.productions () method:
e optional rhs= argument only looks at first token of RHS

WA UNIVERSITY of WASHINGTON

Notes

® [eams:

e You may work in teams of two on this assignment

e Jest grammar

e Pre-converted to CNF
e Start symbol: TOP

e Parse should span input and be rooted at: TOP

WA UNIVERSITY of WASHINGTON 81

Some Collaboration Basics

NNNNNNNNNNNNNNNNNNNNNN

heort_qlasses bronch m
% »

master \oromc\\ @ master \oromc\‘\

cow\m\)_\r\at branch

Recommended Git Flow

, With a master branch

e (Create initial checkin, if necessary)
Create a new branch, maybe “adding rule objects”
Make regular checkins on your branch (like saving)
Switch to master branch, and “pull”
Merge your branch to master
...rnse & repeat

If using GitHub (or GitLab, etc): MUST BE PRIVATE REPO!

WA UNIVERSITY of WASHINGTON

https://help.github.com/articles/creating-a-new-repository/

Communication: Check-ins

e [For check-ins, three main points:
e \What have you been working on?
e What do you plan to work on next?

e |Is there anything “blocking” you?

e In industry, these brief check-ins among small teams are often done daily

WA UNIVERSITY of WASHINGTON 85

Project Planning: Kanban Boards

e Before you start working:
e \Write out tasks on sticky notes.

e Place In three columns:
e Jo-Do
e Doing

e Done
e As you work, you can move them from column to column

e Add tasks as new issues come up

e — has free online implementation of Kanban Boards

http://trello.com

