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Announcements
● HW2 grades posted (mean 87)

● Reference code available in 
● /dropbox/19-20/571/hw2/reference_code

● NB: not needed for HW3; you can assume that all grammars are already in CNF
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Homework Tips
● Use nltk.load for reading grammars; will save you and TA time and 

headaches!

● Run your code on patas to produce the output you submit in TAR file
● Some discrepancies found that seem due to different environment

● readme.{txt|pdf}: this should NOT be inside your TAR file, but a 
separate upload on Canvas
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Notes on HW #3
● Python’s range has many use cases by manipulating start/end, and step
● range(n) is equivalent to range(0, n, 1)

● Reminder: the rhs= argument in NLTK’s grammar.productions() 
method only matches the first symbol, not an entire string
● You’ll want to implement an efficient look-up based on RHS

● HW3: compare your output to running HW1 parser on the same grammar/
sentences [order of output in ambiguous sentences could differ]
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Indigenous Peoples’ Day
● Seattle/Sealth

● For those of you taking 550:
● The Lushootseed spelling [IPA] of Chief Seattle/Sealth:

● siʔaɫ [ˈsiʔaːɬ]
● Duwamish — Dxʷdəwʔabš [dxʷdɐwʔabʃ]

● IPA resources:
● https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
● http://web.mit.edu/6.mitx/www/24.900%20IPA/IPAapp.html 
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Indigenous Peoples’ Day
● Studying non-English languages gives more holistic insight for NLP tasks
● Many interesting phenomena in non-Indo-European languages

● Lushootseed exhibits debatable distinction between verbs and nouns [link to Glottolog 
page for more references]
● ʔux̌ʷ  ti           sbiaw  

goes  that-which   is-a-coyote  
“The/a coyote goes”

● sbiaw       ti         ʔux̌ʷ  
is-a-coyote that-which goes  
“The one who goes is a coyote”

● (Translation distinction provided for clarity — semantically equivalent)

● Lillooet Salish quantification has repercussions for e.g. English (Matthewson 2001)
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via Beck, 2013

https://glottolog.org/resource/languoid/id/lush1251
https://link.springer.com/content/pdf/10.1023/A:1012492911285.pdf
https://sites.ualberta.ca/~dbeck/FlexDist.pdf


Indigenous Peoples’ Day
● UW American Indian Studies Courses
● (Sometimes including language courses, e.g. Southern Lushootseed)

● At the new Burke Museum on campus:
● https://www.burkemuseum.org/calendar/indigenous-peoples-day
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PCFG Induction
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Learning Probabilities
● Simplest way: 
● Use treebank of parsed sentences
● To compute probability of a rule, count: 
● Number of times a nonterminal is expanded:                             Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule:             Count(𝛼→𝛽) 

● Alternative: Learn probabilities by re-estimating
● (Later)
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P(α → β |α) =
Count(α → β)

∑γ Count(α → γ)
=

Count(α → β)
Count(α)



Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Inducing a PCFG
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Problems with PCFGs
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Problems with PCFGs
● Independence Assumption
● Assume that rule probabilities are independent

● Lack of Lexical Conditioning
● Lexical items should influence the choice of analysis
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Issues with PCFGs:
Independence Assumption

● Context Free ⇒ Independence Assumption
● Rule expansion is context-independent
● Allows us to multiply probabilities

● If we have two rules:
● NP → DT NN  [0.28] 

● NP → PRP      [0.25] 

●  What does this new data tell us?
● NP → DT NN  [0.09 if NPΘ=subject else 0.66] 

● NP → PRP      [0.91 if NPΘ=subject   else 0.34]
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Semantic Role of NPs in Switchboard Corpus
Pronomial Non-Pronomial

Subject 91% 9%

Object 34% 66%

…Can try parent annotation



(“into a bin” = location of sacks after dumping)
OK!

Issues with PCFGs:
Lexical Conditioning
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Issues with PCFGs:
Lexical Conditioning
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● workers dumped sacks into a bin 
● into should prefer modifying dumped 
● into should disprefer modifying sacks

● fishermen caught tons of herring
● of should prefer modifying tons
● of should disprefer modifying caught
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Issues with PCFGs:
Coordination Ambiguity
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Issues with PCFGs:
Coordination Ambiguity
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Issues with PCFGs:
Coordination Ambiguity
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Issues with PCFGs:
Coordination Ambiguity
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Improving PCFGs
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Improving PCFGs
● Parent Annotation

● Lexicalization

● Markovization

● Reranking
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Improving PCFGs: Parent Annotation
● To handle the NP → PRP [0.91 if NPΘ=subject   else 0.34]
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● To handle the NP → PRP [0.91 if NPΘ=subject   else 0.34]

Improving PCFGs: Parent Annotation
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Improving PCFGs: Parent Annotation
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● Advantages:
● Captures structural dependencies in grammar

● Disadvantages:
● Explodes number of rules in grammar
● Same problem with subcategorization
● Results in sparsity problems

● Strategies to find an optimal number of splits
● Petrov et al (2006)

Improving PCFGs: Parent Annotation
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https://dl.acm.org/citation.cfm?id=1220230


Improving PCFGs
● Parent Annotation

● Lexicalization

● Markovization

● Reranking
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Improving PCFGs: Lexical “Heads”
● Remember back to syntax intro (Lecture #1)
● Phrases are “headed” by key words
● VP are headed by V
● NP by NN, NNS, PRON
● PP by PREP

● We can take advantage of this in our grammar!
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Improving PCFGs: Lexical Dependencies
● As we’ve seen, some rules should be conditioned on certain words

● Proposal: annotate nonterminals with lexical head

VP → VBD NP PP 

VP(dumped) → VBD(dumped) NP(sacks) PP(into) 

● Additionally: annotate with lexical head + POS
VP(dumped, VBD) → VBD(dumped, VBD) NP(sacks, NNS) PP(into, IN) 
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Lexicalized Parse Tree
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Lexicalized Parse Tree
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Lexicalized Parse Tree
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Lexicalized Parse Tree
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Improving PCFGs: Lexical Dependencies
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S[dumped, VBD]hhhhhhhhhhh
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
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● Upshot: heads propagate up tree:
● VP → VBD(dumped, VBD) NP(sacks, NNS) PP(into, P) 

● NP → NNS(sacks, NNS) PP(into, P)

✔
✘



Improving PCFGs: Lexical Dependencies
● Downside:
● Rules far too specialized — will be sparse

● Solution:
● Assume conditional independence
● Create more rules 
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Improving PCFGs: Collins Parser
● Proposal:
● LHS →  LeftOfHead …   Head  … RightOfHead 

● Instead of calculating P(EntireRule), which is sparse:
● Calculate:
● Probability that LHS has nonterminal phrase H given head-word hw…
● × Probability of modifiers to the left given head-word hw…
● × Probability of modifiers to the right given head-word hw…
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Collins Parser Example
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Collins Parser Example
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P(VP → VBD NP |VP, dumped)

=
Count (VP (dumped) → VBD NP)

∑β Count (VP (dumped) → β)
=

1
9

= 0.11

=
0

0

PR(into |PP, sacks)

=
Count (X (sacks) → … PP (into) …)

∑β Count (X (sacks) → … PP …)

P(VP → VBD NP PP |VP, dumped)

=
Count (VP (dumped) → VBD NP PP)

∑β Count (VP (dumped) → β)
=

6
9

= 0.67

PR(into |PP, dumped)

=
Count (X (dumped) → … PP (into) …)

∑β Count (X (dumped) → … PP …)
=

2
9

= 0.22



Improving PCFGs
● Parent Annotation

● Lexicalization

● Markovization

● Reranking
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CNF Factorization & Markovization
● CNF Factorization:
● Converts n-ary branching to binary branching
● Can maintain information about original structure
● Neighborhood history and parent
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Different Markov Orders
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Markovization and Costs
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PCFG Time(s) Words/s |V| |P| LR LP F1

Right-factored 4848 6.7 10105 23220 69.2 73.8 71.5

Right-factored, Markov order-2 1302 24.9 2492 11659 68.8 73.8 71.3

Right-factored, Markov order-1 445 72.7 564 6354 68.0 730 70.5

Right-factored, Markov order-0 206 157.1 99 3803 61.2 65.5 63.3

Parent-annotated, Right-factored, Markov order-2 7510 4.3 5876 22444 76.2 78.3 77.2

from Mohri & Roark 2006 

https://cs.nyu.edu/~mohri/pub/spcfg.pdf


Improving PCFGs
● Parent Annotation

● Lexicalization

● Markovization

● Reranking
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Reranking
● Issue: Locality
● PCFG probabilities associated with rewrite rules
● Context-free grammars are, well, context-free
● Previous approaches create new rules to incorporate context

● Need approach that incorporates broader, global info
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Discriminative Parse Reranking
● General approach:
● Parse using (L)PCFG
● Obtain top-N parses
● Re-rank top-N using better features

● Use discriminative model (e.g. MaxEnt) to rerank with features:
● right-branching vs. left-branching
● speaker identity
● conjunctive parallelism
● fragment frequency
● …

56



Reranking Effectiveness
● How can reranking improve?

● Results from Collins and Koo (2005), with 50-best

● “Oracle” is to automatically choose the correct parse if in N-best
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System Accuracy
Baseline 0.897
Oracle 0.968

Discriminative 0.917

http://www.aclweb.org/anthology/J/J05/J05-1003.pdf


Improving PCFGs: 
Tradeoffs

● Pros:
● Increased accuracy/specificity
● e.g. Lexicalization, Parent annotation, Markovization, 

etc

● Cons:
● Explode grammar size
● Increased processing time
● Increased data requirements

● How can we balance?
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Improving PCFGs: Efficiency
● Beam thresholding

● Heuristic Filtering
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Efficiency
● PCKY is |G|· n3 

● Grammar can be huge
● Grammar can be extremely ambiguous
● Hundreds of analyses not unusual

● …but only care about best parses

● Can we use this to improve efficiency?
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Beam Thresholding
● Inspired by Beam Search

● Assume low probability parses unlikely to yield high probability overall
● Keep only top k most probable partial parses
● Retain only k choices per cell
● For large grammars, maybe 50-100
● For small grammars, 5 or 10
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Heuristic Filtering
● Intuition: Some rules/partial parses unlikely to create best parse

● Proposal: Don’t store these in table.

● Exclude:
● Low frequency: (singletons)

● Low probability: constituents X s.t. P(X) < 10-200 

● Low relative probability:
● Exclude X if there exists Y s.t. P(Y) > 100 × P(X)
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