
More λ-Calculus 
Lexical Semantics
LING 571 — Deep Processing Techniques for NLP

November 5, 2020
Shane Steinert-Threlkeld

1

Ambiguity of the Week

2

Ambiguity of the Week
● Derivative of an alleged Groucho Marx-ism:

2

Ambiguity of the Week
● Derivative of an alleged Groucho Marx-ism:

● In the US, a woman gives birth every fifteen minutes.

2

Ambiguity of the Week
● Derivative of an alleged Groucho Marx-ism:

● In the US, a woman gives birth every fifteen minutes.
● We must find her and put a stop to it.

2

Ambiguity of the Week
● Derivative of an alleged Groucho Marx-ism:

● In the US, a woman gives birth every fifteen minutes.
● We must find her and put a stop to it.

2

Ambiguity of the Week
● Derivative of an alleged Groucho Marx-ism:

● In the US, a woman gives birth every fifteen minutes.
● We must find her and put a stop to it.

● Thank you scope ambiguity! (Not the same as attachment ambiguity.)

2

Scope Ambiguity in the News

3

https://twitter.com/rhenderson/status/1322181656124354561

https://twitter.com/rhenderson/status/1322181656124354561

Last Year’s “Costume”

4

Poll!

5

NP → Det.sem(NP.sem)

7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ফ৆৔/৓৆্)঵ষ /৓৆্*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4

:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
EVVMZIH

5

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y)) 7|঵ষ /৓৆্)ঽ ষ /৓৆্*~

24|ফ৆৔/৓৆্)঵ষ /৓৆্*~
(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4

:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
EVVMZIH

5

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y))

λQ.∀xλy.Flight(y)(x) ⇒Q(x) 7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ফ৆৔/৓৆্)঵ষ /৓৆্*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4

:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
EVVMZIH

5

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y))

λQ.∀xλy.Flight(y)(x) ⇒Q(x)
λQ.∀xFlight(x) ⇒Q(x)

7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ফ৆৔/৓৆্)঵ষ /৓৆্*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4

:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
EVVMZIH

7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4

:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
EVVMZIH

5

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y))

λQ.∀xλy.Flight(y)(x) ⇒Q(x)
λQ.∀xFlight(x) ⇒Q(x)

6

7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

7

7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

8

7|঵ষ /৓৆্)ঽ ষ /৓৆্*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

7|ѭ৘ভ ৌ৉ৈυ৔)৘* ш Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৘*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

8

7|ѭ৘ভ ৌ৉ৈυ৔)৘* ш Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৘*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

8

λQ.∀xFlight(x) ⇒Q(x)(λz.∃eArrived(e) ∧ ArrivedThing(e, z))

7|ѭ৘ভ ৌ৉ৈυ৔)৘* ш Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৘*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

8

λQ.∀xFlight(x) ⇒Q(x)(λz.∃eArrived(e) ∧ ArrivedThing(e, z))

∀xFlight(x) ⇒λz.∃eArrived(e) ∧ ArrivedThing(e, z)(x)

7|ѭ৘ভ ৌ৉ৈυ৔)৘* ш Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৘*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৙/ভ ৌ৉ৈυ৔)৙*~
JPMKLX

:4|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~
:|ౠ৚/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৚*~

EVVMZIH

8

λQ.∀xFlight(x) ⇒Q(x)(λz.∃eArrived(e) ∧ ArrivedThing(e, z))

∀xFlight(x) ⇒λz.∃eArrived(e) ∧ ArrivedThing(e, z)(x)

∀xFlight(x) ⇒∃eArrived(e) ∧ ArrivedThing(e, x)

9

7|ѭ৘ভ ৌ৉ৈυ৔)৘* ш Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৘*~
24|ౠস/ѭ৘ভ ৌ৉ৈυ৔)৘* ш স)৘*~

(IX|ౠষ /ౠস/ѭ৘ষ)৘* ш স)৘*~
)ZIV]

2SYR|ౠ৘/ভ ৌ৉ৈυ৔)৘*~
JPMKLX

:4|ౠ৙/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৙*~
:|ౠ৙/Ѱ৆ন৒৒৉৖৆৅)৆* Ҕ ন৒৒৉৖৆৅঻ υ৉ৎৈ)৆- ৙*~

EVVMZIH

More λ-Calculus

10

Target Representations

11

Common Nouns
● λx.Restaurant(x) → ‘restaurant’
● Somewhat similar to the NNP construction
● λ var.Predicate(var)

12

Common Nouns
● λx.Restaurant(x) → ‘restaurant’
● Somewhat similar to the NNP construction
● λ var.Predicate(var)

● But common nouns represent relations, rather than constants

● Meaning of the noun encoded in the predicate
● Relate the concept of the noun to a particular instance of variable

12

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

● These are semantically equivalent!

● ¬[IF P, THEN Q] ⇔ P AND NOT Q

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

● These are semantically equivalent!

● ¬[IF P, THEN Q] ⇔ P AND NOT Q

● For NLTK, use the hyphen/minus character: ‘-‘

13

‘John booked a flight’
● Target representation:

● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

14

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

15

S → NP VP {NP.sem(VP.sem)}

7

24

224

.SLR

:4w

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

16

S → NP VP {NP.sem(VP.sem)}

7\կձӳ֎րֈ	շ ձӳ֎րֈ
^
24

224

.SLR

:4w

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

17

S → NP VP {NP.sem(VP.sem)}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
VP → Verb NP {Verb.sem(NP.sem)}

7\կձӳ֎րֈ	շ ձӳ֎րֈ
^
24

224\ᇊչӳչ	ի֊փ։
^
.SLR

:4w

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

18

S → NP VP {NP.sem(VP.sem)}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
VP → Verb NP {Verb.sem(NP.sem)}

7\ᇊչӳչ	ի֊փ։
	շ ձӳ֎րֈ
^
24

224\w^
.SLR

:4w

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

19

S → NP VP {NP.sem(VP.sem)}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
VP → Verb NP {Verb.sem(NP.sem)}

7\շ ձӳ֎րֈ	ի֊փ։
^
24

224\w^
.SLR

:4w

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

20

NP → Det NN {Det.sem(NN.sem)}

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
(IX

E

22

JPMKLX

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

21

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
(IX

E

22ᇊ֓ӳէևքւփ֏	֓

JPMKLX

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

22

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
(IX

E

22ᇊ֓ӳէևքւփ֏	֓

JPMKLX

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

23

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
(IX\ᇊձӳᇊղӳૠ֓ձ	֓
 ૑ ղ	֓
^
E

22ᇊ֓ӳէևքւփ֏	֓

JPMKLX

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

24

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

25

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ૑ ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

26

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ૑ ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^\ᇊղӳૠ֓	ᇊ֓ӳէևքւփ֏	֓

	֓
 ૑ ղ	֓
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

27

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ૑ ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^\ᇊղӳૠ֓	ᇊ֓ӳէևքւփ֏	֓

	֓
 ૑ ղ	֓
^\ᇊղӳૠ֓էևքւփ֏	֓
 ૑ ղ	֓
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

28

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

24\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ૑ ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^\ᇊղӳૠ֓	ᇊ֓ӳէևքւփ֏	֓

	֓
 ૑ ղ	֓
^\ᇊղӳૠ֓էևքւփ֏	֓
 ૑ ղ	֓
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

29

VP → Verb NP {Verb.sem(NP.sem)}
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

:4

:

FSSOIH

24

E JPMKLX

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

30

VP → Verb NP {Verb.sem(NP.sem)}
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

:4\շ ր֍սӳ֎րֈ	կձӳ֎րֈ
^
:

FSSOIH

24

E JPMKLX

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

31

VP → Verb NP {Verb.sem(NP.sem)}
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

:4\շ ր֍սӳ֎րֈ	կձӳ֎րֈ
^
:

FSSOIH

24

E JPMKLX

Verb → ‘booked’
{λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))}

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))
λz.∃x Flight(x) ∧ (λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(x)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))
λz.∃x Flight(x) ∧ (λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(x)
λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))
λz.∃x Flight(x) ∧ (λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(x)
λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

33

S VP.sem(John)

‘booked a flight' λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z)
∧ BookedThing(e,x)

7\շ ձӳ֎րֈ	ի֊փ։
^
24

224\w^
.SLR

:4w

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

34

S VP.sem(John)
‘booked a flight' λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)

λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)(John)
∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,John) ∧ BookedThing(e,x)

‘John booked a flight’

35

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }
Det → ‘every’ { λP.λQ.∀x P(x) ⇒ Q(x) }
NN → ‘flight’ {λx.Flight(x)}
Verb → ‘booked’ {λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
NP → Det NN {Det.sem(NN.sem)}
S → NP VP {NP.sem(VP.sem)}
VP → Verb NP {Verb.sem(NP.sem)}

‘John booked no flight’
● ¬(∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x)))

● ∀xFlight(x) ⇒ ¬(∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x)

36

‘John booked no flight’

37

Det → ‘no’ { λP.λQ.¬∃x P(x) ∧ Q(x) | λP.λQ.∀x P(x) ⇒ ¬Q(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }
Det → ‘every’ { λP.λQ.∀x P(x) ⇒ Q(x) }
NN → ‘flight’ {λx.Flight(x)}
Verb → ‘booked’ {λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
NP → Det NN {Det.sem(NN.sem)}
S → NP VP {NP.sem(VP.sem)}
VP → Verb NP {Verb.sem(NP.sem)}

Other Lambda Calculus

38

Adjectives

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:
● “red” = λP λx(red(x) ∧ P(x))

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:
● “red” = λP λx(red(x) ∧ P(x))

● Any issues?

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:
● “red” = λP λx(red(x) ∧ P(x))

● Any issues?
● Non-intersective adjectives (e.g. ‘skillful’, ‘alleged’, ‘fake’)

39

Definite Article
● a = λP.λQ.∃x(P(x) ∧ Q(x))

● the = λP.λQ.∃x(P(x) ∧ ∀y(P(y)⇔x=y) ∧ Q(x)))

● Roughly: “The P Q”: there is a unique P, which is also Q
● Unique: x is P, and anything else that is also P is equal to x

40

Definite Article
● the = λP.λQ.∃x(P(x) ∧ ∀y(P(y)⇔x=y) ∧ Q(x)))

● Bertrand Russel, “On Denoting” (1905).
● The definite article isn’t exactly the same as a constant (like “John”)
● Rather, it picks out a set of items from a set (the generic NN), and makes a

strong assertion:
A) The book arrived.
B) A book arrived.
● A ⊨ B, but B ⊭ A

41

https://www.uvm.edu/~lderosse/courses/lang/Russell(1905).pdf

Definite Article + Presupposition
● “The slides for Monday are amazing.”
● ~> there are slides for Monday.

● “The slides for Monday are not amazing.”
● ~> there are slides for Monday.

● The P Q: presupposes that there is a unique P, does not assert it
[Strawson 1950, …]
● If there is no P, “The P Q” is neither true nor false

42

Learning Semantic Parsers

43

44Zettlemoyer and Collins 2005

Supervised learning:
● Sentences labeled with logical forms
● Induce grammar
● Plus semantic attachments
● Score analyses of ambiguous

sentences with log-linear model

https://homes.cs.washington.edu/~lsz/papers/zc-uai05.pdf

Learning from Denotations

45

Learn semantic representations as latent
variables for downstream task (QA,
conversation, …)

Liang et al 2011

https://www.aclweb.org/anthology/J13-2005/

Resources
● Datasets
● General:
● Abstract Meaning Representations: LDC2017T10
● Minimal Recursion Semantics: DeepBank
● SQL:
● Spider: https://yale-lily.github.io/spider
● SParC: https://yale-lily.github.io/sparc

46

https://catalog.ldc.upenn.edu/LDC2017T10
http://moin.delph-in.net/DeepBank
https://yale-lily.github.io/spider
https://yale-lily.github.io/sparc

Resources: Knowledge Graphs
● R.I.P. Freebase
● Used by Google Knowledge Graph, then bought and killed
● [they have an API with 100,000 queries/day for free]

● BUT: data moved to Wikidata

47

https://developers.google.com/knowledge-graph/
https://www.wikidata.org/wiki/Wikidata:Main_Page

Lexical Semantics

48

Lexical Semantics
● Thus far: POS → Word {sem}

● Can compose larger semantic formulae bottom-up this way
● …but we haven’t really discussed what a “word” is, semantically.

49

Lexical Semantics
● Thus far: POS → Word {sem}

● Can compose larger semantic formulae bottom-up this way
● …but we haven’t really discussed what a “word” is, semantically.

● Lexical semantics:
● How do we formally discuss what a “word” is?
● How do we relate words to one another?
● How do we differentiate/relate linked senses?

49

What is a Plant?

50

What is a Plant?
● There are more kinds of plants and animals in the rainforests than

anywhere else on Earth. Over half of the millions of known species of
plants and animals live in the rainforest. Many are found nowhere else.
There are even plants and animals in the rainforest that we have not yet
discovered.

50

What is a Plant?
● There are more kinds of plants and animals in the rainforests than

anywhere else on Earth. Over half of the millions of known species of
plants and animals live in the rainforest. Many are found nowhere else.
There are even plants and animals in the rainforest that we have not yet
discovered.

● The Paulus company was founded in 1938. Since those days the product
range has been the subject of constant expansions and is brought up
continuously to correspond with the state of the art. We’re engineering,
manufacturing, and commissioning world-wide ready-to-run plants packed
with our comprehensive know-how.

50

Lexical Semantics

51

…by way of dad-joke Halloween costumes. 🎃

Lexical Semantics

51

…by way of dad-joke Halloween costumes. 🎃

Lexical Semantics

51

A Ceiling Fan Snakes on a Plane

…by way of dad-joke Halloween costumes. 🎃

Lexical Semantics

51

A Ceiling Fan Snakes on a Plane
(Painful) Examples of Homonymy

Sources of Confusion
Homonymy

52

Sources of Confusion
Homonymy
Polysemy

52

Sources of Confusion
Homonymy
Polysemy
Synonymy

52

Sources of Confusion
Homonymy
Polysemy
Synonymy
Antonymy

52

Sources of Confusion
Homonymy
Polysemy
Synonymy
Antonymy
[Hypo/Hyper]-nymy

52

Sources of Confusion:
Homonymy

● Words have same form but different meanings
● Generally same POS, but unrelated meaning
● bank1 (side of river)
● bank2 (financial institution)

53

Sources of Confusion:
Homonymy

● Different types of Homonymy:
● Homophones: same phonology, different orthographic form
● two
● to
● too
● Homographs: Same orthography, different phonology:
● “lead” (metal)
● “lead” (take somewhere)

54

Sources of Confusion:
Homonymy

● Different types of Homonymy:
● Homophones: same phonology, different orthographic form
● two
● to
● too
● Homographs: Same orthography, different phonology:
● “lead” (metal)
● “lead” (take somewhere)

● Why do we care?
● Problem for applications: TTS, ASR transcription, IR

54

Sources of Confusion:
Polysemy

● Multiple RELATED senses
● e.g. bank: money, organ, blood

55

Sources of Confusion:
Polysemy

● Multiple RELATED senses
● e.g. bank: money, organ, blood

● Big issue in lexicography
● Number of senses
● Relations between senses
● Differentiation

55

Sources of Confusion:
Polysemy

● Example: [[serve]]
● serve breakfast
● serve Philadelphia
● serve time

56

Sources of Confusion:
Synonymy

● (near) identical meaning

● Substitutability
● Maintains propositional meaning

57

Sources of Confusion:
Synonymy

● Issues:
● Also has polysemy!
● Shades of meaning - other associations
● price vs. fare
● big vs. large
● water vs. H20

● Collocational constraints
● e.g. babbling brook vs. *babbling river

● Register:
● social factors: e.g. politeness, formality

58

Sources of Confusion:
Antonymy

● Opposition

● Typically ends of a scale
● fast vs. slow
● big vs. little

● Can be hard to distinguish automatically from
synonyms

59

Sources of Confusion:
Hyponomy

● instanceOf(x, y) relations:

● More General (hypernym) vs. more specific (hyponym)
● dog vs. golden retriever
● fruit vs. mango

● Organize as ontology/taxonomy

60

Word Sense Disambiguation
● Application of lexical semantics

● Goal: given a word in context, identify the appropriate sense
● e.g. plants and animals in the rainforest

● Crucial for real syntactic & semantic analysis
● Correct sense can determine
● Available syntactic structure
● Available thematic roles, correct meaning…

61

Robust Disambiguation
● More to semantics than predicate-argument structure
● Select sense where predicates underconstrain

● Learning approaches
● Supervised, bootstrapped, unsupervised

● Knowledge-based approaches
● Dictionaries, taxonomies

● Contexts for sense selection

62

63

There are more kinds of plants and animals in the rainforests than anywhere else on
Earth. Over half of the millions of known species of plants and animals live in the
rainforest. Many are found nowhere else. There are even plants and animals in the

rainforest that we have not yet discovered.
Biological Example

The Paulus company was founded in 1938. Since those days the product range has been
the subject of constant expansions and is brought up continuously to correspond with

the state of the art. We’re engineering, manufacturing and commissioning world-
wide ready-to-run plants packed with our comprehensive know-how. Our Product
Range includes pneumatic conveying systems for carbon, carbide, sand, lime and many

others. We use reagent injection in molten metal for the…
Industrial Example

Label the First Use of “Plant”

Roadmap
● Lexical Semantics
● Motivation & Definitions
● Word Senses
● Tasks:
● Word sense disambiguation
● Word sense similarity
● Distributional Similarity

64

Disambiguation: Features
● Part of Speech
● Of word and neighbors

65

Disambiguation: Features
● Part of Speech
● Of word and neighbors

● Morphologically simplified form

65

Disambiguation: Features
● Part of Speech
● Of word and neighbors

● Morphologically simplified form

● Words in neighborhood
● How big is “neighborhood?”
● Is there a single optimal size? Why?

65

Disambiguation: Features
● (Possibly shallow) Syntactic analysis
● predicate-argument relations
● modification (complements)
● phrases

66

Disambiguation: Features
● (Possibly shallow) Syntactic analysis
● predicate-argument relations
● modification (complements)
● phrases

● Collocation
● words in specific relation
● Predicate-Argument, or (+/–)1 word index

66

Disambiguation: Features
● (Possibly shallow) Syntactic analysis
● predicate-argument relations
● modification (complements)
● phrases

● Collocation
● words in specific relation
● Predicate-Argument, or (+/–)1 word index

● Co-occurrence
● bag of words

66

Disambiguation: Evaluation
● Ideally, end-to-end evaluation with WSD component
● Demonstrate real impact of technique in system
● Difficult, expensive, still application specific

67

Disambiguation: Evaluation
● Ideally, end-to-end evaluation with WSD component
● Demonstrate real impact of technique in system
● Difficult, expensive, still application specific

● Typically intrinsic, sense-based
● Accuracy, precision, recall
● SENSEVAL/SEMEVAL: all words, lexical sample

67

WSD Evaluation
● Baseline:
● Most frequent sense

68

WSD Evaluation
● Baseline:
● Most frequent sense

● Ceiling:
● Human inter-rater agreement
● 75-80% fine
● 90% coarse

68

Roadmap
● Lexical Semantics
● Motivation & Definitions
● Word Senses
● Tasks:
● Word sense disambiguation
● Word sense similarity
● Distributional Similarity

69

Word Sense Similarity

70

Word Sense Similarity
● Synonymy:
● True propositional substitutability is rare, slippery

70

Word Sense Similarity
● Synonymy:
● True propositional substitutability is rare, slippery

● Word similarity (semantic distance)
● Looser notion, more flexible

70

Word Sense Similarity
● Appropriate to applications:
● IR, summarization, MT, essay scoring
● Don’t need binary +/– synonym decision
● Want terms/documents that have high similarity

71

Word Sense Similarity
● Appropriate to applications:
● IR, summarization, MT, essay scoring
● Don’t need binary +/– synonym decision
● Want terms/documents that have high similarity

● Approaches:
● Distributional
● Thesaurus-based

71

Similarity vs. Relatedness

72

Similarity vs. Relatedness
● Similarity:
● car, bicycle
● nickel < coin < currency

72

Similarity vs. Relatedness
● Similarity:
● car, bicycle
● nickel < coin < currency

● Related:
● car, gasoline
● coin, budget

72

Thesaurus-Based:
● Build ontology of senses
● e.g. WordNet
● Use distance to infer similarity/relatedness:

73

WXERHEVH

QIHMYQ SJ I\GLERKI

GYVVIRG]

GSMREKI

GSMR

RMGOIP HMQI

QSRI]

JYRH

FYHKIX

WGEPI

6MGLXIV WGEPI

https://wordnet.princeton.edu/

Thesaurus-Based:
● Build ontology of senses
● e.g. WordNet
● Use distance to infer similarity/relatedness:

73

WXERHEVH

QIHMYQ SJ I\GLERKI

GYVVIRG]

GSMREKI

GSMR

RMGOIP HMQI

QSRI]

JYRH

FYHKIX

WGEPI

6MGLXIV WGEPI

https://wordnet.princeton.edu/

Thesaurus-Based:
● Build ontology of senses
● e.g. WordNet
● Use distance to infer similarity/relatedness:

73

WXERHEVH

QIHMYQ SJ I\GLERKI

GYVVIRG]

GSMREKI

GSMR

RMGOIP HMQI

QSRI]

JYRH

FYHKIX

WGEPI

6MGLXIV WGEPI

https://wordnet.princeton.edu/

Roadmap
● Lexical Semantics
● Motivation & Definitions
● Word Senses
● Tasks:
● Word sense disambiguation
● Word sense similarity
● Distributional Similarity

74

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

75

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.

75

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.

75

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.

75

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
● We make tezgüino from corn.

75

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
● We make tezgüino from corn.

● Tezguino: corn-based alcoholic beverage. (From Lin, 1998a)

75

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● Represent ‘company’ of word such that similar words will have similar

representations
● ‘Company’ = context

76

Distributional Similarity
● Represent ‘company’ of word such that similar words will have similar

representations
● ‘Company’ = context

● Word represented by context feature vector
● Many alternatives for vector

76

Distributional Similarity
● Represent ‘company’ of word such that similar words will have similar

representations
● ‘Company’ = context

● Word represented by context feature vector
● Many alternatives for vector

● Initial representation:
● ‘Bag of words’ binary feature vector

● Feature vector length N, where N is size of vocabulary
● fi=1 if wordi within window size w of word0

76

Context Feature Vector

77

arts boil data function large sugar summarized water

Apricot 0 1 0 0 1 1 0 1

Pineapple 0 1 0 0 1 1 0 1

Digital 0 0 1 1 1 0 1 0

Information 0 0 1 1 1 0 1 0

Distributional Similarity Questions
● What is the right neighborhood?
● What is the context?

● How should we weight the features?

● How can we compute similarity between vectors?

78

HW #6

79

Goals
● Semantics
● Gain better understanding of semantic representations
● Develop experience with lambda calculus and FOL
● Create semantic attachments
● Understand semantic composition

80

Compositional Semantics
● Part 1:
● Manually create target semantic representations
● Use Neo-Davidsonian event representation
● e.g. verb representation with event variable, argument conjuncts
● Can use as test cases for part 2

81

Compositional Semantics
● Part 1:
● Manually create target semantic representations
● Use Neo-Davidsonian event representation
● e.g. verb representation with event variable, argument conjuncts
● Can use as test cases for part 2

● Part 2:
● Create semantic attachments to reproduce (NLTK)
● Add to grammatical rules to derive sentence representations

81

Compositional Semantics
● Part 1:
● Manually create target semantic representations
● Use Neo-Davidsonian event representation
● e.g. verb representation with event variable, argument conjuncts
● Can use as test cases for part 2

● Part 2:
● Create semantic attachments to reproduce (NLTK)
● Add to grammatical rules to derive sentence representations

● Note: Lots of ambiguities (scope, etc)
● Only need to produce one

81

Semantics in NLTK
● Grammar files:
● .fcfg extension
● Example format in NLTK Book Chapter 10
● /corpora/nltk/nltk-data/grammars/book_grammars/simple-sem.fcfg

● Note: Not “event-style”

● Parsing:
● Use nltk.parse.FeatureChartParser (or similar)

82

http://www.nltk.org/book/ch10.html

Semantics in NLTK
● Printing semantic representations:

item.label()[‘SEM’].simplify()
 all x.(dog(x) -> exists e.(barking(e) & barker(e,x)))

● Also nltk.sem.util.root_semrep(item)

83

Semantic attachments in NLTK: 
Syntax

● a,b,e,x
● lowercase variables can be arguments:
● \x.dog(x)

● P,Q,X
● uppercase lambda variables are functors
● \P.P(john)

84

λ = \
∃ = exists
∀ = all
∧ = &
∨ = |
⇒ = ->
¬ = -

(The programming kind)

More NLTK Logic Format
● Added to typical CFG rules
● Basic approach similar to HW #5
● Composing semantics:
● S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]

85

More NLTK Logic Format
● Added to typical CFG rules
● Basic approach similar to HW #5
● Composing semantics:
● S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]

● Creating lambdas:
● IV[SEM=<\x.exists e.(barking(e) & barker(e,x))>] -> ‘barks’

85

More NLTK Logic Format
● Added to typical CFG rules
● Basic approach similar to HW #5
● Composing semantics:
● S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]

● Creating lambdas:
● IV[SEM=<\x.exists e.(barking(e) & barker(e,x))>] -> ‘barks’

● Nested lambdas:
● \x.\y. Etc → \x y.  

Can remove ‘.’ between sequences of lambda elements 
Keep ‘.’ between sections: lambdas, quantifiers, body

85

86

7ॱ7)1 WII�NSLR�QEV]
"ॲ
24ৡৠয়03' �

291 WK
7)1 ᅶ4�4�NSLR
"৤ৢৣ

4VST2ৡৠয়03' �
291 WK
7)1 ᅶ4�4�NSLR
"৤ৢৣ

.SLR

:4ঢ়291 WK
7)1 ᅶ]�WII�]�QEV]
"৞

8:ৡৠয়291 WK
7)1 ᅶ<]�<�ᅶ\�WII�]�\

"
827 TVIW

৤ৢৣ

WIIW

24ৡৠয়03' �
291 WK
7)1 ᅶ4�4�QEV]
"৤ৢৣ

4VST2ৡৠয়03' �
291 WK
7)1 ᅶ4�4�QEV]
"৤ৢৣ

1EV]

