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Announcements
● HW6 grades posted

● A note on ‘or’ and polymorphism (Partee and Rooth 1983)
● They ate rice or they drank milk.
● They ate rice or beans.
● Walking or talking is their favorite thing.
● …

● ‘or’_sentence: \p:<s,t> . \q:<s,t> . \w:s . p(w) = 1 or q(w) = 1

● ‘or’_IV: \v1:<e, t> . \v2:<e, t> . \x:e . v1(x) = 1 or v2(x) = 1

● Generally: reduce all others systematically to boolean ‘or’ 
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https://semanticsarchive.net/Archive/ThiYWY5Y/BHP_Rooth83Generalized%20Conjunction.pdf


Recap
● We can represent words as vectors
● Each entry in the vector is a score for its correlation with another word
● If a word occurs frequently with “tall” compared to other words, we might assume 

height is an important quality of the word

● In these extremely large vectors, most entries are zero
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Roadmap
● Curse of Dimensionality

● Dimensionality Reduction
● Principle Components Analysis (PCA)
● Singular Value Decomposition (SVD) / LSA

● Prediction-based Methods
● CBOW / Skip-gram (word2vec)

● Word Sense Disambiguation
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The Curse of Dimensionality
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The Problem with High Dimensionality
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tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1



The Problem with High Dimensionality
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tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

The cosine similarity for these words will be zero!



The Problem with High Dimensionality
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tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

The cosine similarity for these words will be >0 (0.293)



The Problem with High Dimensionality
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tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

But if we could collapse all of these into one “meta-dimension”…



The Problem with High Dimensionality
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<taste> tree

pear 1 0

apple 1 1

watermelon 1 0

paw_paw 1 0

family 0 1

Now, these things have “taste” associated with them as a concept



Curse of Dimensionality
● Vector representations are sparse, very high dimensional
● # of words in vocabulary
● # of relations × # words, etc
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Curse of Dimensionality
● Vector representations are sparse, very high dimensional
● # of words in vocabulary
● # of relations × # words, etc

● Google 1T 5-gram corpus:
● In bigram 1M × 1M matrix: < 0.05% non-zero values

● Computationally hard to manage
● Lots of zeroes
● Can miss underlying relations
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https://catalog.ldc.upenn.edu/LDC2006T13


Roadmap
● Curse of Dimensionality

● Dimensionality Reduction
● Principle Components Analysis (PCA)
● Singular Value Decomposition (SVD) / LSA

● Prediction-based Methods
● CBOW / Skip-gram (word2vec)

● Word Sense Disambiguation

12



Reducing Dimensionality
● Can we use fewer features to build our matrices?
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Reducing Dimensionality
● Can we use fewer features to build our matrices?

● Ideally with
● High frequency — means fewer zeroes in our matrix
● High variance — larger spread over values makes items easier to separate
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Reducing Dimensionality
● One approach — filter out features
● Can exclude terms with too few occurrences

● Can include only top X most frequently seen features

● 𝜒2 selection
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Reducing Dimensionality
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Reducing Dimensionality
● Things to watch out for:
● Feature correlation — if features strongly correlated, give redundant information
● Joint feature selection complex, computationally expensive
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Reducing Dimensionality
● Approaches to project into lower-dimensional spaces
● Principal Components Analysis (PCA)
● Locality Preserving Projections (LPP) [link]
● Singular Value Decomposition (SVD)
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https://papers.nips.cc/paper/2359-locality-preserving-projections.pdf


Reducing Dimensionality
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Reducing Dimensionality
● All approaches create new lower dimensional space that
● Preserves distances between data points
● (Keep like with like)

17



Reducing Dimensionality
● All approaches create new lower dimensional space that
● Preserves distances between data points
● (Keep like with like)

● Approaches differ on exactly what is preserved
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

21via [A layman’s introduction to PCA]

https://www.youtube.com/watch?v=BfTMmoDFXyE
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Principal Component Analysis (PCA)

22via [A layman’s introduction to PCA]

This →

Preserves more information than

These →

https://www.youtube.com/watch?v=BfTMmoDFXyE


Singular Value Decomposition (SVD)
● Enables creation of reduced dimension model
● Low rank approximation of of original matrix
● Best-fit at that rank (in least-squares sense)
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Singular Value Decomposition (SVD)
● Original matrix: high dimensional, sparse
● Similarities missed due to word choice, etc

● Create new, projected space
● More compact, better captures important variation

● Landauer et al  (1998) argue identifies underlying “concepts”
● Across words with related meanings
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http://lsa.colorado.edu/papers/dp1.LSAintro.pdf


Latent Semantic Analysis (LSA)
● Apply SVD to |V | × c term-document matrix X
● V → Vocabulary

● c → documents

● X 
● row → word
● column → document
● cell → count of word/document
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Latent Semantic Analysis (LSA)
● Factor X into three new matrices:
● W → one row per word, but columns are now arbitrary m dimensions

● Σ → Diagonal matrix, where every (1,1) (2,2) etc… is the rank for m

● CT → arbitrary m dimensions, as spread across c documents
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word-word 
PPMI matrix

X W

w x c w x m

=
Σ C

m x m m x c



SVD
Animation

youtu.be/R9UoFyqJca8

Enjoy some 3D Graphics from 1976!
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Animation
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Enjoy some 3D Graphics from 1976!
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https://youtu.be/R9UoFyqJca8


Latent Semantic Analysis (LSA)
● LSA implementations typically:
● truncate initial m dimensions to top k
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word-word 
PPMI matrix

X W

w x c w x m

=
Σ C

m x m m x cW

kw x m

≈
m x m m x c

Σ C
k k k



Latent Semantic Analysis (LSA)
● LSA implementations typically:
● truncate initial m dimensions to top k 
● then discard  Σ and C matrices
● Leaving matrix W
● Each row is now an “embedded” representation of each w across k dimensions
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Singular Value Decomposition (SVD)
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Avengers Star Wars Iron Man Titanic The 
Notebook

User1 1 1 1

User2 3 3 3

User3 4 4 4

User4 5 5 5

User5 2 4 4

User6 5 5

User7 1 2 2

Original Matrix X (zeroes blank)



Singular Value Decomposition (SVD)
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m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The 
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)



Singular Value Decomposition (SVD)
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m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The 
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

“Sci-fi-ness”



Singular Value Decomposition (SVD)
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m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The 
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

“Romance-ness”



Singular Value Decomposition (SVD)
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m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The 
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

Catchall (noise)



LSA Document Contexts
● Deerwester et al, 1990: "Indexing by Latent Semantic Analysis"
● Titles of scientific articles
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c1 Human machine interface for ABC computer applications
c2 A survey of user opinion of computer system response time
c3 The EPS user interface management system
c4 System and human system engineering testing of EPS
c5 Relation of user perceived response time to error measurement

m1 The generation of random, binary, ordered trees
m2 The intersection graph of paths in trees
m3 Graph minors IV: Widths of trees and well-quasi-ordering
m4 Graph minors: A survey

http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf


Document Context Representation
● Term x document: 
● corr(human, user) = -0.38;     corr(human, minors)=-0.29
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c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1



Improved Representation
● Reduced dimension projection:
● corr(human, user) =  0.98;     corr(human, minors)=-0.83
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c1 c2 c3 c4 c5 m1 m2 m3 m4
human 0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09
interface 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12
user 0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19
system 0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
response 0.16 0.58 0.38 0.42 0.28 0.05 0.13 0.19 0.22
time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11
survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.33 0.42
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
minors -0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 0.62



Python Tutorial for LSA
● For those interested in seeing how LSA works in practice:
● technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/
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https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/


Dimensionality Reduction for Visualization
● “I see well in many dimensions as long as the dimensions are around two.”
● —Martin Shubek

● Even with ‘dense’ embeddings, techniques like PCA are useful for 
visualization

● Another popular one: t-SNE

● Useful for exploratory analysis
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https://lvdmaaten.github.io/tsne/


Prediction-Based Models

40



Prediction-based Embeddings
● LSA models: good, but expensive to compute
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● Skip-gram and Continuous Bag of Words (CBOW) models
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Prediction-based Embeddings
● LSA models: good, but expensive to compute

● Skip-gram and Continuous Bag of Words (CBOW) models

● Intuition:
● Words with similar meanings share similar contexts
● Train language models to learn to predict context words
● Models train embeddings that make current word more like nearby words and 

less like distance words
● Provably related to PPMI models under SVD
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Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW): 
● P(word |context) 

● Input:  (wt-1, wt-2, wt+1, wt+2 …) 

● Output: p(wt)
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Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW): 
● P(word |context) 

● Input:  (wt-1, wt-2, wt+1, wt+2 …) 

● Output: p(wt)

● Skip-gram: 
● P(context |word)

● Input: wt 

● Output: p(wt-1, wt-2, wt+1, wt+2 …)
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Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW): 
● P(word |context) 

● Input:  (wt-1, wt-2, wt+1, wt+2 …) 

● Output: p(wt)

● Skip-gram: 
● P(context |word)

● Input: wt 

● Output: p(wt-1, wt-2, wt+1, wt+2 …)
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Mikolov et al 2013a (the OG word2vec paper)

https://arxiv.org/abs/1301.3781


● Learns two embeddings
● W : word

● C : context of some fixed dimension

Skip-Gram Model

43



● Learns two embeddings
● W : word

● C : context of some fixed dimension

● Prediction task:
● Given a word, predict each neighbor word in window

● Compute p(wk|wj) represented as ck · vj

● For each context position
● Convert to probability via softmax

Skip-Gram Model

43
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Skip-Gram Network Visualization
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Input Layer:
one-hot input vector Projection Layer:

embedding for wt

Output Layer:
probabilities of context words
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Training The Model
● Issue:
● Denominator computation is very expensive

● Strategy:
● Approximate by negative sampling (efficient 

approximation to Noise Contrastive Estimation):
● + example: true context word
● – example: k other words, sampled
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Training The Model
● Approach:
● Randomly initialize W, C

● Iterate over corpus, update w/ stochastic gradient descent
● Update embeddings to improve loss function

● Use trained embeddings directly as word representations
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Skip-Gram Network Visualization
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Input Layer:
one-hot input vector Projection Layer:

embedding for wt

Output Layer:
probabilities of context words

wt wt(+/–)n

x1
x2
x3

xj

x|V|

..

..

...
.

.. ..

..

..

..

.

y1
y2
y3

yj

y|V|

..

.

..W|V|×d Cd×|V|

1×d
1×|V| 1×|V|



Relationships via Offsets

48

MAN

WOMAN

UNCLE

AUNT

KING

QUEEN

Mikolov et al 2013b

https://www.aclweb.org/anthology/N13-1090/


Relationships via Offsets

48

MAN

WOMAN

UNCLE

AUNT

KING

QUEEN KING

QUEEN
KINGS

QUEENS

Mikolov et al 2013b

https://www.aclweb.org/anthology/N13-1090/


One More Example
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Mikolov et al 2013c

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality


One More Example
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Caveat Emptor
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Linzen 2016, a.o.

https://www.aclweb.org/anthology/W16-2503/


Diverse Applications
● Unsupervised POS tagging

● Word Sense Disambiguation

● Essay Scoring

● Document Retrieval

● Unsupervised Thesaurus Induction

● Ontology/Taxonomy Expansion

● Analogy Tests, Word Tests

● Topic Segmentation
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General Recipe
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General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice

53

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
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● Then feed those vectors into model of choice
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Depiction of seq2seq NMT architecture 
c/o Hewitt & Kriz
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https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf


General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice
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Depiction of seq2seq NMT architecture 
c/o Hewitt & Kriz

Pre-trained embeddings!

https://fasttext.cc/
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https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf


General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice

● Newer embeddings:
● fastText
● GloVe

53

Depiction of seq2seq NMT architecture 
c/o Hewitt & Kriz

Pre-trained embeddings!

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf


Contextual Word Representations
● Global embeddings: single fixed word-vector look-up table

● Contextual embeddings:
● Get a different vector for every occurrence of every word

● A recent revolution in NLP

● Here’s a nice “contextual introduction”
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https://arxiv.org/pdf/1902.06006.pdf


Contextual Word Representations
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Peters et al 2018Devlin et al 2018 Radford et al 2019

https://www.aclweb.org/anthology/N18-1202/
https://arxiv.org/abs/1810.04805
https://openai.com/blog/better-language-models/


Contextual Word Representations

55

Peters et al 2018Devlin et al 2018 Radford et al 2019

“Embeddings from Language Models”

https://www.aclweb.org/anthology/N18-1202/
https://arxiv.org/abs/1810.04805
https://openai.com/blog/better-language-models/


Global vs Contextual Representations
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Global embedding

Model for task

Raw tokens

Model for task

Contextual embedding 
(pre-trained)

Raw tokens



Ethical Issues Around Embeddings
● Models that learn representations from reading human-produced raw text 

also learn our biases
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Boukbasi et al 2016

https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings


Distributional Similarity for
Word Sense Disambiguation
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There are more kinds of plants and animals in the rainforests than anywhere else on 
Earth.  Over half of the millions of known species of plants and animals live in the 
rainforest.  Many are found nowhere else. There are even plants and animals in the 

rainforest that we have not yet discovered. 
Biological Example

The Paulus company was founded in 1938. Since those days the product range has been 
the subject of constant expansions and is brought up continuously to correspond with 

the state of the art. We’re engineering, manufacturing and commissioning world-
wide ready-to-run plants packed with our comprehensive know-how. Our Product 
Range includes pneumatic conveying systems for carbon, carbide, sand, lime and many 

others. We use reagent injection in molten metal for the…
Industrial Example

Label the First Use of “Plant”



Word Representation
● 2nd Order Representation:
● Identify words in context of w

● For each x in context of w:
● Compute x vector representation

● Compute centroid of these x ⃗vector representations
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Computing Word Senses
● Compute context vector for each occurrence of word in corpus
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● Compute context vector for each occurrence of word in corpus

● Cluster these context vectors
● # of clusters = # of senses
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Computing Word Senses
● Compute context vector for each occurrence of word in corpus

● Cluster these context vectors
● # of clusters = # of senses

● Cluster centroid represents word sense

● Link to specific sense?
● Pure unsupervsed: no sense tag, just ith sense
● Some supervision: hand label clusters, or tag training

61



Disambiguating Instances
● To disambiguate an instance t of w:
● Compute context vector for instance
● Retrieve all senses of w
● Assign w sense with closest centroid to t

62



● “Brown” (aka IBM) clustering (1992)
● Generative model over adjacent words

● Each wi has class ci

●  

● Greedy clustering

● Start with each word in own cluster

● Merge clusters based on log prob of text under model

● Merge those which maximize P(W ) 

Local Context Clustering
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Clustering Impact
● Improves downstream tasks
● Named Entity Recognition vs. HMM
● Miller et al ’04

64

Discriminative + Clusters

HMM
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M
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Training Size

104 105 106

http://www.aclweb.org/anthology/N04-1043


Distributional Models: 
Summary

● Upsurge in distributional compositional
● Embeddings:
● Discriminatively trained, “low”-dimensional representations
● e.g. word2vec
● skipgrams, etc. over large corpora

● Composition?
● Methods for combining word vector models
● Capture phrasal, sentential meanings

65


