Probabilistic Parsing: Issues & Improvement

LING 571 — Deep Processing Techniques for NLP
October 19, 2020
Shane Steinert-Threlkeld

Announcements

- HW2 grades posted
- Reference code soon available in
 - /dropbox/20-21/571/hw2/reference_code
- NB: not needed for HW3; you can assume that all grammars are already in CNF

Homework Tips

- Use nltk.load for reading grammars; will save you and TA time and headaches
- Run your code on patas to produce the output you submit in TAR file
 - Some discrepancies found that seem due to different environment
 - When in doubt, use full paths to python binaries, etc
- readme. {txt | pdf }: this should NOT be inside your TAR file, but a separate upload on Canvas

Notes on HW #3

- Python's range has many use cases by manipulating start/end, and step
 - range(n) is equivalent to range(0, n, 1)
- Reminder: the rhs= argument in NLTK's grammar.productions()
 method only matches the first symbol, not an entire string
 - You'll want to implement an efficient look-up based on RHS
- HW3: compare your output to running HW1 parser on the same grammar/ sentences
 - order of output in ambiguous sentences could differ

Language Does the Darnedest Things

https://twitter.com/ArrivedInGenX/status/1317879511795535872

PCFG Induction

- Simplest way:
 - Use treebank of parsed sentences

- Simplest way:
 - Use treebank of parsed sentences
 - To compute probability of a rule, count:

- Simplest way:
 - Use treebank of parsed sentences
 - To compute probability of a rule, count:
 - Number of times a nonterminal is expanded:

$$\Sigma_{\gamma} Count(\alpha \rightarrow \gamma)$$

- Simplest way:
 - Use treebank of parsed sentences
 - To compute probability of a rule, count:
 - Number of times a nonterminal is expanded:
 - Number of times a nonterminal is expanded by a given rule:

$$\Sigma_{\gamma} Count(\alpha \rightarrow \gamma)$$

$$Count(\alpha \rightarrow \beta)$$

- Simplest way:
 - Use treebank of parsed sentences
 - To compute probability of a rule, count:
 - Number of times a nonterminal is expanded:
 - Number of times a nonterminal is expanded by a given rule:

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\gamma} Count(\alpha \to \gamma)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

$$\Sigma_{\gamma} Count(\alpha \rightarrow \gamma)$$

$$Count(\alpha \rightarrow \beta)$$

- Simplest way:
 - Use treebank of parsed sentences
 - To compute probability of a rule, count:
 - Number of times a nonterminal is expanded:
 - Number of times a nonterminal is expanded by a given rule:

$$\Sigma_{\gamma} \ Count(\alpha \rightarrow \gamma)$$

$$Count(\alpha \rightarrow \beta)$$

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\gamma} Count(\alpha \to \gamma)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

- Alternative: Learn probabilities by re-estimating
 - (Later)

Inducing a PCFG NP VP NNP **VBZ** NP NNP Mr. Vinken NP NN NP IN chairman NP NP of **VBG** NNP NNP NNP NN DT Elsevier the Dutch publishing N.V. group

VP → VBZ NP

VP → VBZ NP

NP→ NP PP

19

0.4

0.2

0.2

0.2

Problems with PCFGs

Problems with PCFGs

- Independence Assumption
 - Assume that rule probabilities are independent

Problems with PCFGs

- Independence Assumption
 - Assume that rule probabilities are independent

- Lack of Lexical Conditioning
 - Lexical items should influence the choice of analysis

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
- If we have two rules:
 - $NP \rightarrow DT NN [0.28]$
 - $NP \rightarrow PRP$ [0.25]

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
- If we have two rules:
 - $NP \rightarrow DT NN [0.28]$
 - $NP \rightarrow PRP$ [0.25]

Semantic Role of NPs in Switchboard Corpus

	Pronomial	Non-Pronomial
Subject	91%	9%
Object	34%	66%

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
- If we have two rules:
 - $NP \rightarrow DT NN [0.28]$
 - $NP \rightarrow PRP$ [0.25]
- What does this new data tell us?

Semantic Role of NPs in Switchboard Corpus

	Pronomial	Non-Pronomial
Subject	91%	9%
Object	34%	66%

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
- If we have two rules:
 - $NP \rightarrow DT NN [0.28]$
 - $NP \rightarrow PRP$ [0.25]
- What does this new data tell us?
 - $NP \rightarrow DT NN \ [0.09 \text{ if } NP_{\Theta=subject} \text{ else } 0.66]$
 - $NP \rightarrow PRP$ [0.91 if $NP_{\Theta=subject}$ else 0.34]

Semantic Role of NPs in Switchboard Corpus

	Pronomial	Non-Pronomial
Subject	91%	9%
Object	34%	66%

- Context Free ⇒ Independence Assumption
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
- If we have two rules:
 - $NP \rightarrow DT NN [0.28]$
 - $NP \rightarrow PRP$ [0.25]
- What does this new data tell us?
 - $NP \rightarrow DT NN \ [0.09 \text{ if } NP_{\Theta=subject} \text{ else } 0.66]$
 - $NP \rightarrow PRP$ [0.91 if $NP_{\Theta=subject}$ else 0.34]

Semantic Role of NPs in Switchboard Corpus

	Pronomial	Non-Pronomial
Subject	91%	9%
Object	34%	66%

... Can try parent annotation

Issues with PCFGs: Lexical Conditioning

("into a bin" = location of sacks after dumping)

OK!

("into a bin" = *the sacks which were located in PP)

not OK

Issues with PCFGs: Lexical Conditioning

("in a bin" = location of sacks **before** dumping)

OK!

("into a bin" = *the sacks which were located in PP)
not OK

Issues with PCFGs: Lexical Conditioning

- workers dumped sacks into a bin
 - into should prefer modifying dumped
 - into should disprefer modifying sacks

- fishermen caught tons of herring
 - of should prefer modifying tons
 - of should disprefer modifying caught

 $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Same Rules!

 $NP \rightarrow NP PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep NP$ $Prep \rightarrow "in"$ $NP \rightarrow NP Conj NP$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

 $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Same Rules!

 $NP \rightarrow NP PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep NP$ $Prep \rightarrow "in"$ $NP \rightarrow NP Conj NP$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $NOun \rightarrow "cats"$

 $NP \rightarrow NP \ Conj \ NP$ $NP \rightarrow NP \ PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep \ NP$ $Prep \rightarrow "in"$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Same Rules!

 $NP \rightarrow NP PP$ $Noun \rightarrow "dogs"$ $PP \rightarrow Prep NP$ $Prep \rightarrow "in"$ $NP \rightarrow NP Conj NP$ $NP \rightarrow Noun$ $Noun \rightarrow "houses"$ $Conj \rightarrow "and"$ $NP \rightarrow Noun$ $Noun \rightarrow "cats"$

Improving PCFGs

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

• To handle the $NP \rightarrow PRP [0.91 \text{ if } NP_{\Theta=subject} \text{ else } 0.34]$

• To handle the $NP \rightarrow PRP [0.91 \text{ if } NP_{\Theta=subject} \text{ else } 0.34]$

• To handle the $NP \rightarrow PRP [0.91 \text{ if } NP_{\Theta=subject} \text{ else } 0.34]$

- Advantages:
 - Captures structural dependencies in grammar

- Advantages:
 - Captures structural dependencies in grammar
- Disadvantages:
 - Explodes number of rules in grammar
 - Same problem with subcategorization
 - Results in sparsity problems

- Advantages:
 - Captures structural dependencies in grammar
- Disadvantages:
 - Explodes number of rules in grammar
 - Same problem with subcategorization
 - Results in sparsity problems
- Strategies to find an optimal number of splits
 - Petrov et al (2006)

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Improving PCFGs: Lexical "Heads"

- Remember back to syntax intro (Lecture #1)
 - Phrases are "headed" by key words
 - VP are headed by V
 - NP by NN, NNS, PRON
 - PP by PREP

We can take advantage of this in our grammar!

- As we've seen, some rules should be conditioned on certain words
- Proposal: annotate nonterminals with lexical head

```
VP \rightarrow VBD \ NP \ PP

VP(dumped) \rightarrow VBD(dumped) \ NP(sacks) \ PP(into)
```

• Additionally: annotate with lexical head + POS

```
VP(dumped, VBD) \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, IN)
```


Lexical Rules				
Pron(I, Pron)	→	I		
V(prefer, V)	\rightarrow	prefer		
Det(a, Det)	\rightarrow	a		
$NN(flight,\ NN)$	\rightarrow	flight		
$IN(on,\ IN)$	\rightarrow	on		
NNP(NWA, NNP)	\rightarrow	TWA		

Lexical Rules				
Pron(I, Pron)	→	Ι		
V(prefer, V)	\rightarrow	prefer		
$Det(a,\ Det)$	\rightarrow	a		
$NN(flight,\ NN)$	\rightarrow	flight		
$IN(on,\ IN)$	\rightarrow	on		
NNP(NWA, NNP)	\rightarrow	TWA		

Lexical Rules				
Pron(I, Pron)	→	I		
V(prefer, V)	\rightarrow	prefer		
Det(a, Det)	\rightarrow	a		
$NN(flight,\ NN)$	\rightarrow	flight		
$IN(on,\ IN)$	\rightarrow	on		
NNP(NWA, NNP)	\rightarrow	TWA		

Lexical Rules				
Pron(I, Pron)	→	I		
V(prefer, V)	\rightarrow	prefer		
$Det(a,\ Det)$	\rightarrow	a		
$NN(flight,\ NN)$	\rightarrow	flight		
$IN(on,\ IN)$	\rightarrow	on		
NNP(NWA, NNP)	\rightarrow	TWA		

Upshot: heads propagate up tree:

- Upshot: heads propagate up tree:
 - $VP \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, P)$
 - $NP \rightarrow NNS(sacks, NNS) PP(into, P)$

- Upshot: heads propagate up tree:
 - $VP \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, P)$

• $NP \rightarrow NNS(sacks, NNS) PP(into, P)$

- Upshot: heads propagate up tree:
 - $VP \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, P)$
 - $NP \rightarrow NNS(sacks, NNS) PP(into, P)$

- Downside:
 - Rules far too specialized will be sparse
- Solution:
 - Assume *conditional* independence
 - Create more rules

Improving PCFGs: Collins Parser

- Proposal:
 - $LHS \rightarrow LeftOfHead \dots Head \dots RightOfHead$
 - Instead of calculating *P*(*EntireRule*), which is sparse:
 - Calculate:
 - ullet Probability that LHS has nonterminal phrase H given head-word hw...
 - ullet × Probability of modifiers to the left given head-word hw...
 - ullet × Probability of modifiers to the right given head-word hw...

 $P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

 $P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$

 $P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{6}{9} = 0.67$$

 $P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{6}{9} = 0.67$$

 $P_R(into | PP, dumped)$

 $P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{6}{9} = 0.67$$

 $P_R(into | PP, dumped)$

$$= \frac{Count\left(X\left(dumped\right) \to \dots PP\left(into\right) \dots\right)}{\sum_{\beta} Count\left(X\left(dumped\right) \to \dots PP \dots\right)}$$

 $P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped \right) \to VBD \ NP \ PP \right)}{\sum_{\beta} Count \left(VP \left(dumped \right) \to \beta \right)}$$
$$= \frac{6}{9} = 0.67$$

 $P_R(into | PP, dumped)$

$$= \frac{Count\left(X\left(dumped\right) \to \dots PP\left(into\right) \dots\right)}{\sum_{\beta} Count\left(X\left(dumped\right) \to \dots PP \dots\right)}$$

$$=\frac{2}{9}=0.22$$

$P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{6}{9} = 0.67$$

$P_R(into | PP, dumped)$

$$= \frac{Count \left(X \left(dumped \right) \to \dots PP \left(into \right) \dots \right)}{\sum_{\beta} Count \left(X \left(dumped \right) \to \dots PP \dots \right)}$$

$$=\frac{2}{9}=0.22$$

$P(VP \rightarrow VBD \ NP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped \right) \to VBD \ NP \right)}{\sum_{\beta} Count \left(VP \left(dumped \right) \to \beta \right)}$$
$$= \frac{1}{9} = 0.11$$

$P(VP \rightarrow VBD \ NP \ PP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP \ PP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{6}{9} = 0.67$$

$P_R(into | PP, dumped)$

$$= \frac{Count\left(X\left(dumped\right) \to \dots PP\left(into\right) \dots\right)}{\sum_{\beta} Count\left(X\left(dumped\right) \to \dots PP \dots\right)}$$

$$=\frac{2}{9}=0.22$$

$P(VP \rightarrow VBD \ NP | VP, dumped)$

$$= \frac{Count \left(VP \left(dumped\right) \to VBD \ NP\right)}{\sum_{\beta} Count \left(VP \left(dumped\right) \to \beta\right)}$$
$$= \frac{1}{0} = 0.11$$

$$P_{R}(into | PP, sacks)$$

$$= \frac{Count \left(X (sacks) \rightarrow \dots PP (into) \dots \right)}{\sum_{\beta} Count \left(X (sacks) \rightarrow \dots PP \dots \right)}$$

$$= \frac{0}{1}$$

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

CNF Factorization & Markovization

- CNF Factorization:
 - Converts n-ary branching to binary branching
 - Can maintain information about original structure
 - Neighborhood history and parent

Different Markov Orders

50

Markovization and Costs

PCFG	Time(s)	Words/s	V	P	LR	LP	Fı
Right-factored	4848	6.7	10105	23220	69.2	73.8	71.5
Right-factored, Markov order-2	1302	24.9	2492	11659	68.8	73.8	71.3
Right-factored, Markov order-I	445	72.7	564	6354	68.0	730	70.5
Right-factored, Markov order-0	206	157.1	99	3803	61.2	65.5	63.3
Parent-annotated, Right-factored, Markov order-2	7510	4.3	5876	22444	76.2	78.3	77.2

from Mohri & Roark 2006

Improving PCFGs

- Parent Annotation
- Lexicalization
- Markovization
- Reranking

Reranking

- Issue: Locality
 - PCFG probabilities associated with rewrite rules
 - Context-free grammars are, well, context-free
 - Previous approaches create new rules to incorporate context
- Need approach that incorporates broader, global info

Discriminative Parse Reranking

- General approach:
 - Parse using (L)PCFG
 - Obtain top-N parses
 - Re-rank top-N using better features
- Use discriminative model (e.g. MaxEnt) to rerank with features:
 - right-branching vs. left-branching
 - speaker identity
 - conjunctive parallelism
 - fragment frequency
 - ...

Reranking Effectiveness

- How can reranking improve?
- Results from Collins and Koo (2005), with 50-best

System	Accuracy
Baseline	0.897
Oracle	0.968
Discriminative	0.917

"Oracle" is to automatically choose the correct parse if in N-best

Improving PCFGs: Tradeoffs

• Pros:

- Increased accuracy/specificity
- e.g. Lexicalization, Parent annotation, Markovization, etc

• Cons:

- Explode grammar size
- Increased processing time
- Increased data requirements
- How can we balance?

Improving PCFGs: Efficiency

- Beam thresholding
- Heuristic Filtering

Efficiency

- PCKY is $|G| \cdot n^3$
 - Grammar can be huge
 - Grammar can be extremely ambiguous
 - Hundreds of analyses not unusual
- ...but only care about best parses
- Can we use this to improve efficiency?

Beam Thresholding

- Inspired by Beam Search
- Assume low probability parses unlikely to yield high probability overall
 - Keep only top k most probable partial parses
 - Retain only k choices per cell
 - For large grammars, maybe 50-100
 - For small grammars, 5 or 10

Heuristic Filtering

- Intuition: Some rules/partial parses unlikely to create best parse
- Proposal: Don't store these in table.
- Exclude:
 - Low frequency: e.g. singletons
 - Low probability: constituents \boldsymbol{X} s.t. $P(\boldsymbol{X}) < 10^{-200}$
 - Low relative probability:
 - Exclude X if there exists Y s.t. $P(Y) > 100 \times P(X)$