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Ambiguity of the Week
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Ambiguity of the Week 2
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“What if my pet is not made of chicken and turkey?” —my brother



Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG
● By Graph-based models
● By transition-based parsing

● HW4 + mid-term feedback
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Dependency Grammar
● [P]CFGs:
● Phrase-Structure Grammars
● Focus on modeling constituent structure
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Dependency Grammar
● [P]CFGs:
● Phrase-Structure Grammars
● Focus on modeling constituent structure

● Dependency grammars:
● Syntactic structure described in terms of
● Words
● Syntactic/semantic relations between words
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Dependency Parse
● A Dependency parse is a tree,* where:
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● Nodes correspond to words in string
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Dependency Parse
● A Dependency parse is a tree,* where:
● Nodes correspond to words in string
● Edges between nodes represent dependency relations
● Relations may or may not be labeled (aka typed)
● *: in very special cases, can argue for cycles
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Dependency Parse Example: 
They hid the letter on the shelf
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Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object
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det determiner

prep prepositional modifier
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Alternative Representation
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Why Dependency Grammar?
● More natural representation for many tasks
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Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

● Who did what to whom?
● = (Subject) did (theme) to (patient)

● Helps with parallel relations between roles in questions, and roles in answers
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● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?
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● How does CFG handle variation in word order?
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● Easier handling of flexible or free word order

● How does CFG handle variation in word order?
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● English has relatively fixed word order

● Big problem for languages with freer word order

Why Dependency Grammar?
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● How do dependency structures represent the difference?

Why Dependency Grammar?

15

GEPPIH�MR

- WMGO SR

8YIWHE]

I called in sick on Tuesday



● How do dependency structures represent the difference?
● Same structure
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● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

Why Dependency Grammar?
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● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?
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● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?
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Natural Efficiencies
● Phrase Structures: 
● Must derive full trees of many non-terminals
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Natural Efficiencies
● Phrase Structures: 
● Must derive full trees of many non-terminals

● Dependency Structures:
● For each word, identify
● Syntactic head, h
● Dependency label, d
● Inherently lexicalized
● Strong constraints hold between pairs of words
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Visualization
● Web demos:
● displaCy: https://explosion.ai/demos/displacy
● Stanford CoreNLP: http://corenlp.run/

● spaCy and stanza Python packages have good built-in parsers

● LaTeX: tikz-dependency (https://ctan.org/pkg/tikz-dependency)
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https://explosion.ai/demos/displacy
http://corenlp.run/
https://spacy.io/
https://stanfordnlp.github.io/stanza/
https://ctan.org/pkg/tikz-dependency


Resources
● Universal Dependencies:
● Consistent annotation scheme (i.e. same POS, dependency labels)
● Treebanks for >70 languages
● Sizes: German, Czech, Japanese, Russian, French, Arabic, …

19

https://universaldependencies.org/


Summary
● Dependency grammars balance complexity and expressiveness
● Sufficiently expressive to capture predicate-argument structure
● Sufficiently constrained to allow efficient parsing
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Summary
● Dependency grammars balance complexity and expressiveness
● Sufficiently expressive to capture predicate-argument structure
● Sufficiently constrained to allow efficient parsing

● Still not perfect
● “On Tuesday I called in sick” vs. “I called in sick on Tuesday”
● These feel pragmatically different (e.g. topically), might want to represent 

difference syntactically.
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Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion from CFG 

● By Graph-based models
● By transition-based parsing
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Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)
● …without the dependency labels
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Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)
● …without the dependency labels

● Algorithm:
● Identify all head children in PS
● Make head of each non-head-child depend on head of head-child
● Use a head percolation table to determine headedness
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Conversion: PS → DS
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Conversion: PS → DS
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Conversion: PS → DS
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Head Percolation Table
● Finding the head of an NP:
● If the rightmost word is preterminal, return
● …else search Right→Left for first child which is NN, NNP, NNPS…
● …else search Left→Right for first child which is NP
● …else search Right→Left for first child which is $, ADJP, PRN
● …else search Right→Left for first child which is CD
● …else search Right→Left for first child which is JJ, JJS, RB or QP
● …else return rightmost word.
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From J&M Page 411, via Collins (1999)

https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/lvbsh/TN_proquest304536592


Conversion: DS → PS
● Can map any projective dependency tree to PS tree

● Projective:
● Does not contain “crossing” dependencies w.r.t. word order
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Non-Projective DS
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Projective DS
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More Non-Projective Parses
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He is mostly not even interested in the new things and in most cases, he has no money for it either.

From McDonald et. al, 2005
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http://dl.acm.org/citation.cfm?id=1220641


Conversion: DS → PS
● For each node w with outgoing arcs…
● …convert the subtree w and its dependents t1,…,tn to a new subtree:
● Nonterminal: Xw

● Child: w
● Subtrees t1,…,tn in original sentence order
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Conversion: DS → PS
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41

)GSRSQMG RI[W LEH PMXXPI IJJIGX SR JMRERGMEP QEVOIXW �

WFNEXX

SFN

EXX EXX

TG

EXX

TYRG
VSSX



Conversion: DS → PS
● What about labeled dependencies?
● Can attach labels to nonterminals associated with non-heads

● e.g. Xlittle → Xlittle:nmod 

● Doesn’t create typical PS trees
● Does create fully lexicalized, labeled, context-free trees

● Can be parsed with any standard CFG parser
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Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG
● By Graph-based models 

● By transition-based parsing
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Graph-based Dependency Parsing
● Goal: Find the highest scoring dependency tree T̂ for sentence S
● If S is unambiguous, T is the correct parse

● If S is ambiguous, T is the highest scoring parse

● Where do scores come from?
● Weights on dependency edges by learning algorithm
● Learned from dependency treebank

● Where are the grammar rules?
● …there aren’t any! All data-driven.
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Graph-based Dependency Parsing
● Map dependency parsing to Maximum Spanning Tree (MST)

● Build fully connected initial graph:
● Nodes: words in sentence to parse
● Edges: directed edges between all words
● + Edges from ROOT to all words

● Identify maximum spanning tree
● Tree s.t. all nodes are connected
● Select such tree with highest weight
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Graph-based Dependency Parsing
● Arc-factored model:
● Weights depend on end nodes & link
● Weight of tree is sum of participating arcs
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Initial Graph: (McDonald et al, 2005b)

● John saw Mary
● All words connected: ROOT only has outgoing arcs

● Goal: Remove arcs to create a tree covering all words
● Resulting tree is parse
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https://www.aclweb.org/anthology/H05-1066.pdf


Maximum Spanning Tree
● McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

● Sketch of algorithm:
● For each node, greedily select incoming arc with max weight
● If the resulting set of arcs forms a tree, this is the MST.
● If not, there must be a cycle.
● “Contract” the cycle: Treat it as a single vertex
● Recalculate weights into/out of the new vertex
● Recursively do MST algorithm on resulting graph

● Running time: naïve: O(n3); Tarjan: O(n2)

● Applicable to non-projective graphs
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.
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Step 1 & 2
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● Is it a tree?
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

● Collapse the cycle
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Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

● Collapse the cycle

● And re-examine the edges again
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Calculating Weights for Collapsed Vertex
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Step 3
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● Keep highest weighted incoming edge for each edge



Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9



Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
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Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
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Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
● …but must recover collapsed portions.
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Step 3
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● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
● …but must recover collapsed portions.
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MST Algorithm
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Learning Weights
● Weights for arc-factored model learned from dependency treebank
● Weights learned for tuple ( wi, wj, l )

● McDonald et al, 2005a employed discriminative ML
● MIRA (Crammer and Singer, 2003)

● Operates on vector of local features
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https://www.aclweb.org/anthology/P05-1012/
http://www.jmlr.org/papers/volume3/crammer03a/crammer03a.pdf


Features for Learning Weights
● Simple categorical features for (wi, L, wj) including:
● Identity of wi (or char 5-gram prefix), POS of wi 

● Identity of wj (or char 5-gram prefix), POS of wj

● Label of L, direction of L
● Number of words between wi, wj 
● POS tag of wi-1, POS tag of wi+1

● POS tag of wj-1, POS tag of wj+1

● Features conjoined with direction of attachment and distance between 
words
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Dependency Parsing
● Dependency Grammars:
● Compactly represent predicate–argument structure
● Lexicalized, localized
● Natural handling of flexible word order

● Dependency parsing:
● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)

● Next time: Transition-based parsing
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Further Reading
● Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online Large-Margin Training of Dependency 

Parsers. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 91–98. 
May. [link]

● Ryan McDonald, Fernando Pereira, K. Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using 
spanning tree algorithms. In Proceedings of the conference on Human Language Technology and Empirical 
Methods in Natural Language Processing, pages 523–530. Association for Computational Linguistics. [link]

● Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool. [link]

● Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of 
the 16th Conference on Computational Linguistics, pages 340–345. Association for Computational Linguistics. [link]

● Michael Collins. 1999. Head-Driven Statistical Models For Natural Language Parsing. [link]
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https://www.aclweb.org/anthology/P05-1012/
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http://www.morganclaypool.com/doi/abs/10.2200/S00169ED1V01Y200901HLT002?journalCode=hlt
https://dl.acm.org/citation.cfm?doid=992628.992688
https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/lvbsh/TN_proquest304536592


HW #4
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Probabilistic Parsing
● Goals:
● Learn about PCFGs
● Implement PCKY
● Analyze Parsing Evaluation
● Assess improvements to PCFG Parsing
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Tasks
1. Train a PCFG

1. Estimate rule probabilities from treebank
2. Treebank is already in CNF
3. More ATIS data from Penn Treebank

2. Build CKY Parser
1. Modify (your) existing CKY implementation
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Tasks
3. Evaluation

1. Evaluate your parser using standard metric
2. We will provide evalb program and gold standard

4. Improvement
1. Improve your parser in some way:

1. Coverage
2. Accuracy
3. Speed

2. Evaluate new parser
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Improvement Possibilities
● Coverage:
● Some test sentences won’t parse as is!
● Lexical gaps (aka out-of-vocabulary [OOV] tokens)
● …remember to model the probabilities, too

● Better context modeling
● e.g. — Parent Annotation

● Better Efficiency
● e.g. — Heuristic Filtering, Beam Search

● No “cheating” improvements:
● improvement can’t change training by looking at test data

63



evalb
● evalb available in  
dropbox/20-21/571/hw4/tools

● evalb […] <gold-file> <test-file> 

● evalb --help for more info
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Mid-term Feedback!
● Please take a few minutes to provide feedback on this course
● Completely anonymous
● All feedback valuable; will incorporate things that can be changed
● Final week: summary and current/future directions topics, some flexibility
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http://bit.ly/571-aut20-feedback 

http://bit.ly/571-aut20-feedback

