
Dependency Grammars and Parser
LING 571 — Deep Processing for NLP

October 21, 2020
Shane Steinert-Threlkeld

1

Ambiguity of the Week

2

Ambiguity of the Week 2

3

“What if my pet is not made of chicken and turkey?” —my brother

Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG
● By Graph-based models
● By transition-based parsing

● HW4 + mid-term feedback

4

Dependency Grammar
● [P]CFGs:
● Phrase-Structure Grammars
● Focus on modeling constituent structure

5

Dependency Grammar
● [P]CFGs:
● Phrase-Structure Grammars
● Focus on modeling constituent structure

● Dependency grammars:
● Syntactic structure described in terms of
● Words
● Syntactic/semantic relations between words

5

Dependency Parse
● A Dependency parse is a tree,* where:

6

Dependency Parse
● A Dependency parse is a tree,* where:
● Nodes correspond to words in string

6

Dependency Parse
● A Dependency parse is a tree,* where:
● Nodes correspond to words in string
● Edges between nodes represent dependency relations
● Relations may or may not be labeled (aka typed)
● *: in very special cases, can argue for cycles

6

Dependency Parse Example: 
They hid the letter on the shelf

7

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Dependency Parse Example: 
They hid the letter on the shelf

8

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Dependency Parse Example: 
They hid the letter on the shelf

9

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Dependency Parse Example: 
They hid the letter on the shelf

10

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Alternative Representation

11

Why Dependency Grammar?
● More natural representation for many tasks

12

Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure

12

Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

12

Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

12

Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

● Who did what to whom?

12

Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

● Who did what to whom?
● = (Subject) did (theme) to (patient)

12

Why Dependency Grammar?
● More natural representation for many tasks
● Clear encapsulation of predicate-argument structure
● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

● Who did what to whom?
● = (Subject) did (theme) to (patient)

● Helps with parallel relations between roles in questions, and roles in answers

12

● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?

13

7

44

4VIT

3R

24

2

8YIWHE]

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

7

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

44

4VIT

SR

24

2

8YIWHE]

● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?

13

7

44

4VIT

3R

24

2

8YIWHE]

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

7

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

44

4VIT

SR

24

2

8YIWHE]

S → PP NP VP

● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?

13

7

44

4VIT

3R

24

2

8YIWHE]

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

7

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

44

4VIT

SR

24

2

8YIWHE]

S → PP NP VP S → NP VP PP

● English has relatively fixed word order

● Big problem for languages with freer word order

Why Dependency Grammar?

14

7

44

4VIT

3R

24

2

8YIWHE]

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

7

24

4VSR

-

:4

:IVF

GEPPIH�MR

%HZ

WMGO

44

4VIT

SR

24

2

8YIWHE]

S → PP NP VP S → NP VP PP

● How do dependency structures represent the difference?

Why Dependency Grammar?

15

GEPPIH�MR

- WMGO SR

8YIWHE]

I called in sick on Tuesday

● How do dependency structures represent the difference?
● Same structure

Why Dependency Grammar?

15

GEPPIH�MR

- WMGO SR

8YIWHE]

I called in sick on Tuesday

● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

Why Dependency Grammar?

15

GEPPIH�MR

- WMGO SR

8YIWHE]

I called in sick on Tuesday

● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?

15

GEPPIH�MR

- WMGO SR

8YIWHE]

I called in sick on Tuesday

● How do dependency structures represent the difference?
● Same structure
● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?

16

GEPP�MR

HMH - WMGO [LIR

when did I call in sick?

Natural Efficiencies
● Phrase Structures:
● Must derive full trees of many non-terminals

17

Natural Efficiencies
● Phrase Structures:
● Must derive full trees of many non-terminals

● Dependency Structures:
● For each word, identify
● Syntactic head, h
● Dependency label, d

17

Natural Efficiencies
● Phrase Structures:
● Must derive full trees of many non-terminals

● Dependency Structures:
● For each word, identify
● Syntactic head, h
● Dependency label, d
● Inherently lexicalized
● Strong constraints hold between pairs of words

17

Visualization
● Web demos:
● displaCy: https://explosion.ai/demos/displacy
● Stanford CoreNLP: http://corenlp.run/

● spaCy and stanza Python packages have good built-in parsers

● LaTeX: tikz-dependency (https://ctan.org/pkg/tikz-dependency)

18

https://explosion.ai/demos/displacy
http://corenlp.run/
https://spacy.io/
https://stanfordnlp.github.io/stanza/
https://ctan.org/pkg/tikz-dependency

Resources
● Universal Dependencies:
● Consistent annotation scheme (i.e. same POS, dependency labels)
● Treebanks for >70 languages
● Sizes: German, Czech, Japanese, Russian, French, Arabic, …

19

https://universaldependencies.org/

Summary
● Dependency grammars balance complexity and expressiveness
● Sufficiently expressive to capture predicate-argument structure
● Sufficiently constrained to allow efficient parsing

20

Summary
● Dependency grammars balance complexity and expressiveness
● Sufficiently expressive to capture predicate-argument structure
● Sufficiently constrained to allow efficient parsing

● Still not perfect
● “On Tuesday I called in sick” vs. “I called in sick on Tuesday”
● These feel pragmatically different (e.g. topically), might want to represent

difference syntactically.

20

Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion from CFG

● By Graph-based models
● By transition-based parsing

21

Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)
● …without the dependency labels

22

Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)
● …without the dependency labels

● Algorithm:
● Identify all head children in PS
● Make head of each non-head-child depend on head of head-child
● Use a head percolation table to determine headedness

22

Conversion: PS → DS

23

Conversion: PS → DS

24

LEH

RI[W

IGSRSQMG

MQTEGX

PMXXPI SR

QEVOIXW

JMRERGMEP

Conversion: PS → DS

25

had

news

Conversion: PS → DS

26

had

news

economic

Conversion: PS → DS

27

had

news

economic

impact

Conversion: PS → DS

28

had

news

economic

impact

little

Conversion: PS → DS

29

had

news

economic

impact

little on

Conversion: PS → DS

30

had

news

economic

impact

little on

markets

Conversion: PS → DS

31

had

news

economic

impact

little on

markets

financial

Head Percolation Table
● Finding the head of an NP:
● If the rightmost word is preterminal, return
● …else search Right→Left for first child which is NN, NNP, NNPS…
● …else search Left→Right for first child which is NP
● …else search Right→Left for first child which is $, ADJP, PRN
● …else search Right→Left for first child which is CD
● …else search Right→Left for first child which is JJ, JJS, RB or QP
● …else return rightmost word.

32

From J&M Page 411, via Collins (1999)

https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/lvbsh/TN_proquest304536592

Conversion: DS → PS
● Can map any projective dependency tree to PS tree

● Projective:
● Does not contain “crossing” dependencies w.r.t. word order

33

% LIEVMRK MW WGLIHYPIH SR XLI MWWYI XSHE] �

EXX

EXX

WFN

TYRG

ZG

XQT

MWWYI

EXX

VSSX

Non-Projective DS

34

= Projection
A

hearing

is

scheduled

on

the

issue

today

.

A is scheduled on

the

todayissue .hearing

Projective DS

35

= Projection
Economic

news

had

little

effect

on

financial

markets

.

Economic news had little effect

on

marketsfinancial .

More Non-Projective Parses

36

3 XS RSZq ZIĊXäMRSY RIQj ERM ^jNIQ E XEO] RE XS ZIĊXäMRSY RIQj TIRu^I

VSSX

He is mostly not even interested in the new things and in most cases, he has no money for it either.

From McDonald et. al, 2005

.SLR WE[E HSK]IWXIVHE] [LMGL [EW E =SVOWLMVI 8IVVMIV

VSSX

http://dl.acm.org/citation.cfm?id=1220641

Conversion: DS → PS
● For each node w with outgoing arcs…
● …convert the subtree w and its dependents t1,…,tn to a new subtree:
● Nonterminal: Xw

● Child: w
● Subtrees t1,…,tn in original sentence order

37

Conversion: DS → PS

38

)GSRSQMG RI[W LEH PMXXPI IJJIGX SR JMRERGMEP QEVOIXW �

WFNEXX

SFN

EXX EXX

TG

EXX

TYRG
VSSX

Conversion: DS → PS

39

)GSRSQMG RI[W LEH PMXXPI IJJIGX SR JMRERGMEP QEVOIXW �

WFNEXX

SFN

EXX EXX

TG

EXX

TYRG
VSSX

Conversion: DS → PS

40

)GSRSQMG RI[W LEH PMXXPI IJJIGX SR JMRERGMEP QEVOIXW �

WFNEXX

SFN

EXX EXX

TG

EXX

TYRG
VSSX

Conversion: DS → PS

41

)GSRSQMG RI[W LEH PMXXPI IJJIGX SR JMRERGMEP QEVOIXW �

WFNEXX

SFN

EXX EXX

TG

EXX

TYRG
VSSX

Conversion: DS → PS
● What about labeled dependencies?
● Can attach labels to nonterminals associated with non-heads

● e.g. Xlittle → Xlittle:nmod

● Doesn’t create typical PS trees
● Does create fully lexicalized, labeled, context-free trees

● Can be parsed with any standard CFG parser

42

43

8LI HSK FEVOIH EX XLI GEX �

VSSX

6338

<barked

<dog

<the

XLI

HSK

FEVOIH <at

EX <cat

<the

XLI

GEX

<.

�

Example from J. Moore, 2013

Roadmap
● Dependency Grammars
● Definition
● Motivation:
● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG
● By Graph-based models

● By transition-based parsing

44

Graph-based Dependency Parsing
● Goal: Find the highest scoring dependency tree T̂ for sentence S
● If S is unambiguous, T is the correct parse

● If S is ambiguous, T is the highest scoring parse

● Where do scores come from?
● Weights on dependency edges by learning algorithm
● Learned from dependency treebank

● Where are the grammar rules?
● …there aren’t any! All data-driven.

45

Graph-based Dependency Parsing
● Map dependency parsing to Maximum Spanning Tree (MST)

● Build fully connected initial graph:
● Nodes: words in sentence to parse
● Edges: directed edges between all words
● + Edges from ROOT to all words

● Identify maximum spanning tree
● Tree s.t. all nodes are connected
● Select such tree with highest weight

46

Graph-based Dependency Parsing
● Arc-factored model:
● Weights depend on end nodes & link
● Weight of tree is sum of participating arcs

47

Initial Graph: (McDonald et al, 2005b)

● John saw Mary
● All words connected: ROOT only has outgoing arcs

● Goal: Remove arcs to create a tree covering all words
● Resulting tree is parse

48

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

https://www.aclweb.org/anthology/H05-1066.pdf

Maximum Spanning Tree
● McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

● Sketch of algorithm:
● For each node, greedily select incoming arc with max weight
● If the resulting set of arcs forms a tree, this is the MST.
● If not, there must be a cycle.
● “Contract” the cycle: Treat it as a single vertex
● Recalculate weights into/out of the new vertex
● Recursively do MST algorithm on resulting graph

● Running time: naïve: O(n3); Tarjan: O(n2)

● Applicable to non-projective graphs

49

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?

50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

● Collapse the cycle

50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?
● No, there’s a cycle.

● Collapse the cycle

● And re-examine the edges again

50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

ROOT

John

saw

Mary

??
9

30

0

3

??

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Calculating Weights for Collapsed Vertex

51

s(Mary, C) 11 + 20 = 31

Calculating Weights for Collapsed Vertex

51

s(Mary, C) 11 + 20 = 31

ROOT

John

saw

Mary

10
9

30

0

3

31

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Calculating Weights for Collapsed Vertex

52

s(ROOT, C) 10 + 30 = 40

ROOT

John

saw

Mary

40
9

30

0

3

11

9

Calculating Weights for Collapsed Vertex

52

s(ROOT, C) 10 + 30 = 40

Step 3

53

ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!

ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
● …but must recover collapsed portions.

ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

Step 3

53

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?
● Yes!
● …but must recover collapsed portions.

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

MST Algorithm

54

Learning Weights
● Weights for arc-factored model learned from dependency treebank
● Weights learned for tuple (wi, wj, l)

● McDonald et al, 2005a employed discriminative ML
● MIRA (Crammer and Singer, 2003)

● Operates on vector of local features

55

https://www.aclweb.org/anthology/P05-1012/
http://www.jmlr.org/papers/volume3/crammer03a/crammer03a.pdf

Features for Learning Weights
● Simple categorical features for (wi, L, wj) including:
● Identity of wi (or char 5-gram prefix), POS of wi

● Identity of wj (or char 5-gram prefix), POS of wj

● Label of L, direction of L
● Number of words between wi, wj
● POS tag of wi-1, POS tag of wi+1

● POS tag of wj-1, POS tag of wj+1

● Features conjoined with direction of attachment and distance between
words

56

Dependency Parsing
● Dependency Grammars:
● Compactly represent predicate–argument structure
● Lexicalized, localized
● Natural handling of flexible word order

● Dependency parsing:
● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)

● Next time: Transition-based parsing

57

Further Reading
● Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online Large-Margin Training of Dependency

Parsers. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 91–98.
May. [link]

● Ryan McDonald, Fernando Pereira, K. Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 523–530. Association for Computational Linguistics. [link]

● Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool. [link]

● Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of
the 16th Conference on Computational Linguistics, pages 340–345. Association for Computational Linguistics. [link]

● Michael Collins. 1999. Head-Driven Statistical Models For Natural Language Parsing. [link]

58

https://www.aclweb.org/anthology/P05-1012/
https://www.aclweb.org/anthology/H05-1066.pdf
http://www.morganclaypool.com/doi/abs/10.2200/S00169ED1V01Y200901HLT002?journalCode=hlt
https://dl.acm.org/citation.cfm?doid=992628.992688
https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/lvbsh/TN_proquest304536592

HW #4

59

Probabilistic Parsing
● Goals:
● Learn about PCFGs
● Implement PCKY
● Analyze Parsing Evaluation
● Assess improvements to PCFG Parsing

60

Tasks
1. Train a PCFG

1. Estimate rule probabilities from treebank
2. Treebank is already in CNF
3. More ATIS data from Penn Treebank

2. Build CKY Parser
1. Modify (your) existing CKY implementation

61

Tasks
3. Evaluation

1. Evaluate your parser using standard metric
2. We will provide evalb program and gold standard

4. Improvement
1. Improve your parser in some way:

1. Coverage
2. Accuracy
3. Speed

2. Evaluate new parser

62

Improvement Possibilities
● Coverage:
● Some test sentences won’t parse as is!
● Lexical gaps (aka out-of-vocabulary [OOV] tokens)
● …remember to model the probabilities, too

● Better context modeling
● e.g. — Parent Annotation

● Better Efficiency
● e.g. — Heuristic Filtering, Beam Search

● No “cheating” improvements:
● improvement can’t change training by looking at test data

63

evalb
● evalb available in  
dropbox/20-21/571/hw4/tools

● evalb […] <gold-file> <test-file>

● evalb --help for more info

64

Mid-term Feedback!
● Please take a few minutes to provide feedback on this course
● Completely anonymous
● All feedback valuable; will incorporate things that can be changed
● Final week: summary and current/future directions topics, some flexibility

65

http://bit.ly/571-aut20-feedback

http://bit.ly/571-aut20-feedback

