
Dependency Parsing  
and  

Feature-based Parsing
Ling 571 — Deep Processing Techniques for NLP

October 26, 2020
Shane Steinert-Threlkeld

1

Announcements
● Thanks for the feedback!

● HW3 grades posted

● Handling ungrammaticality:
● Need graceful treatment of the case when S / start symbol is not in the [0, n] cell

of the CKY table

● Reference code available (in hw3/reference/)
● example_cky.py in hw4 directory is a symlink to that reference code

2

HW #4 Notes

3

HW4 Notes
● If your improvement is along a dimension not measured by evalb (e.g.

runtime):
● Still run evalb on both old and improved code and report both results
● NB: improved runtime cannot occur at “drastic” reduction in accuracy
● Write code to measure your performance, and report before/after results in the

readme

4

HW #4: OOV Handling
● As we discussed previously, you will find OOV tokens

● Sometimes this as as simple as case-sensitivity:

5

OOV: Case Sensitivity

6

Sentence #23: “Arriving before four p.m .”

 --
 | | | | | |
0 --
 | IN -> "before" [-3.8326] | | PP -> 1•IN•2 2•NP•4 [-13.9845] | TOP -> 1•PP•4 4•PUNC•5 [-19.4677] |
 | | | FRAG_PP -> 1•IN•2 2•NP•4 [-13.1613] | TOP -> 1•FRAG_PP•4 4•PUNC•5 [-18.6445] |
 1 ---
 | CD -> "four" [-4.3438] | PRIME -> 2•CD•3 3•RB•4 [-10.3372] | TOP -> 2•NP•4 4•PUNC•5 [-11.4025] |
 | | NP_PRIME -> 2•CD•3 3•RB•4 [-10.2784] | |
 | | NP -> 2•CD•3 3•RB•4 [-8.9233] | |
 2 --
 | RB -> "p.m" [-1.1144] | |
 3 ---
 | PUNC -> "." [-0.3396] |
 4 --
 5

“arriving” is in our grammar, but not “Arriving”

OOV: Case Sensitivity

7

Sentence #23: “Arriving before four p.m .”

VBG -> "arriving" [-1.0372]			PRIME -> 0•VBG•1 1•PP•4 [-19.6776]	TOP -> 0•FRAG_VP•4 4•PUNC•5 [-21.1981]
VP_VBG -> "arriving" [-0.6931]			VP_PRIME -> 0•VBG•1 1•PP•4 [-18.0049]	TOP -> 0•VP•4 4•PUNC•5 [-20.1503]
S_VP_VBG -> "arriving" [0.0000]			VP -> 0•VBG•1 1•PP•4 [-17.6629]	
			FRAG_VP -> 0•VBG•1 1•PP•4 [-16.2257]	
			FRAG_VP_PRIME -> 0•VBG•1 1•PP•4 [-15.8691]	
0 ---
 | IN -> "before" [-3.8326] | | PP -> 1•IN•2 2•NP•4 [-13.9845] | TOP -> 1•PP•4 4•PUNC•5 [-19.4677] |
 | | | FRAG_PP -> 1•IN•2 2•NP•4 [-13.1613] | TOP -> 1•FRAG_PP•4 4•PUNC•5 [-18.6445] |
 1 ---
 | CD -> "four" [-4.3438] | PRIME -> 2•CD•3 3•RB•4 [-10.3372] | TOP -> 2•NP•4 4•PUNC•5 [-11.4025] |
 | | NP_PRIME -> 2•CD•3 3•RB•4 [-10.2784] | |
 | | NP -> 2•CD•3 3•RB•4 [-8.9233] | |
 2 --
 | RB -> "p.m" [-1.1144] | |
 3 ---
 | PUNC -> "." [-0.3396] |
 4 --
 5

HW #4: OOV Handling
● Propose some number of N most likely tags at runtime…

8

FRAG_NP_PRIME → 2FRAG_NP_PRIME 4 PP 6[-21.810]
FRAG_NP → 2FRAG_NP_PRIME 4 PP 6[-20.858]

NP_PRIME → 3 NN 4 PP 6[-16.296]
PRIME → 3 NN 4 PP 6[-15.949]

IN → "in" [-2.4018] PP → 4 IN 5 NP_NNP 6[-7.505]
FRAG_PP → 4 IN 5NP_NNP 6 [-6.828]

5
NNP → "Denver" [-4.4002]

NP_NNP → "Denver" [-3.3280]

6

7 NNS → "weekdays" [-5.5759]
NP_NNS → "weekdays" [-3.7257]

TOP → 7NP_NNS 8PUNC 9[-11.001]

8 PUNC → "." [-0.3396]

9

9

OOV: Propose POS Tags
“Show me Ground transportation in Denver during weekdays .” — No “during”!

OOV: Propose POS Tags
FRAG_NP_PRIME → …

FRAG_NP → …
FRAG_NP_PRIME → …

FRAG_NP → …
FRAG_NP →…
FRAG_NP → …

TOP → 2FRAG_NP 8 PUNC 9[-34.939]
TOP → 2FRAG_NP 8 PUNC 9[-34.006]

NP_PRIME → …
PRIME → …

PRIME → 3 NN 4PP 7 [-17.145]
QP → 3 PRIME 6CD 7 [-15.930]

NP → 3 PRIME 7NNS 8 [-26.542]
NP → 3 QP 7 NNS 8 [-26.398]

TOP → 3NP 8PUNC 9[-29.022]
TOP → 3NP 8PUNC 9[-28.877]

PP → …
FRAG_PP → …

PP → 4 IN 5 NP 7[-8.701]
FRAG_PP → 4 IN 5NP 7 [-7.878]

PP → 4 IN 5 NP 8[-19.056]
FRAG_PP → 4 IN 5NP 8 [-18.233]

TOP → 4PP 8PUNC 9[-24.540]
TOP → 4FRAG_PP 8 PUNC 9[-23.716]

NNP → "Denver" [-4.4002]
NP_NNP → "Denver" [-3.3280]

NP_PRIME → 5NNP 6 NNP 7[-6.110]
NP → 5 NNP 6NNP 7 [-5.070]

NP → 5 NP 7 NNS 8 [-17.330]
NP → 5NP_PRIME 7 NNS 8 [-15.426]

TOP → 5NP 8PUNC 9[-19.809]
TOP → 5NP 8PUNC 9[-17.905]

6

NNP → "during" [1.0000]
NN → "during" [1.0000]

NP_NNP → "during" [1.0000]
VB → "during" [1.0000]
CD → "during" [1.0000]

VP → 6 VB 7NP_NNS 8[-8.922]
S_VP → 6 VB 7NP_NNS 8[-6.611]

TOP → 6VP 8PUNC 9[-11.410]
TOP → 6S_VP 8PUNC 9[-9.176]

7
NNS → "weekdays" [-5.5759]

NP_NNS → "weekdays" [-3.7257]
TOP → 7NP_NNS 8 PUNC 9[-11.001]

8 PUNC → "." [-0.3396]

9 10

“Show me Ground transportation in Denver during weekdays .” — No “during”!

11

Parse result: 834

7C:4

7C:4C46-1)

:&

7LS[

24C464

QI

24

24C46-1)

24

22

+VSYRH

22

XVERWTSVXEXMSR

44

-2

MR

24C224

(IRZIV

:4

:&

HYVMRK

24C227

[IIOHE]W

492'

�

OOV: Propose POS Tags
“Show me Ground transportation in Denver during weekdays .” — No “during”!

12

Gold parse: 834

7C:4

7C:4C46-1)

:&

7LS[

24C464

QI

24

24C46-1)

24

22

+VSYRH

22

XVERWTSVXEXMSR

44

-2

MR

24C224

(IRZIV

44

-2

HYVMRK

24C227

[IIOHE]W

492'

�

“Show me Ground transportation in Denver during weekdays .” — No “during”!

OOV: Propose POS Tags

Problems with this approach?

13

Handling OOV
● Option #1:
● Choose subset of training data vocab to be hidden
● Hidden words replaced by <UNK>
● Run induction as usual, but some words are now ‘<UNK>’

● Option #2:
● Implicit vocab creation:
● Replace all words occurring less than n times with <UNK>
● Fix size of V (e.g. 50,000), anything not among |V| most frequent is <UNK>

● (See J&M 2nd ed 4.3.2 — 3rd ed, 3.3.1)

14

https://web.stanford.edu/~jurafsky/slp3/3.pdf#subsection.3.3.1

Problems with These Approaches?
● Option #1
● May sample “closed-class” words
● Closed-class words are disproportionately more common
● ∴ Approximation will be worse the more data there is, because Zipf

● Option #2
● Con: Requires a lot more data
● Pros: Samples from all word classes
● Will only count closed-class words once

15

https://nlp.stanford.edu/IR-book/html/htmledition/zipfs-law-modeling-the-distribution-of-terms-1.html

Noun Phrase of the Week

16

https://twitter.com/EmmaSManning/status/1319750294666883075

https://twitter.com/EmmaSManning/status/1319750294666883075

Today
● Dependency Parsing
● Transition-based Parsing

● Feature-based Parsing
● Motivation
● Features
● Unification

17

Dependency Parse Example: 
They hid the letter on the shelf

18

Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

19

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772

Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

● Alternative methods for learning/decoding
● Most common model: Greedy classification-based approach

● Very efficient: O(n)

19

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772

Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

● Alternative methods for learning/decoding
● Most common model: Greedy classification-based approach

● Very efficient: O(n)

● Best-known implementations:
● Nivre’s MALTParser
● Nivre et al (2006); Nivre & Hall (2007)

19

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772

Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C

20

Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations

20

Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations
● A transition function between configurations

20

Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations
● A transition function between configurations
● An initialization function (for C0)

20

Transition-Based Parsing
● A transition-based system for dependency parsing is:
● A set of configurations C
● A set of transitions between configurations
● A transition function between configurations
● An initialization function (for C0)
● A set of terminal configurations (“end states”)

20

Configurations
● A configuration for a sentence x is the triple (Σ, B, A):

● Σ is a stack with elements corresponding to the nodes (words + ROOT) in x

● B (aka the buffer) is a list of nodes in x

● A is the set of dependency arcs in the analysis so far,
● (wi, L, wj), where wx is a node in x and L is a dependency label

21

Transitions
● Transitions convert one configuration to another
● Ci = t(Ci -1), where t is the transition

● Dependency graph for a sent:

● The set of arcs resulting from a sequence of transitions

● The parse of the sentence is that resulting from the initial state through the
sequence of transitions to a legal terminal state

22

Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives it

23

Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives it

● How can we determine sequence of transitions, given a parse?

23

Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives it

● How can we determine sequence of transitions, given a parse?

● This is defining our oracle function:
● How to take a parse and translate it into a series of transitions

23

Dependencies → Transitions
● Many different oracles:
● Nivre’s arc-standard
● Nivre’s arc-eager
● Non-projectivity with Attardi’s
● …

24

http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307

Dependencies → Transitions
● Many different oracles:
● Nivre’s arc-standard
● Nivre’s arc-eager
● Non-projectivity with Attardi’s
● …

● Generally:
● Use oracle to identify gold transitions
● Train classifier to predict best transition in new config

24

http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307

Nivre’s Arc-Standard Oracle
● Words: w1,…,wn
● w0 = ROOT

● Initialization:
● Stack = [w0]; Buffer = [w1,…wn]; Arcs = ∅

● Termination:
● Stack = σ; Buffer= []; Arcs = A
● for any σ and A

25

Nivre’s Arc-Standard Oracle
● Transitions are one of three:
● Shift
● Left-Arc
● Right-Arc

26

Transitions: Shift
● Shift first element of buffer to top of stack.
● [i][j,k,n,…][] → [i,j][k,n,…][]

27

i j k n

Stack Buffer Arcs

Transitions: Shift
● Shift first element of buffer to top of stack.
● [i][j,k,n,…][] → [i,j][k,n,…][]

28

j
i k n

Stack Buffer Arcs

● Add arc from element at top of stack to second element on stack with
dependency label l
● Pop second element from stack.

● [i,j] [k,n,…] A → [j] [k,n,…] A⋃[(j,l,i)]

Transitions: Left-Arc

29

j
i k n

Stack Buffer Arcs

l

Transitions: Left-Arc

30

k n

Stack Buffer Arcs

(j,l,i)

● Add arc from element at top of stack to second element on stack with
dependency label l
● Pop second element from stack.

● [i,j] [k,n,…] A → [j] [k,n,…] A⋃[(j,l,i)]

j

● Add arc from second element on stack to top element on stack with
dependency label l
● Pop top element from stack.

● [i,j] [k,n,…] A → [j] [k,n,…] A⋃[(i,l,j)]

Transitions: Right-Arc

31

j
i k n

Stack Buffer Arcs

l

Transitions: Right-Arc

32

k n

Stack Buffer Arcs

(i,l,j)i

● Add arc from second element on stack to top element on stack with
dependency label l
● Pop top element from stack.

● [i,j] [k,n,…] A → [j] [k,n,…] A⋃[(i,l,j)]

Training Process
● Each step of the algorithm is a decision point between the three states

● We want to train a model to decide between the three options at each step
● (Reduce to a classification problem)

● We start with:
● A treebank
● An oracle process for guiding the transitions
● A discriminative learner to relate the transition to features of the current

configuration

33

Training Process, Formally:
(Σ, B, A)

1) c ← c0(S)
2) while c is not terminal
3) t ← o(c) # Choose the (o)ptimal transition for the config c
4) c ← t(c) # Move to the next configuration
5) return Gc

34

Testing Process, Formally:
(Σ, B, A)

1) c ← c0(S)
2) while c is not terminal
3) t ← λc(c) # Choose the transition given model parameters at c
4) c ← t(c) # Move to the next configuration
5) return Gc

35

Representing Configurations with Features
● Address

● Locate a given word:
● By position in stack
● By position in buffer
● By attachment to a word in buffer

● Attributes
● Identity of word
● lemma for word
● POS tag of word
● Dependency label for word ← conditioned on previous decisions!

36

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []
Right-Arc (dobj) [ROOT, told] []

They told him a story

subj iobj
dobj

det

Example:

37

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]

Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

Right-Arc (iobj) [ROOT, told] [a story]
Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []
Right-Arc (dobj) [ROOT, told] []
Right-Arc (root) [ROOT] []

They told him a story

subj iobj
dobj

det

Transition-Based Parsing  
Summary

● Shift-Reduce [reduce = pop] paradigm, bottom-up approach

● Pros:
● Single pass, O(n) complexity
● Reduce parsing to classification problem; easy to introduce new features

● Cons:
● Only makes local decisions, may not find global optimum
● Does not handle non-projective trees without hacks
● e.g. transforming nonprojective trees to projective in training data; reconverting

after

38

Other Notes
● …is this a parser?
● No, not really!
● Transforms problem into sequence labeling task, of a sort.
● e.g. (SH, LA, SH, RA, SH, SH, LA, RA)
● Sequence score is sum of transition scores

39

Other Notes
● Classifier: Any
● Originally, SVMs
● Currently: NNs (LSTMs, pre-trained Transformer-based)

● State-of-the-art: UAS: 97.2%; LAS: 95.7%
● http://nlpprogress.com/english/dependency_parsing.html

40

http://nlpprogress.com/english/dependency_parsing.html

Other Notes
● Classifier: Any
● Originally, SVMs
● Currently: NNs (LSTMs, pre-trained Transformer-based)

● State-of-the-art: UAS: 97.2%; LAS: 95.7%
● http://nlpprogress.com/english/dependency_parsing.html

40

Story time!

http://nlpprogress.com/english/dependency_parsing.html

Parsey McParseface

41

Parsey McParseface

41

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Parsey McParseface

41

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Parsey McParseface

42

Parsey McParseface

42

Parsey McParseface

43

Parsey McParseface

43

Parsey McParseface

43

Great paper

Many methodological
lessons on how to improve
transition-based
dependency parsing

BUT: don’t believe (or at
least beware) the hype!

Dependency Parsing: 
Summary

● Dependency Grammars:
● Compactly represent pred–arg structure
● Lexicalized, localized
● Natural handling of flexible word order

44

Dependency Parsing: 
Summary

● Dependency Grammars:
● Compactly represent pred–arg structure
● Lexicalized, localized
● Natural handling of flexible word order

● Dependency parsing:
● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)
● Transition-based parser
● MALTparser: very efficient O(n)
● Optimizes local decisions based on many rich features

44

Roadmap
● Dependency Parsing
● Transition-based Parsing

● Feature-based Parsing
● Motivation
● Features
● Unification

45

Feature-Based Parsing

46

Constraints & Compactness
● S → NP VP
● They run.
● He runs.

47

Constraints & Compactness
● S → NP VP
● They run.
● He runs.

● But…
● * They runs

● * He run

● * He disappeared the flight

● Violate agreement (number/person),
subcategorization -> over-generation

47

Enforcing Constraints with CFG Rules
● Agreement
● S → NPsg+3p VPsg+3p

● S → NPpl+3p VPpl+3p

48

Enforcing Constraints with CFG Rules
● Agreement
● S → NPsg+3p VPsg+3p

● S → NPpl+3p VPpl+3p

● Subcategorization:
● VP → Vtransitive NP
● VP → Vintransitive

● VP → Vditransitive NP NP

● Explosive, and loses key generalizations

48

Feature Grammars
● Need compact, general constraint

49

Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

49

Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

● How can we describe agreement & subcategory?
● Decompose into elementary features that must be consistent
● e.g. Agreement on number, person, gender, etc

49

Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

● How can we describe agreement & subcategory?
● Decompose into elementary features that must be consistent
● e.g. Agreement on number, person, gender, etc

● Augment CF rules with feature constraints
● Develop mechanism to enforce consistency
● Elegant, compact, rich representation

49

Feature Representations
● Fundamentally Attribute-Value pairs

● Values may be symbols or feature structures
● Feature path: list of features in structure to value
● “Reentrant feature structure” — sharing a structure

● Represented as
● Attribute-Value Matrix (AVM)
● Directed Acyclic Graph (DAG)

50

Attribute-Value Matrices (AVMs)

51

2

66664

%886-&98)1 ZEPYI1
%886-&98)2 ZEPYI2
���
%886-&98)n ZEPYIn

3

77775

AVM Examples

52

(A)

(B)

(C)

(D)

"
291&)6 40
4)6732 �

#

2

64
'%8 24
291&)6 40
4)6732 �

3

75

2

664

'%8 24

%+6))1)28
"
291&)6 40
4)6732 �

#
3

775

2

6666664

'%8 7

,)%(

2

6664

%+6))1)28 1

"
291&)6 40
4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

7775

3

7777775

AVM vs. DAG

53

2

664

'%8 24

%+6))1)28
"
291&)6 40
4)6732 �

#
3

775

CAT

AGREEMENT

NP

NUMBER
SG

3rd
PERSON

54

2

6666664

'%8 7

,)%(

2

6664

%+6))1)28 1

"
291&)6 40
4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

7775

3

7777775

CAT

HEAD

S

SUBJECT

1

AGREEMENT

AGREEMENT

SG

3rd

NUMBER

PERSON

Using Feature Structures
● Feature Structures provide formalism to specify constraints

● …but how to apply the constraints?

● Unification

55

Unification: 
⨆

● Two key roles:
● Merge compatible feature structures
● Reject incompatible feature structures

56

Unification: 
⨆

● Two key roles:
● Merge compatible feature structures
● Reject incompatible feature structures

● Two structures can unify if:
● Feature structures match where both have values

● Feature structures differ only where one value is missing or underspecified

● Missing or underspecified values are filled with constraints of other

56

Unification: 
⨆

● Two key roles:
● Merge compatible feature structures
● Reject incompatible feature structures

● Two structures can unify if:
● Feature structures match where both have values

● Feature structures differ only where one value is missing or underspecified

● Missing or underspecified values are filled with constraints of other

● Result of unification incorporates constraints of both

56

● Less specific feature structure subsumes more specific feature structure

Subsumption

57

● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes FS G iff:
● For every feature x in F, F(x) subsumes G(x)

● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption

57

● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes FS G iff:
● For every feature x in F, F(x) subsumes G(x)

● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples:
● A = B =

C =

Subsumption

57

h
291&)6 7+

i h
4)6732 �

i

"
291&)6 7+
4)6732 �

#

● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes FS G iff:
● For every feature x in F, F(x) subsumes G(x)

● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples:
● A = B =

C =

Subsumption

57

h
291&)6 7+

i h
4)6732 �

i

"
291&)6 7+
4)6732 �

#
● A subsumes C

● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes FS G iff:
● For every feature x in F, F(x) subsumes G(x)

● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples:
● A = B =

C =

Subsumption

57

h
291&)6 7+

i h
4)6732 �

i

"
291&)6 7+
4)6732 �

#
● A subsumes C
● B subsumes C

● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes FS G iff:
● For every feature x in F, F(x) subsumes G(x)

● for all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

● Examples:
● A = B =

C =

Subsumption

57

h
291&)6 7+

i h
4)6732 �

i

"
291&)6 7+
4)6732 �

#
● A subsumes C
● B subsumes C
● B & A don’t subsume

Unification Examples
● Identical

58

h
291&)6 7+

i
⨆

h
291&)6 7+

i
=

h
291&)6 7+

i

Unification Examples
● Identical

● Underspecified

58

h
291&)6 7+

i
⨆

h
291&)6 7+

i
=

h
291&)6 7+

i

h
291&)6 7+

i
⨆ =

h
291&)6 7+

ih i

Unification Examples
● Identical

● Underspecified

● Different Specs

58

h
291&)6 7+

i
⨆

h
291&)6 7+

i
=

h
291&)6 7+

i

h
291&)6 7+

i
⨆ =

h
291&)6 7+

ih i

h
291&)6 7+

i
⨆ =

h
4)6732 �

i "
291&)6 7+
4)6732 �

#

Unification Examples
● Identical

● Underspecified

● Different Specs

● Conflicting Specs

58

h
291&)6 7+

i
⨆

h
291&)6 7+

i
=

h
291&)6 7+

i

h
291&)6 7+

i
⨆ =

h
291&)6 7+

ih i

h
291&)6 7+

i
⨆ =

h
4)6732 �

i "
291&)6 7+
4)6732 �

#

h
291&)6 7+

i
⨆ =

h
291&)6 40

i
∅

Larger Unification Example

59

⨆
2

4 79&.)'8

2

4 %+6))1)28
"
4)6732 �
291&)6 7+

#3

5

3

5

2

4
%+6))1)28 1

79&.)'8
h
%+6))1)28 1

i
3

5 =
2

6664

%+6))1)28 1

79&.)'8

2

4 %+6))1)28 1

"
4)6732 �
291&)6 7+

#3

5

3

7775

One More Unification Example

60

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

One More Unification Example

60

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

One More Unification Example

60

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

NUMBER
SG

3rd
PERSON

AGREEMENT1

AGREEMENT

SG

3rd

NUMBER

PERSON

One More Unification Example

60

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

NUMBER
SG

3rd
PERSON

AGREEMENT1

AGREEMENT

SG

3rd

NUMBER

PERSON

✔

Unification

61

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Unification

61

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Unification

61

1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Unification

61

1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Unification

61

AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Unification

61

AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Unification

61

∅= Failure!

✘AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

%+6))1)28 1

"
291&)6 WK

4)6732 �

#

79&.)'8
h
%+6))1)28 1

i

3

77775

2

66666664

%+6))1)28
"
291&)6 WK

4)6732 �

#

79&.)'8

2

4 %+6))1)28
"
291&)6 40

4)6732 �

#3

5

3

77777775
⨆

Rule Representation

62

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’

Rule Representation

62

Pron

⟨PRON

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’

Rule Representation

62

AGREEMENT

Pron

⟨PRON AGREEMENT

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’

Rule Representation

62

AGREEMENT

PERSON

Pron

⟨PRON AGREEMENT PERSON⟩

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’

Rule Representation

62

AGREEMENT

PERSON 3rd

Pron

⟨PRON AGREEMENT PERSON⟩ = 3rd

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● PRON → ‘he’

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● NP → PRON

Rule Representation

63

⟨NP AGREEMENT PERSON⟩ = ⟨PRON AGREEMENT PERSON⟩

AGREEMENT

PERSON

NP

AGREEMENT

PERSON 3rd

Pron

● 𝛽 → 𝛽1 … 𝛽n
{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

● NP → PRON

Rule Representation

63

⟨NP AGREEMENT PERSON⟩ = ⟨PRON AGREEMENT PERSON⟩

AGREEMENT

PERSON

NP

AGREEMENT

PERSON 3rd

Pron
“unifiable”

Agreement with Heads and Features
● 𝛽 → 𝛽1 … 𝛽n

{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

64

S → NP VP Det → this
⟨NP AGREEMENT⟩ = ⟨VP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = sg

S → Aux NP VP Det → these
⟨Aux AGREEMENT⟩ = ⟨NP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = pl

NP → Det Nominal Verb → serve
⟨Det AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩
⟨NP AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩

⟨Verb AGREEMENT NUMBER⟩ = pl

Aux → does Noun → flight
⟨AUX AGREEMENT NUMBER⟩ = sg
⟨AUX AGREEMENT PERSON⟩ = 3rd

⟨Noun AGREEMENT NUMBER⟩ = sg

Simple Feature Grammars in NLTK
● S → NP VP

65

Simple Feature Grammars
● S -> NP[NUM=?n] VP[NUM=?n]

● NP[NUM=?n] -> N[NUM=?n]

● NP[NUM=?n] -> PropN[NUM=?n]

● NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]

● Det[NUM=sg] -> 'this' | 'every’

● Det[NUM=pl] -> 'these' | 'all’

● N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’

● N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'

66

Parsing with Features
>>> cp = load_parser('grammars/book_grammars/
feat0.fcfg’)  
>>> for tree in cp.parse(tokens):
... print(tree)

(S[] (NP[NUM='sg']
 (PropN[NUM='sg'] Kim))
 (VP[NUM='sg', TENSE='pres']
 (TV[NUM='sg', TENSE='pres'] likes)
 (NP[NUM='pl'] (N[NUM='pl'] children))))

67

Feature Applications
● Subcategorization
● Verb-Argument constraints
● Number, type, characteristics of args
● e.g. is the subject animate?
● Also adjectives, nouns

● Long-distance dependencies
● e.g. filler–gap relations in wh-questions
● “Which flight do you want me to have the travel agent book?”

68

Morphosyntactic Features
● Grammtical feature that influences morphological or syntactic behavior
● English:
● Number:
● Dog, dogs
● Person:
● am; are; is
● Case:
● I / me; he / him; etc.

69

Semantic Features
● Grammatical features that influence semantic (meaning) behavior of

associated units

● E.g.:
● ?The rocks slept. ? Colorless green ideas sleep furiously.

● Many proposed:
● Animacy: +/-

● Human: +/-

● Adult: +/-

● Liquid: +/-

70

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

● Contrast:
● Achievement (in an instant) vs activity (for a time)

71

