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Announcements
● HW4:
● No improvements (e.g. upper/lower-case) in first 3 parts of assignment
● Parser will miss some sentences :)
● In shell script for part 5:
● Hard code full paths to evalb and parses.gold in part 5 of assignment

● Note on underflow: 
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https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video

https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video


Ambiguity of the Week

3

(ROOT
  (S
    (NP (NNS Hospitals))
    (VP (VBD named)
      (SBAR (IN after)
        (S
          (NP (NNS sandwiches))
          (VP (VBP kill)
            (NP (CD five))))))
    (. .)))

http://nlp.stanford.edu:8080/parser/index.jsp

https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video

nlp.stanford.edu:8080/parser/
https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video


Roadmap
● Feature-based parsing

● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy
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Computational Semantics
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Dialogue System
● User:  What do I have on Thursday?
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● Great, but what do I DO now?
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Dialogue System
● User:  What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure! 

● System:
● Great, but what do I DO now?

● Need to associate meaning w/structure
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Date=Thursday
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Date=Thursday

Cal=User
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Date=Thursday

Cal=User

Action:  
   check(Cal=USER,  
         Date=Thursday) 7
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Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input
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Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

● Semantics:
● Determine the meaning of natural language input
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High-Level Overview
● Semantics = meaning
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High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?
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10

Speech & Text

“The sky is blue.”
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Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”
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We Will Focus On:
● Concepts that we believe to be true about the world.
● How to connect strings and those concepts.
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We Won’t Focus On:
1. Building knowledge bases / semantic networks
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Roadmap
● Computational Semantics
● Overview
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy
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Semantics: an Introduction
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Uses for Semantics
● Semantic interpretation required for many tasks
● Answering questions
● Following instructions in a software manual
● Following a recipe

● Requires more than phonology, morphology, syntax

● Must link linguistic elements to world knowledge
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Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted 
by what appeared to be a coordinated group of Mubarak supporters.
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Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted 
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters
● …etc.

16



Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic 

input?
● e.g.: predicate calculus: 

17

∃x (dog (x) ∧ disappear (x))



Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic 

input?
● e.g.: predicate calculus: 

● Entailment:
● What are all the conclusions that can be validly drawn from a sentence?
● Lincoln was assassinated ⊨ Lincoln is dead
● ⊨ “semantically entails”: if former is true, the latter must be too
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∃x (dog (x) ∧ disappear (x))



Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’
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Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

● Compositionality
● How can we derive the meaning of a unit from its parts?
● How do syntactic structure and semantic composition relate?
● ‘rubber duck’ vs. ‘rubber chicken’ vs. ‘rubber-neck’
● kick the bucket
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Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.
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Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

● Develop methods for reasoning about these representations
● …and performing inference
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Tasks in Computational Semantics
● Semantic similarity (words, texts)

● Semantic role labeling

● Semantic analysis / semantic “parsing”

● Recognizing textual entailment (RTE) / natural 
language inference (NLI)

● Sentiment analysis

20



Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures
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Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

● Reasoning
● Given a representation and world, what new conclusions (bits of meaning) can we 

infer?
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Complexity of Computational Semantics
● Effectively AI-complete
● Needs representation, reasoning, world model, etc.
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Representing Meaning
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“I have a car”
First-Order Logic:

24

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))
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“I have a car”
First-Order Logic:

24

Having

Haver Had-Thing

Speaker Car

Semantic Network:

   Car
    ⇑ POSS-BY 
Speaker

Conceptual 
Dependency:

Frame-Based: Having
   Haver: Speaker
   HadThing: Car

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))



Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary
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Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

● Here we focus on literal meaning (“what is said”)

25



Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness
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Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

● Represent any natural language utterance



Meaning Structure of Language
● Human Languages:
● Display basic predicate-argument structure
● Employ variables
● Employ quantifiers
● Exhibit a (partially) compositional semantics

27



Predicate-Argument Structure
● Represent concepts and relationships

28
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● Some words behave like predicates
● Book(John, United); Non-stop(Flight)
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Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

● Subcategorization frames indicate:
● Number, Syntactic category, order of args, possibly 

other features of args
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First-Order Logic
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First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness
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First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

● Supports generalization through variables

30



First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John 
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee
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First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John 
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA) 
● Refer to objects, avoid using constants

● Variables:
● x, e 
● Refer to any potential object in the world

31



First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’ 
● Serves(United, Chicago)
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First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’ 
● Serves(United, Chicago)

● Logical Connectives
● {∧, ∨, ⇒} = {and, or, implies}
● Allow for compositionality of meaning* [* many subtleties]
● ‘Frontier serves Seattle and is cheap.’ 
● Serves(Frontier, Seattle) ∧ Cheap(Frontier)
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Quantifiers
●  ∃: existential quantifier: “there exists”
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Quantifiers
●  ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth
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Quantifiers
●  ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

● A non-stop flight that serves Pittsburgh:
∃x Flight(x) ∧ Serves(x, Pittsburgh) ∧ Non-stop(x)

33



Quantifiers
●  ∀: universal quantifier: “for all”
● All flights include beverages.
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Quantifiers
●  ∀: universal quantifier: “for all”
● All flights include beverages.

∀x Flight(x) ⇒ Includes(x, beverages)

34



FOL Syntax Summary

35

Formula → AtomicFormula Connective → ∧ | ∨ | ⇒
| Formula Connective Formula Quantifier → ∀ | ∃
| Quantifier Variable, … Formula Constant → VegetarianFood | Maharani | …
| ¬ Formula Variable → x | y | …
| (Formula) Predicate → Serves | Near | …

AtomicFormula → Predicate(Term,…) Function → LocationOf | CuisineOf | …
Term → Function(Term,…)

| Constant
| Variable

J&M p. 556 (3rd ed. 16.3)

https://web.stanford.edu/~jurafsky/slp3/16.pdf#section.16.3


Compositionality
● The meaning of a complex expression is a function of the meaning of its 

parts, and the rules for their combination.
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Compositionality
● The meaning of a complex expression is a function of the meaning of its 

parts, and the rules for their combination.

● Formal languages are compositional.

● Natural language meaning is largely compositional, though not fully.
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Compositionality
● …how can we derive:
● loves(John, Mary)
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Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John 

● loves(x, y) 

● Mary
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Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John 

● loves(x, y) 

● Mary

● Lambda expressions!
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Lambda Expressions
● Lambda (λ) notation (Church, 1940)
● Just like lambda in Python, Scheme, etc
● Allows abstraction over FOL formulae
● Supports compositionality

● Form: (λ) + variable + FOL expression
● λx.P(x)      “Function taking x to P(x)”

● λx.P(x)(A) = P(A) [called beta-reduction]

38

http://www.jstor.org/stable/2266170


λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

39

λx.P(x)



λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

39

λx.P(x)
λx.P(x)(A)



λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

39

λx.P(x)
λx.P(x)(A)
P(A)



λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

● Equivalent to function application

39

λx.P(x)
λx.P(x)(A)
P(A)



● Lambda expression as body of another

λx.λy.Near(x, y)

Nested λ-Reduction
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● Lambda expression as body of another
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● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
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● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)
Near(Midway, Chicago)

Nested λ-Reduction

40



Nested λ-Reduction
● If it helps, think of λs as binding sites:

41
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Nested λ-Reduction
● If it helps, think of λs as binding sites:

42

λy.Near(x, y)
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go
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Nested λ-Reduction
● If it helps, think of λs as binding sites:

43

Near(x, y)
Chica

go

Midway



Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of 

parse tree

44
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Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of 

parse tree

● …or Schönkfinkelization

44

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133


Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements
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Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Atomic formulae: P(x), R(x,y), etc

● Formulae based on logical operators:

45

P Q ¬P P ∧Q P ∨Q P ⇒Q
F F T F F T
F T T F T T
T F F F T F
T T F T T T



Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

46



Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

● ⇒ is the logical form
● Does not mean the same as natural language “if”, just 

that if LHS=T, then RHS=T

46



Inference
1. α
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Inference
1. α
2. α ⇒ β
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Inference
1. α
2. α ⇒ β

3. ∴ β
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Inference
1. VegetarianRestaurant(Leaf )
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Inference
1. VegetarianRestaurant(Leaf )

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood )
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Inference
1. VegetarianRestaurant(Leaf )

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood )

3. ∴ Serves(Leaf, VegetarianFood )

48



Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…
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Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

● We’ll assume we have a theorem prover.
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Roadmap
● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy
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Events
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Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston) 
● Assume # of args = # of elements in subcategorization frame
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Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston) 
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Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston) 
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.
● Variable number of arguments; many entailment relations here.

52



Representing Events
● Arity:
● How do we deal with different numbers of arguments?
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Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday) 
● Neo-Davidsonian (Parsons 1990):

● ∃e Arrival(e) ∧ Arrived(e, Flight) ∧ Destination(e, Seattle) ∧ Origin(e, SFO)  
∧ Time(e, Saturday)
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Why events?
● “Adverbial modification is thus seen to be logically on a par with adjectival 

modification: what adverbial clauses modify is not verbs but the events that 
certain verbs introduce.” —Davidson
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Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication
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Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication

● Pros
● No fixed argument structure
● Dynamically add predicates as necessary
● No unused roles
● Logical connections can be derived
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Meaning Representation for 
Computational Semantics

● Requirements
● Verifiability
● Unambiguous representation
● Canonical Form
● Inference
● Variables
● Expressiveness

● Solution:
● First-Order Logic
● Structure
● Semantics
● Event Representation
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Summary
● FOL can be used as a meaning representation language for natural 

language

● Principle of compositionality:
● The meaning of a complex expression is a function of the meaning of its parts

● λ-expressions can be used to compute meaning representations from 
syntactic trees based on the principle of compositionality

● In next classes, we will look at syntax-driven approach to semantic 
analysis in more detail
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HW #5: Feature-based Parsing
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Agreement with Heads and Features
● 𝛽 → 𝛽1 … 𝛽n        

{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

59

S → NP VP Det → this
⟨NP AGREEMENT⟩ = ⟨VP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = sg

S → Aux NP VP Det → these
⟨Aux AGREEMENT⟩ = ⟨NP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = pl

NP → Det Nominal Verb → serve
⟨Det AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩ 
⟨NP AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩

⟨Verb AGREEMENT NUMBER⟩ = pl

Aux → does Noun → flight
⟨AUX AGREEMENT NUMBER⟩ = sg 
⟨AUX AGREEMENT PERSON⟩ = 3rd

⟨Noun AGREEMENT NUMBER⟩ = sg



Goals
● Explore the role of features in implementing linguistic constraints.

● Identify some of the challenges in building compact constraints to define a 
precise grammar. 

● Apply feature-based grammars to perform grammar checking.
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Tasks
● Build a Feature-Based Grammar
● We will focus on the building of the grammar itself — you may use NLTK’s 

nltk.parse.FeatureEarleyChartParser or similar. 

● Use the grammar to parse a small set of sentences we provide.
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Simple Feature Grammars
● S -> NP[NUM=?n] VP[NUM=?n]

● NP[NUM=?n] -> N[NUM=?n]

● NP[NUM=?n] -> PropN[NUM=?n]

● NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]

● Det[NUM=sg] -> 'this' | 'every’

● Det[NUM=pl] -> 'these' | 'all’

● N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’

● N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
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NLTK Feature Syntax
● Basics
● X[FEAT1=VALUE1, FEAT2=VALUE2]

● Variables
● X[FEAT=?f]

● Binary Values
● X[-FEAT], Y[+FEAT]
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HW #5: NLTK Feature Syntax
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NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’   
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’
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HW #5: Grammars
● It’s possible to get the grammar to work with completely arbitrary rules, 

BUT…

● We would prefer them to be linguistically motivated!
● instead of [IT_OK=yes] or [PRON_AGR=it]
● [GENDER=neut, PERSON=3rd, NUMBER=sg]
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Parsing with Features
>>> cp = load_parser('grammars/book_grammars/
feat0.fcfg’)  
>>> for tree in cp.parse(tokens): 
...     print(tree)

(S[] (NP[NUM='sg'] 
  (PropN[NUM='sg'] Kim)) 
    (VP[NUM='sg', TENSE='pres']
      (TV[NUM='sg', TENSE='pres'] likes)
      (NP[NUM='pl'] (N[NUM='pl'] children))))
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Feature Applications
● Subcategorization
● Verb-Argument constraints
● Number, type, characteristics of args
● e.g. is the subject animate?
● Also adjectives, nouns

● Long-distance dependencies
● e.g. filler–gap relations in wh-questions
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Morphosyntactic Features
● Grammtical feature that influences morphological or syntactic behavior
● English:
● Number:
● Dog, dogs
● Person:
● am; are; is
● Case (more prominent in other languages):
● I / me; he / him; etc.
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Semantic Features
● Grammatical features that influence semantic (meaning)  behavior of associated 

units

● E.g.:
● ?The rocks slept.

● Many proposed:
● Animacy: +/-

● Gender: masculine, feminine, neuter

● Human: +/-

● Adult: +/-

● Liquid: +/-
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Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].
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Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].
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Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

● Contrast:
● Achievement (in an instant) vs activity (for a time)
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Feature Grammar Practice: 
Animacy
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Feature Grammar Practice
● Initial Grammar: 
S -> NP VP  
VP[subcat=ditrans] -> V NP NP  
NP -> NNP  
NP -> Det N  
NNP[animacy=True] -> 'Alex' | 'Ahmed'  
V[subcat=ditrans] -> 'gifted'  
Det -> 'a' | 'the'  
N[animacy=False] -> 'book' | 'rock'
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Practice Task
● Modify the initial grammar to incorporate animacy in such a way that you 

get the right results:
● Alex gifted Ahmed a book
● * Alex gifted the rock a book
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