
Feature-based Parsing
+ 

Computational Semantics
LING 571 — Deep Processing for NLP

October 28, 2020
Shane Steinert-Threlkeld

1

Announcements
● HW4:
● No improvements (e.g. upper/lower-case) in first 3 parts of assignment
● Parser will miss some sentences :)
● In shell script for part 5:
● Hard code full paths to evalb and parses.gold in part 5 of assignment

● Note on underflow:

2

log∏
i

Pi = ∑
i

log Pi

Ambiguity of the Week

3

Ambiguity of the Week

3

https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video

https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video

Ambiguity of the Week

3

(ROOT
 (S
 (NP (NNS Hospitals))
 (VP (VBD named)
 (SBAR (IN after)
 (S
 (NP (NNS sandwiches))
 (VP (VBP kill)
 (NP (CD five))))))
 (. .)))

http://nlp.stanford.edu:8080/parser/index.jsp

https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video

nlp.stanford.edu:8080/parser/
https://www.theguardian.com/environment/video/2019/oct/18/extinction-rebellion-protester-dressed-as-boris-johnson-scales-big-ben-video

Roadmap
● Feature-based parsing

● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

4

Computational Semantics

5

Dialogue System
● User: What do I have on Thursday?

6

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!

6

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

6

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

● System:
● Great, but what do I DO now?

6

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

● System:
● Great, but what do I DO now?

● Need to associate meaning w/structure

6

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Date=Thursday

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System

7

Date=Thursday

Cal=User

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System

7

Date=Thursday

Cal=User

Action:  
 check(Cal=USER,  
 Date=Thursday) 7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System

7

Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

8

Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

● Semantics:
● Determine the meaning of natural language input

8

High-Level Overview
● Semantics = meaning

9

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

9

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

9

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

9

10

Speech & Text

“The sky is blue.”

10

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

10Psychology

Orange

Green
Blue

Red

Clouds

Sky

Earth

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

10Psychology

Orange

Green
Blue

Red

Clouds

Sky

Earth

Epistemology

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

10Psychology

Orange

Green
Blue

Red

Clouds

Sky

Earth

Epistemology

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

We Will Focus On:
● Concepts that we believe to be true about the world.
● How to connect strings and those concepts.

11

We Won’t Focus On:
1. Building knowledge bases / semantic networks

12

Street

Car

Truck

Fire
Engine

House

Fire

Red
Orange

Yellow

Green

Apples

Cherries
Pears

Sunsets

Sunrises Clouds
Violets

Roses

Flowers

Violet

Ambulance

Bus

Vehicle

Roadmap
● Computational Semantics
● Overview
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

13

Semantics: an Introduction

14

Uses for Semantics
● Semantic interpretation required for many tasks
● Answering questions
● Following instructions in a software manual
● Following a recipe

● Requires more than phonology, morphology, syntax

● Must link linguistic elements to world knowledge

15

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters
● …etc.

16

Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic

input?
● e.g.: predicate calculus: 

17

∃x (dog (x) ∧ disappear (x))

Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic

input?
● e.g.: predicate calculus: 

● Entailment:
● What are all the conclusions that can be validly drawn from a sentence?
● Lincoln was assassinated ⊨ Lincoln is dead
● ⊨ “semantically entails”: if former is true, the latter must be too

17

∃x (dog (x) ∧ disappear (x))

Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

18

Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

● Compositionality
● How can we derive the meaning of a unit from its parts?
● How do syntactic structure and semantic composition relate?
● ‘rubber duck’ vs. ‘rubber chicken’ vs. ‘rubber-neck’
● kick the bucket

18

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

19

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

19

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

19

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

● Develop methods for reasoning about these representations
● …and performing inference

19

Tasks in Computational Semantics
● Semantic similarity (words, texts)

● Semantic role labeling

● Semantic analysis / semantic “parsing”

● Recognizing textual entailment (RTE) / natural
language inference (NLI)

● Sentiment analysis

20

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

21

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

21

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

● Reasoning
● Given a representation and world, what new conclusions (bits of meaning) can we

infer?

21

Complexity of Computational Semantics
● Effectively AI-complete
● Needs representation, reasoning, world model, etc.

22

Representing Meaning

23

“I have a car”
First-Order Logic:

24

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

“I have a car”
First-Order Logic:

24

Having

Haver Had-Thing

Speaker Car

Semantic Network:

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

“I have a car”
First-Order Logic:

24

Having

Haver Had-Thing

Speaker Car

Semantic Network:

 Car
 ⇑ POSS-BY
Speaker

Conceptual
Dependency:

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

“I have a car”
First-Order Logic:

24

Having

Haver Had-Thing

Speaker Car

Semantic Network:

 Car
 ⇑ POSS-BY
Speaker

Conceptual
Dependency:

Frame-Based: Having
 Haver: Speaker
 HadThing: Car

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

25

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

25

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

25

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

● Here we focus on literal meaning (“what is said”)

25

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

● Can compare representation of sentence to KB model (generally: “executable”)

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

26

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

● Represent any natural language utterance

Meaning Structure of Language
● Human Languages:
● Display basic predicate-argument structure
● Employ variables
● Employ quantifiers
● Exhibit a (partially) compositional semantics

27

Predicate-Argument Structure
● Represent concepts and relationships

28

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

28

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

28

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

● Subcategorization frames indicate:
● Number, Syntactic category, order of args, possibly

other features of args

28

First-Order Logic

29

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

30

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

30

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

30

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

30

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

● Supports generalization through variables

30

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

31

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA)
● Refer to objects, avoid using constants

31

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA)
● Refer to objects, avoid using constants

● Variables:
● x, e
● Refer to any potential object in the world

31

First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’
● Serves(United, Chicago)

32

First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’
● Serves(United, Chicago)

● Logical Connectives
● {∧, ∨, ⇒} = {and, or, implies}
● Allow for compositionality of meaning* [* many subtleties]
● ‘Frontier serves Seattle and is cheap.’
● Serves(Frontier, Seattle) ∧ Cheap(Frontier)

32

Quantifiers
● ∃: existential quantifier: “there exists”

33

Quantifiers
● ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

33

Quantifiers
● ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

● A non-stop flight that serves Pittsburgh:
∃x Flight(x) ∧ Serves(x, Pittsburgh) ∧ Non-stop(x)

33

Quantifiers
● ∀: universal quantifier: “for all”
● All flights include beverages.

34

Quantifiers
● ∀: universal quantifier: “for all”
● All flights include beverages.

∀x Flight(x) ⇒ Includes(x, beverages)

34

FOL Syntax Summary

35

Formula → AtomicFormula Connective → ∧ | ∨ | ⇒
| Formula Connective Formula Quantifier → ∀ | ∃
| Quantifier Variable, … Formula Constant → VegetarianFood | Maharani | …
| ¬ Formula Variable → x | y | …
| (Formula) Predicate → Serves | Near | …

AtomicFormula → Predicate(Term,…) Function → LocationOf | CuisineOf | …
Term → Function(Term,…)

| Constant
| Variable

J&M p. 556 (3rd ed. 16.3)

https://web.stanford.edu/~jurafsky/slp3/16.pdf#section.16.3

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

36

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

● Formal languages are compositional.

36

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

● Formal languages are compositional.

● Natural language meaning is largely compositional, though not fully.

36

Compositionality
● …how can we derive:
● loves(John, Mary)

37

Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John

● loves(x, y)

● Mary

37

Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John

● loves(x, y)

● Mary

● Lambda expressions!

37

Lambda Expressions
● Lambda (λ) notation (Church, 1940)
● Just like lambda in Python, Scheme, etc
● Allows abstraction over FOL formulae
● Supports compositionality

● Form: (λ) + variable + FOL expression
● λx.P(x) “Function taking x to P(x)”

● λx.P(x)(A) = P(A) [called beta-reduction]

38

http://www.jstor.org/stable/2266170

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

39

λx.P(x)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

39

λx.P(x)
λx.P(x)(A)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

39

λx.P(x)
λx.P(x)(A)
P(A)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

● Equivalent to function application

39

λx.P(x)
λx.P(x)(A)
P(A)

● Lambda expression as body of another

λx.λy.Near(x, y)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

40

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)
Near(Midway, Chicago)

Nested λ-Reduction

40

Nested λ-Reduction
● If it helps, think of λs as binding sites:

41

λx.λy.Near(x, y)
=Mi

dw
ay

Chicago

Nested λ-Reduction
● If it helps, think of λs as binding sites:

42

λy.Near(x, y)
Chica

go

=
Midway

Nested λ-Reduction
● If it helps, think of λs as binding sites:

43

Near(x, y)
Chica

go

Midway

Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of

parse tree

44

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133

Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of

parse tree

● …or Schönkfinkelization

44

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

45

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Atomic formulae: P(x), R(x,y), etc

45

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Atomic formulae: P(x), R(x,y), etc

● Formulae based on logical operators:

45

P Q ¬P P ∧Q P ∨Q P ⇒Q
F F T F F T
F T T F T T
T F F F T F
T T F T T T

Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

46

Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

● ⇒ is the logical form
● Does not mean the same as natural language “if”, just

that if LHS=T, then RHS=T

46

Inference
1. α

47

Inference
1. α
2. α ⇒ β

47

Inference
1. α
2. α ⇒ β

3. ∴ β

47

Inference
1. VegetarianRestaurant(Leaf)

48

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

48

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

3. ∴ Serves(Leaf, VegetarianFood)

48

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

49

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

● We’ll assume we have a theorem prover.

49

Roadmap
● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

50

Events

51

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

52

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.

52

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.
● Variable number of arguments; many entailment relations here.

52

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

53

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.

53

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday)

53

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday)
● Neo-Davidsonian (Parsons 1990):

● ∃e Arrival(e) ∧ Arrived(e, Flight) ∧ Destination(e, Seattle) ∧ Origin(e, SFO)  
∧ Time(e, Saturday)

53

Why events?
● “Adverbial modification is thus seen to be logically on a par with adjectival

modification: what adverbial clauses modify is not verbs but the events that
certain verbs introduce.” —Davidson

54

Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication

55

Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication

● Pros
● No fixed argument structure
● Dynamically add predicates as necessary
● No unused roles
● Logical connections can be derived

55

Meaning Representation for 
Computational Semantics

● Requirements
● Verifiability
● Unambiguous representation
● Canonical Form
● Inference
● Variables
● Expressiveness

● Solution:
● First-Order Logic
● Structure
● Semantics
● Event Representation

56

Summary
● FOL can be used as a meaning representation language for natural

language

● Principle of compositionality:
● The meaning of a complex expression is a function of the meaning of its parts

● λ-expressions can be used to compute meaning representations from
syntactic trees based on the principle of compositionality

● In next classes, we will look at syntax-driven approach to semantic
analysis in more detail

57

HW #5: Feature-based Parsing

58

Agreement with Heads and Features
● 𝛽 → 𝛽1 … 𝛽n

{set of constraints} ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

59

S → NP VP Det → this
⟨NP AGREEMENT⟩ = ⟨VP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = sg

S → Aux NP VP Det → these
⟨Aux AGREEMENT⟩ = ⟨NP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = pl

NP → Det Nominal Verb → serve
⟨Det AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩
⟨NP AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩

⟨Verb AGREEMENT NUMBER⟩ = pl

Aux → does Noun → flight
⟨AUX AGREEMENT NUMBER⟩ = sg
⟨AUX AGREEMENT PERSON⟩ = 3rd

⟨Noun AGREEMENT NUMBER⟩ = sg

Goals
● Explore the role of features in implementing linguistic constraints.

● Identify some of the challenges in building compact constraints to define a
precise grammar.

● Apply feature-based grammars to perform grammar checking.

60

Tasks
● Build a Feature-Based Grammar
● We will focus on the building of the grammar itself — you may use NLTK’s

nltk.parse.FeatureEarleyChartParser or similar.

● Use the grammar to parse a small set of sentences we provide.

61

Simple Feature Grammars
● S -> NP[NUM=?n] VP[NUM=?n]

● NP[NUM=?n] -> N[NUM=?n]

● NP[NUM=?n] -> PropN[NUM=?n]

● NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]

● Det[NUM=sg] -> 'this' | 'every’

● Det[NUM=pl] -> 'these' | 'all’

● N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’

● N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'

62

NLTK Feature Syntax
● Basics
● X[FEAT1=VALUE1, FEAT2=VALUE2]

● Variables
● X[FEAT=?f]

● Binary Values
● X[-FEAT], Y[+FEAT]

63

HW #5: NLTK Feature Syntax

64

NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’

24

(IX<291�WK>
XLMW

2

HSK

HW #5: NLTK Feature Syntax

64

24

(IX<291�WK>
XLMW

2<291�WK>
HSK

NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’

HW #5: NLTK Feature Syntax

64

24<291�WK>
(IX<291�WK>

XLMW

2<291�WK>
HSK

NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’

HW #5: NLTK Feature Syntax

64

24<291�WK>
(IX<291�WK>

XLMW

2<291�WK>
HSK

NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’

✔

HW #5: NLTK Feature Syntax

65

NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’

24

(IX<291�TP>
XLIWI

2<291�WK>
HSK

HW #5: NLTK Feature Syntax

65

NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] Det[NUM=sg] -> ‘this’ | ‘that’
Det[NUM=pl] -> ‘these’ | ‘those’
N[NUM=sg] -> ‘dog’ | ‘cat’

24<291�*%-0Ώ>
(IX<291�TP>

XLIWI

2<291�WK>
HSK

HW #5: Grammars
● It’s possible to get the grammar to work with completely arbitrary rules,

BUT…

● We would prefer them to be linguistically motivated!
● instead of [IT_OK=yes] or [PRON_AGR=it]
● [GENDER=neut, PERSON=3rd, NUMBER=sg]

66

Parsing with Features
>>> cp = load_parser('grammars/book_grammars/
feat0.fcfg’)  
>>> for tree in cp.parse(tokens):
... print(tree)

(S[] (NP[NUM='sg']
 (PropN[NUM='sg'] Kim))
 (VP[NUM='sg', TENSE='pres']
 (TV[NUM='sg', TENSE='pres'] likes)
 (NP[NUM='pl'] (N[NUM='pl'] children))))

67

Feature Applications
● Subcategorization
● Verb-Argument constraints
● Number, type, characteristics of args
● e.g. is the subject animate?
● Also adjectives, nouns

● Long-distance dependencies
● e.g. filler–gap relations in wh-questions

68

Morphosyntactic Features
● Grammtical feature that influences morphological or syntactic behavior
● English:
● Number:
● Dog, dogs
● Person:
● am; are; is
● Case (more prominent in other languages):
● I / me; he / him; etc.

69

Semantic Features
● Grammatical features that influence semantic (meaning) behavior of associated

units

● E.g.:
● ?The rocks slept.

● Many proposed:
● Animacy: +/-

● Gender: masculine, feminine, neuter

● Human: +/-

● Adult: +/-

● Liquid: +/-

70

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

71

Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

● Contrast:
● Achievement (in an instant) vs activity (for a time)

71

Feature Grammar Practice: 
Animacy

72

Feature Grammar Practice
● Initial Grammar: 
S -> NP VP  
VP[subcat=ditrans] -> V NP NP  
NP -> NNP  
NP -> Det N  
NNP[animacy=True] -> 'Alex' | 'Ahmed'  
V[subcat=ditrans] -> 'gifted'  
Det -> 'a' | 'the'  
N[animacy=False] -> 'book' | 'rock'

73

7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

(IX

XLI

2ॱERMQEG] � ॲ
VSGO

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

Feature Grammar Practice

74

7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

224ॱERMQEG] � ॲ
%LQIH

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

(IX

XLI

2ॱERMQEG] � ॲ
VSGO

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

✔
Feature Grammar Practice

74

7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

224ॱERMQEG] � ॲ
%LQIH

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

✘
7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

(IX

XLI

2ॱERMQEG] � ॲ
VSGO

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

✔
Feature Grammar Practice

74

7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

224ॱERMQEG] � ॲ
%LQIH

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

✘
7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

(IX

XLI

2ॱERMQEG] � ॲ
VSGO

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

✔
Feature Grammar Practice

74

7

24

224ॱERMQEG] � ॲ
%PI\

:4

:

KMJXIH

24

224ॱERMQEG] � ॲ
%LQIH

24

(IX

E

2ॱERMQEG] � ॲ
FSSO

Practice Task
● Modify the initial grammar to incorporate animacy in such a way that you

get the right results:
● Alex gifted Ahmed a book
● * Alex gifted the rock a book

75

