PCFGs:
Parsing & Evaluation

LING 571 — Deep Processing Techniques for NLP
October 13, 2021
Shane Steinert-Threlkeld

Announcements

e HW2 due today at 11:59pm

e readme. {txtlpdf}
e Separate upload to Canvas
e NOT in hw2.tar.gz

e Run check_hw2.sh before submitting!

e Start symbol: either “Y%start S” or first nonterminal

e NB: needs to be readable by niltk’'s grammar loading methods

e Condor job: runs conversion, but not parsing before/after; that can be done
separately

Announcements

e Recording failed last time ® @ @
e Uploaded last year’s lecture on Canvas; let me know if any questions arise

e And please do let me know if you don’t see the red recording symbol on Zoom

e Re indigenous languages and NLP:
e First Workshop on NLP for Indigenous Languages of the Americas (NAACL '21)

e nhttp://turing.iimas.unam.mx/americasnlip/

e (Great papers, a shared task, excellent dataset made publicly available
e [being used, e.g., by C.M. Downey for an unsupervised segmentation project]

YA/ UNIVERSITY of WASHINGTON 3

http://turing.iimas.unam.mx/americasnlp/

CKY + back-pointers
PCFGs

PCFG Parsing (PCKY)
Inducing a PCFG
Evaluation

[Earley parsing]

HW3 + collaboration

Roadmap

CKY Parsing: Backpointers

Backpointers

e Instead of list of possible nonterminals for that node, each cell should
have:

® Nonterminal for the node

e Pointer to left and right children cells
e Either direct pointer to cell, or indices

For example:

bp 2 = BackPointer()
bp 2.1 child = [X2, (1,4)]
bp 2.r child = [PP, (4,6)]

YA/ UNIVERSITY of WASHINGTON 6

CKY Parser

e Pair each nonterminal with back-pointer to cells
from which it was derived

e |Last step:

e construct trees from back-pointersin | 0, n |

YA/ UNIVERSITY of WASHINGTON /

Pronoun -----

Verb, VP, S

YA/ UNIVERSITY of WASHINGTON

wwe Toammmnn
B

bp 1 = BackPointer()
bp_l.r_chlld = [PP, (4,6)] w-

YA/ UNIVERSITY of WASHINGTON Q

wwe CoIRNL
B I

bp 2 = BackPointer ()
bp_2.r_chlld = [PP, (4,6)] w-

YA/ UNIVERSITY of WASHINGTON 10

Resulting Parses

S S
/\ /\
NP VP NP VP
| Verb NP [X2 PP
Prefer Det Nom Verb NP on TWA
a Nom PP Prefer Det Nom
| PN | |
fisht on TWA a Noun

|
flight

CKY Discussion

e Running time:
e O(n3) where n is the length of the input string

e |nner loop grows as square of # of non-terminals

® EXxpressiveness:

e As implemented, requires CNF
e \Weak equivalence to original grammar
e Doesn’t capture full original structure
e Back-conversion?

e (Can do binarization, terminal conversion

e Unit productions requires change in CKY

YA/ UNIVERSITY of WASHINGTON 12

CKY + Back-pointers Example

NNNNNNNNNNNNNNNNNNNNNN

cky table[0,6][S] = { Pr:'n’:;un
}
--

N

NP VP

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON 14

= {(NB, (0,1),

NP,
VP, (1,6))} Pronoun
|) "-
| ﬂ

cky_table[0,6]///

I brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON 15

cky_table[0,6][$ (0,1),0 Lule

(1,6)): Pronoun
(11[NP] = {(‘I")}

) 1

(X2, (1,4),
PP, (4,0))}

cky table]
cky table[1l,6]]

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON 16

cky table[0O,6][S] = {(NP, (O0,1),

NP,
VP, (1,6)): Pronoun
= {('I")} Verb, VP, S VP, X2, S
, (1,2),
w0 “

cky table[0,1]]
cky table[1,6][V

VP, X2, S

(X2, (1,4),
PP, (4,6))} :
cky_table[1,2][Verb] = {(’'prefer’)}

PN
NP VP
AN

| Verb NP

|
brefer

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON 17

cky table[0,6][S] = {(NP, (0,1), PNP,
VP, (1,6)) ronoun

cky_table[0,1][NP] = {(‘I")} Verb, VP, S
cky table[l,6][VP] = rb, (1,2),
r (2,6)),

(X2, (1,4),
PP, (4,0))}

cky table[2,6][NP] =

prefer Det Nom

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON 18

VP, (1,6)).
cky table[l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
PP, (4,6))} S

VP, X2, S

cky table[l,2][V
cky table[2,6]

(‘prefer’)}

, (2,3), T

Nom, (3,6)} NP VP

cky_table[2,3][-] = {('a’")} ‘ /\

| Verb NP

N

prefer Det Nom

da

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON

19

VP, (1,6)).
cky table[l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
PP, (4,6))} S

VP, X2, S

cky table[l,2][V
cky table[2,6]

(‘prefer’)}

, (2,3), T

Nom, (3,6)} NP VP

cky_table[2,3][-] = {('a’")} ‘ /\

| Verb NP

N

prefer Det Nom

da

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON

20

cky table[0,6][S] = {(NP, (0,1), r>NR
VP, (1, 6)) ronoun

cky table[0,1][NP] = {(‘'I")}
cky table[l,6][VP] = {RYisc iy
NP, (2,6))

Verb, VP, S

) }

[brefer a flight on TWA

YA/ UNIVERSITY of WASHINGTON 21

Probabilistic Context-Free Grammars

Probabilistic Context-free Grammars:
Roadmap

Motivation: Ambiguity
Approach:

Definition
Disambiguation
Parsing
Evaluation

Enhancements

Motivation

What about ambiguity?

Current algorithm can represent it

...can’t resolve It.

Probabilistic Parsing

e Provides strategy for solving disambiguation
problem

e Compute the probability of all analyses

e Select the most probable

e Employed in language modeling for speech
recognition

e N-gram grammars predict words, constrain search

e Also, constrain generation, translation

YA/ UNIVERSITY of WASHINGTON 25

PCFGs: Formal Definition

a set of non-terminal symbols (or variables)

NNNNNNNNNNNNNNNNNNNNNN

=

PCFGs: Formal Definition

a set of non-terminal symbols (or variables)

a set of terminal symbols (disjoint from V)

PCFGs: Formal Definition

N a set of non-terminal symbols (or variables)

D a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — pf|p|, where A is a non-terminal where

R Aisanon-terminal, f is a string of symbols from the infinite set of strings (X UN)* and p
is a number between 0 and 1 expressing P(p|A)

YA/ UNIVERSITY of WASHINGTON 26

PCFGs: Formal Definition

N a set of non-terminal symbols (or variables)

D a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — pf|p|, where A is a non-terminal where

R Aisanon-terminal, f is a string of symbols from the infinite set of strings (X UN)* and p
is a number between 0 and 1 expressing P(p|A)

S a designated start symbol

YA/ UNIVERSITY of WASHINGTON 26

PCFGs

e Augment each production with probability that LHS
will be expanded as RHS

o P(A=p)

o P(A—p|A)

o P(plA)

o P(RHS| LHS)

e NB: the first is often used; but the latter are what’s
really meant.

PCFGs

e Sum over all possible expansions is 1
) PA—p)=1
p

e APCFG is consistent if sum of probabilities of all sentences in language
IS 1

e Recursive rules often yield inconsistent grammars (Booth & Thompson, 1973)

YA/ UNIVERSITY of WASHINGTON 28

https://dl.acm.org/citation.cfm?id=1310632

Example PCFG: Augmented &£,

S— NP VP
S — Aux NP VP
S—= VP
NP — Pronoun
NP — Proper-Noun
NP = Det Nominal
NP — Nomainal
Nominal = Noun
Nominal = Nominal Noun
Nomainal = Nominal PP
VP — Verb
VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — Verb NP NP
VP — VP PP
PP — Preposition NP

.80
15
05
35
30
20
15
75
20
05
35
20
10
15
05
15
1.0

Det = that |.10] | a [.30] | the |.60]
Noun = book |.10| | flight |.30| | meal |.15| | money [0.5]
| flights 10.40| | dinner |.10|
Verb = book |.30| | include [.30] | prefer |.40]
Pronoun — I [.40| | she |.05]| | me |.15] | you [.40]
Proper-Noun — Houston [.60| | NWA |.40|
Auz = does |.60| | can |.40|
Preposition = from |.30| | to |.30] | on |.20| | near |.15]
| through |.05]

YA/ UNIVERSITY of WASHINGTON

29

Example PCFG: Augmented &£,

S— NP VP
S — Aux NP VP
S—= VP
NP — Pronoun
NP — Proper-Noun
NP — Det Nominal
NP — Nominal
Nominal = Noun
Nominal = Nominal Noun
Nomainal = Nominal PP
VP — Verb
VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — Verb NP NP
VP — VP PP
PP — Preposition NP

.80
15
05
35
130
20
15
75
20
05
35
20
10
15
05
15
1.0

Det = that |.10] | a [.30] | the |.60]
Noun = book |.10| | flight |.30| | meal |.15| | money [0.5]
| flights 10.40| | dinner |.10|
Verb = book |.30| | include [.30] | prefer |.40]
Pronoun — I [.40| | she |.05]| | me |.15] | you [.40]
Proper-Noun — Houston [.60| | NWA |.40|
Auz = does |.60| | can |.40|
Preposition = from |.30| | to |.30] | on |.20| | near |.15]
| through |.05]

YA/ UNIVERSITY of WASHINGTON

30

Disambiguation

e A PCFG assigns probability to each parse tree T for input S

e Probability of T product of all rules used to derive T
P(T,S) = | | P(RHS,| LHS))
=1

P(T.,S) = P(T)P(S|T) = P(T)

NNNNNNNNNNNNNNNNNNNNNN

S

/\
NP VP
|] T
Pron Verb NP PP

| | T PN
I prefer Det Nom P NP

| | | |
a Noun on NNP

| |

flight TWA
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP PP 0. 1]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]

S
/\
NP
| _— T
Pron Verb NP
] prefer Det Nom
/\
Noun PP
N
flight P NP
| |
S = NPVP [0.8] on NNP
NP — Pron [0.35] |
Pron — | 0.4] TWA
VP =V NP 0.2]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3
Nom — Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]

YA/ UNIVERSITY of WASHINGTON

32

S

/\
NP VP
|] T
Pron Verb NP PP

| | N N
I prefer Det Nom P NP

| | | |
a Noun on NNP

| |

flight TWA
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP PP 0. 1]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]
~1.452 x |06

S
/\
NP VP
| _— T
Pron Verb NP
] prefer Det Nom
/\
a Noun PP
| N
flight P NP
| |
S = NPVP [0.8] on NNP
NP — Pron [0.35] |
Pron — | 0.4] TWA
VP =V NP 0.2]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3
Nom — Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]

~1.452 x [0~/

YA/ UNIVERSITY of WASHINGTON

32

Parsing Problem for PCFGs

e Select T such that (s.t.)
1(S) = argmax P(T)
T s.t. S=yield(T)

e String of words S'is of parse tree

e Select the tree | that maximizes the probability of the parse

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

NNNNNNNNNNNNNNNNNNNNNN

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

e Must use 10+-grams... too sparse

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:
e Must use 10+-grams... too sparse

e Approximate using conditioning on limited context: P(w;|w,_;)

P(Wi— 1 Wi)

P(w;_y)

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

e Must use 10+-grams... too sparse
P(Wi—l’ Wi)

P(w;_y)

e Approximate using conditioning on limited context: P(w.|w._,) =

e PCFGs are able to give probability of entire string without as bad sparsity

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

e Must use 10+-grams... too sparse
P(Wi—l’ Wi)

P(w;_y)

e Approximate using conditioning on limited context: P(w.|w._,) =

e PCFGs are able to give probability of entire string without as bad sparsity

e Model probabillity of syntactically valid sentences

Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

e Must use 10+-grams... too sparse
P(Wi—l’ Wi)

P(w;_y)

e Approximate using conditioning on limited context: P(w.|w._,) =

e PCFGs are able to give probability of entire string without as bad sparsity

e Model probabillity of syntactically valid sentences

e Not just probability of sequence of words

PCFGs: Parsing

NNNNNNNNNNNNNNNNNNNNNN

Probabilistic CKY (PCKY)

e Like regular CKY

e Assumes grammar in Chomsky Normal Form (CNF)
o A > BC(C
o A w

e Represent input with indices b/t words:
® , Book : that . flight ; through . Houston s

Probabilistic CKY (PCKY)

e For input string length n and non-terminals V
o Cell[/,j,A]lin(n+1) x (n+1) x V matrix

e (Contains probability that A spans [i, J]

NNNNNNNNNNNNNNNNNNNNNN

PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j « from 1 to LENGTH(words) do

for all { A | A = words[j| € grammar }
table| -1, 5, A | « P(A = words[j/)
for : « from 32 downto 0 do
for K< 1+ 1 to -1 do
for all { A| A = B C e grammar,
and tableli, k, B| > 0 and table| k, j, C'| > 0 }
if (table| i, j, A | < P(A = BC)xtable| i, k, B |xtable| k,j,C |) then
table| 1, 3, A | &+ P(A — BC)xtable|i,k,B|xtable|k,j,C]
back| i, 5, A| < { k, B, C}
return BUILD TREE(back| 1, LENGTH(words), S |), table] 1,LENCGTH(words), S |

WA/ UNIVERSITY of WASHINGTON 38

PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j « from 1 to LENGTH(words) do

for all { A | A = words[j| € grammar }
table| -1, 5, A | « P(A = words[j/)
for : « from 32 downto 0 do
for K< 1+ 1 to -1 do
for all { A| A = B C e grammar,
and tableli, k, B| > 0 and table| k, j, C'| > 0 }
if (table| i, j, A | < P(A = BC)xtable| i, k, B |xtable| k,j,C |) then
table| i, 5, A | « P(A = BC)xtable|i,k,B|xtable|k,j, C]
back| i, 5, A| < { k, B, C}
return BUILD TREE(back| 1, LENGTH(words), S |), table] 1, LENGTH(words), S |

WA/ UNIVERSITY of WASHINGTON 38

PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j « from 1 to LENGTH(words) do

for all { A | A = words[j| € grammar }
table| -1, 5, A | + P(A = words/j/)
for : < from -2 downto 0 do
for K< 1+ 1 to -1 do
for all { A| A = B C e grammar,
and tableli, k, B| > 0 and table| k, j, C'| > 0 }
if (table| i, j, A | < P(A = BC)xtable| i, k, B |xtable| k,j,C |) then
table| 1, 3, A | &+ P(A — BC)xtable|i,k,B|xtable|k,j,C]
back| i, 5, A| < { k, B, C}
return BUILD TREE(back| 1, LENGTH(words), S |), table] 1, LENGTH(words), S |

WA/ UNIVERSITY of WASHINGTON 38

PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j « from 1 to LENGTH(words) do

for all { A | A = words[j| € grammar }
table| -1, 5, A | + P(A = words/j/)
for : < from -2 downto 0 do
for K< 1+ 1 to -1 do
for all { A| A = B C e grammar,
and tableli, k, B| > 0 and table| k, j, C'| > 0 }
if (table| i, j, A | < P(A = BC)xtable| i, k, B |xtable| k,j,C |) then
table| 1, 3, A | &+ P(A = BC)xtable|i,k,B|xtable|k,j,C]
back| i, 5, Al < { k B, C}
return BUILD TREE(back| 1, LENGTH(words), S |), table] 1, LENGTH(words), S |

WA/ UNIVERSITY of WASHINGTON 38

PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j « from 1 to LENGTH(words) do

for all { A | A = words[j| € grammar }
table| -1, 5, A | + P(A = words/j/)
for : < from -2 downto 0 do
for K< 1+ 1 to -1 do
for all { A| A = B C e grammar,
and tableli, k, B| > 0 and table| k, 5, C'| > 0}
if (table| i, j, A | < P(A = BC)xtable| i, k, B |xtable| k,j,C |) then
table| i, j, A | « P(A = BC)xtableli,k,B|xtable|k,j,C]
back| i, 5, Al < {k B, C}
return BUILD TREE(back| 1, LENGTH(words), S |), table] 1, LENGTH(words), S |

WA/ UNIVERSITY of WASHINGTON 38

PCKY Grammar Segment

S— NP VP [0.80] Det = the [0.40]
NP — Det N [0.30] Det — a [0.40]
VP = V NP [0.20] V = includes [0.05]

N — meal [0.01]
N — flight [0.02]

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det & a |0.40]
V' = includes [0.05]
N = meal [0.01]
N = flight [0.02]

0

PCKY Matrix

The fligh
I

t includes a meal

2

3

4

YA/ UNIVERSITY of WASHINGTON

40

PCKY Matrix

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det = the |0.40]
Det & a |0.40]
V' = includes [0.05]
N = meal [0.01]

W~ fight |[0102]

The - includes a meal

0 | 2 3 4 5

YA/ UNIVERSITY of WASHINGTON 41

PCKY Matrix
S — NP VP [0.80]

Det — 0.4
- on o2
VP = V NP [0.20] e
P

Det = the |0.40] -

Det & a |0.40]
V' = includes [0.05]
N = meal [0.01]
N = flight [0.02]

The flight includes a meal
0 | 2 3 4 5

YA/ UNIVERSITY of WASHINGTON

PCKY Matrix
S — NP VP [0.80]

Det — 04
NP -+ Det N [0:30]
VP = V NP [0.20]
N —0.02

R T

0 | 2 3 4 5

Det = a |0.40]
V' = includes [0.05]
N = meal [0.01]

YA/ UNIVERSITY of WASHINGTON 42

PCKY Matrix

Det—-0.4 NP
[0, 1] [0,2]

S — NP VP [0.80]

R

VP = V NP [0.20] e

Det = a |0.40]

V' = includes [0.05]
N - meal [0.01] P =08 040102 = 0.00024

N flight - [0.02] The flight includes a meal

0 | 2 3 4 5

PCKY Matrix
S — NP VP [0.80]

Det — 0.4 NP — 0.0024
NP ~ Det N [0.30] on o2
VP — V NP [0.20]
N —0.02
P = '
Det = the [0.40] ---
Det & a |0.40]
V' = includes [0.05]

N — meal [0.01] P =[0i§-04 002 = 0.00024

N flight 10021 The flight includes a meal -

0 | 2 3 4 5

YA/ UNIVERSITY of WASHINGTON 43

S— NP VP
NP — Det N
VP — V NP

Det — the
Det = a
IV — Includes
N — meal
N — flight

0.80]
0.30]
0.20]

10.40)
10.40)
0.05)
0.01]
0.02)

0

The flight includes a meal

PCKY Matrix

Det - 0.4 NP — 0.0024
[0, 1] [0,2] [0,3] [0,4]

2

N —0.02

[1,2] [1,3] [1,4]
V —-0.05

[2,3] [2,4]

3

4

Det—-0.4
[3,4]

5

S—2.304x%]0-3

[0,5]

VP — 1.2x]0-

[2,5]
NP —0.0012

[3,5]
NE]

[4,5]

YA/ UNIVERSITY of WASHINGTON

Inducing a PCFQG

NNNNNNNNNNNNNNNNNNNNNN

Learning Probabilities

e Simplest way:

e Use treebank of parsed sentences

Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:

Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded:

32, Count(a—vy)

Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f)

YA/ UNIVERSITY of WASHINGTON 46

Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f)

Count(a — p) Count(a — p)
Zy Count(a — y) Count(@)

Pla = fla) =

YA/ UNIVERSITY of WASHINGTON 46

Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f)

Count(a — p) Count(a — p)
Z}, Count(a — y) Count(@)

Pla = fla) =

e Alternative: Learn probabilities by re-estimating
o (Later)

YA/ UNIVERSITY of WASHINGTON 46

Probabilistic Parser Development Paradigm

Large Small Small/Med
(eg.WS§| 2-21, (e.g. WSJ, 23,
39,830 sentences) (e.8: W3] 22) 2,416 sentences)
Estimate rule Tuning/Verification, Held Out,

probabilities Check for Overfit Final Evaluation

YA/ UNIVERSITY of WASHINGTON 47

Parser Evaluation

NNNNNNNNNNNNNNNNNNNNNN

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set

e How can we tell how good the parser is?

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?

e Maximally strict: identical to ‘gold standard’

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

e Partial credit:

YA/ UNIVERSITY of WASHINGTON 49

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

e Partial credit:
e Constituents in output match those in reference

YA/ UNIVERSITY of WASHINGTON 49

Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

e Partial credit:
e Constituents in output match those in reference

e Same start point, end point, non-terminal symbol

YA/ UNIVERSITY of WASHINGTON 49

Parseval

e How can we compute parse score from
constituents?

e Multiple Measures:

of correct constituents in hypothetical parse

Labeled Recall (LR) =
(LR) # of total constituents in reference parse

of correct constituents in hypothetical parse
Labeled Precision (LP) = YP p

of total consituents in hypothetical parse

YA/ UNIVERSITY of WASHINGTON 50

Parseval

e F-measure:
e Combines precision and recall

R
o LetpeR, p > 0thatadjusts Pvs. Rs.t. ﬁoc;

e [Fs-measure is then: Fy=(1 + (%) -

p?-P+R
2PR

P+ R

e With F1-measure as F, =

YA/ UNIVERSITY of WASHINGTON 51

Evaluation: Example

Hypothesis

Reference

52

of WASHINGTON

Reference

Evaluation: Example

Hypothesis
S

N

(0.4 NP VP

|
A

|
a

5(0,4)

Reference

Evaluation: Example

Hypothesis
S
/\

NP VP
>(0.4) | PN
NP(O,1) A B NP

| N

a b C PP

|
c D
|
d
0o I 2

S(0,4)
NP(0, 1)

Reference

Evaluation: Example

Hypothesis
S
/\

NP VP
>(0.4) | PN
NP(O,1) A B NP
VP(1,4) I AN

a b C PP

|
c D
|
d
0o I 2

S(0,4)
NP(0, 1)
VP(1,4)

Reference

Evaluation: Example

S(0,4)
NP(0, 1)
VP(1,4)
NP(2,3)

Hypothesis

S

N

NP

|
A

|
a

5(0,4)
NP(0, 1)
VP(1,4)
NP(2,4)

YA/ UNIVERSITY of WASHINGTON 52

Reference

Evaluation: Example

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,3)
PP(3,4)

Hypothesis

S

N

NP

|
A

|
a

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,4)
PP(3,4)

Reference

Evaluation: Example

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,3)
PP(3,4)

LP: 4/5
LR: 4/5
Fi: 4/5

Hypothesis
S

N
NP VP

|
A

|
a

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,4)
PP(3,4)

Parser Evaluation

e Crossing Brackets:

e # of constituents where produced parse has bracketings that overlap for the
siblings:

‘ ((A B) C) E— { (0,2), (2,3) } /* crossing is counted based on the brackets x*/
/* in test rather than gold file (by Mike) x/
and hyp. haS for(j=0;j<bn2;j++){
for(i=0;i<bnl; i++){
(A (B C)) - { (0,1), (1 ’ 3) } ngtbracl::e;[i;fresult I= 5 &&

bracket2[j]l.result != 5 &&
((bracketl[il.start < bracket2[j]l.start &&
bracketl[i]l.end > bracket2[jl.start &&

TOP TOP bracketl[il.end < bracket2[jl.end) ||

(bracketl[i].start > bracket2[j].start &&

bracketl[i].start < bracket2[jl.end &&
/\ /\ bracketl[il.end > bracket2[j].end))){
A C from evalb.c

YA/ UNIVERSITY of WASHINGTON 53

State-of-the-Art Parsing

e Parsers trained/tested on Wall Street Journal PTB
e LR: 90%+;
o LP: 90°/o+;

e Crossing brackets: 1%

e Standard implementation of Parseval:

® evalb

Evaluation Issues

e Only evaluating constituency

e There are other grammar formalisms:
e LFG (Constraint-based)

e Dependency Structure

e EXxtrinsic evaluation

e How well does getting the correct parse match the
semantics, etc?

YA/ UNIVERSITY of WASHINGTON 55

Earley Parsing

NNNNNNNNNNNNNNNNNNNNNN

Earley vs. CKY

e CKY doesn’t capture full original structure
e Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY

WA/ UNIVERSITY of WASHINGTON 57

Earley vs. CKY

e CKY doesn’t capture full original structure
e Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY

e Earley algorithm
e Supports parsing efficiently with arbitrary grammars
e [op-down search
e Dynamic programming
e [abulated partial solutions

e Some bottom-up constraints

WA/ UNIVERSITY of WASHINGTON 57

Earley Algorithm

e Another dynamic programming solution
e Partial parses stored in “chart”

e Compactly encodes ambiguity
o O(N3)

e Chart entries contain:
e Subtree for a single grammar rule
e Progress in completing subtree

e Position of subtree w.r.t. input

YA/ UNIVERSITY of WASHINGTON 58

Earley Algorithm

o First, left-to-right pass fills out a chart with N+17 states
e Chart entries — sit between words in the input string
e Keep track of states of the parse at those positions

e For each word position, chart contains set of states representing all partial parse
trees generate so far

® €.0. chart[0] contains all partial parse trees generated at the beginning of
sentence

YA/ UNIVERSITY of WASHINGTON 59

Chart Entries

e Three types of constituents:
e Predicted constituents
® In-progress constituents

e Completed constituents

Parse Progress

e Represented by Dotted Rules

e Position of - indicates type of constituent

e o Book 1 that 2 flight 3

o S— VP [0,0] (predicted)
e NP — Dets Nom [1,2] (in progress)
o VP—-> VNP- [0,3] (completed)

e [Xx,y] tells us what portion of the input is spanned so far by rule

e Each state si: <dotted rule>, [<back pointer>, <current position>}

o Book 1 that » flight 3

o S— - VP, [0,0]
e First 0 means S constituent begins at the start of input
e Second 0 means the dot is here too

® 50, this is a top-down prediction

YA/ UNIVERSITY of WASHINGTON 62

o Book 1 that » flight 3

o S— - VP, [0,0]
e First 0 means S constituent begins at the start of input
e Second 0 means the dot is here too

® 50, this is a top-down prediction

e NP — Det- Nom, [1,2]
e the NP begins at position 1
e the dot is at position 2
e S0, Det has been successfully parsed

e Nom predicted next

YA/ UNIVERSITY of WASHINGTON 62

o Book 1 that 2 flight 3 (continued)

o V- VNP-[03]

e Successful VP parse of entire input

VP = V NP«

NP — Det * Nominal

S— VP /\

Book that flight

0 I 2 3

Successful Parse

e Final answer found by looking at last entry in chart
e If entry resembles S — a - [O,N] then input parsed successfully

e Chart will also contain record of all possible parses of input string, given
the grammar

Parsing Procedure for the Earley Algorithm

e Move through each set of states in order, applying one of three operations:
e predictor: add predictions to the chart
® scanner: read input and add corresponding state to chart

e completer: move dot to right when new constituent found
e Results (new states) added to current or next set of states in chart

e No backtracking and no states removed: keep complete history of parse

Earley Algorithm

function EARLEY-PARSE(words, grammar) returns chart
ENQUEUE((y—> e S, [0,0]), chart|0])

for i «— from 0 to LENGTH(words) do
for each state in chart|i| do
if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then
(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) is a part of speech then

(state)
else
(state)
end
end

return(chart)

YA/ UNIVERSITY of WASHINGTON 66

Earley Algorithm

procedure ((A—a e Bp, [i,j])
for each (B — v) in GRAMMAR-RULES-FOR(B,grammar) do

ENQUEUE((B—e y, [1.j/), chart/j])
end

procedure (A = a e Bpf/ij))
if B ¢ PARTS-OF-SPEECH(word/j/) then

ENQUEUE((B — word[j| e, [,5+1]), chart[j+1])

procedure (B = ye, [1,k]))
for each (A & a e B B, [i,7]) in chart[j] do
ENQUEUE((A — a Be f, [i,k]), chart[k])

end

YA/ UNIVERSITY of WASHINGTON YA

3 Main Subroutines of Earley

e Adds predictions into the chart
e Reads the input words and enters states representing those words into the chart

e Moves the dot to the right when new constituents are found

Predictor

e Intuition:

e Create new state for top-down prediction of new phrase

e Applied when non part-of-speech non-terminals are to the right of a dot:
o S— - VPI0,0]

e Adds new states to current chart

e One new state for each expansion of the non-terminal in the grammar
VP — -V 10,0]
VP — « V NP [0,0]

YA/ UNIVERSITY of WASHINGTON 69

S0

S
S2
S3

o4
S5
S6

S7
S8
S9
S10
S11

y =S

S— NP VP
S — + Aux NP VP
S— - VP

NP -
NP -
NP -

VP —
VP —
VP -
VP —
VP —

* Pronoun
» Proper-Noun
 Det Nominal

 Verb

- Verb NP

- Verb NP PP
- Verb PP

* VP PP

Chart[0]

[0,0]

[0.0]
0,0]
0,0]

[0,0]
0,0]
[0,0]

[0,0]
0,0]
0,0]
[0,0]
0,0]

Dummy start state

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor
Predictor
Predictor

YA/ UNIVERSITY of WASHINGTON

/70

S12

S13
S14
S15
S16

S17
>18
S19
S20

S21
S22

Verb = book

VP — Verb -

VP — Verb - NP
VP — Verb - NP PP
VP — Verb <« PP

S—» VP-

VP - VP - PP

NP — - Pronoun

NP — - Proper-Noun

NP — « Det Nominal
PP — * Prep NP

Chart|1]

[0,1]

[0,1]
[0,1]
[0,1]
[0,1]

[0,1]
[0,1]
[1,1]
[1,1]

[1,1]
[1,1]

Scanner

Completer
Completer
Completer
Completer

Completer
Completer
Predictor
Predictor

Predictor
Predictor

YA/ UNIVERSITY of WASHINGTON

/1

S0: y— + S[0,0]

Book that flight

~

N

NNNNNNNNNNNNNNNNNNNNNN

SO0: y— - S[0,0]
S3: S— < VPJ[0,0]

Book that flight

y

S

« VP

NNNNNNNNNNNNNNNNNNNNNN

SO0: y— - S[0,0]
S3: S— < VPJ[0,0]
S8: VP — - Verb NP [0,0]

Book that flight

y

S
VP

°Verb NP

NNNNNNNNNNNNNNNNNNNNNN

SO0: y— - S[0,0]

S3: S— - VP[0,0]

S8: VP — - Verb NP [0,0]
S12: Verb — -« book [0,0]

Book that flight

Y

S
VP
Verb NP

* book

SO0: y— - S[0,0]

S3: S— - VP[0,0]

S8: VP — - Verb NP [0,0]
S12: Verb — book - [0,1]

Book that flight

Y

S
VP
Verb NP

book

SO0: y— - S[0,0]
S3: S— < VPJ[0,0]
S8: VP — Verb « NP [0,1]

Book that flight

Y

S
VP
Verbe NP

book

NNNNNNNNNNNNNNNNNNNNNN

SO0: y— - S[0,0]
S3: S— VP - [0,1]
S8: VP — Verb - NP [0,1]

Book that flight

Y

S
VP
Verb NP

book

NNNNNNNNNNNNNNNNNNNNNN

Book that flight

S0: y =+ S[0,0] A
S3: S— VP -[0,1]
S8 VP — Verb - NP [0’1] >
S21: NP — + Det Nominal [1,1]
VP
Verb NP

book ¢ Det Nominal

Book that flight

S0: y— + SJ[0,0] !
S3: S— VP -[0,1]
S8: VP — Verb - NP [0’1] >

S21: NP — + Det Nominal [1,1]

823 Det —> o “that”['l,ﬂ VP

Verb NP

book Det Nominal

e that

Book that flight

S0: y— + SJ[0,0] !
S3: S— VP -[0,1]
S8: VP — Verb - NP [0’1] >

S21: NP — + Det Nominal [1,1]

S23: Det — ‘“that”* [1,2] VP

Verb NP

book Det Nominal

that e

Book that flight

SO0: y— + S[0,0] g
S3: S— VP - [0,1]
S8: VP — Verb - NP [0,1] S
S21: NP — Det - Nominal [1,2]
VP
Verb NP

book Dete Nominal

that

Book that flight

SO0: y— -+ S[0,0] Y
S3: S— VP - [0,1]
S8: VP — Verb« NP [0,1] S

S21: NP — Det - Nominal [1,2]
S25: Nominal — + Noun [2,2]

Verb NP

book Det Nominal

that * Noun

BOOK th;zt flight

SO0: y— - S[0,0]
S3: S— VP - [0,1]
S8: VP — Verb - NP [0,1]
S21: NP — Det - Nominal [1,2]
S25: Nominal = « Noun [2,2] VP
S28: Noun — “flight” - [2,3]

Verb NP

book Det Nominal

that Noun

flight *

BOOK th;zt flight

SO0: y— - S[0,0]
S3: S— VP - [0,1]

S
S8: VP — Verb + NP[0,1]
S21: NP — Det - Nominal [1,2]
S25: Nominal = Noun - [2,3] VP
Verb NP

book Det Nominal

that Noun ¢

flight

BOOK th;zt flight

SO0: y— - S[0,0]
S3: S— VP - [0,1]
S8: VP — Verb - NP [0,1]

S21: NP — Det Nominal < [1,3]
VP

Verb NP
book Det Nominal ¢

that Noun

flight

SO0: y— - S[0,0]
S3: S— VP - [0,1]
S8: VP — Verb NP - [0,3]

BOOK th;zt flight

S
VP
Verb NP o
book Det Nominal

that Noun

flight

SO0: y— « S[0,0]
S3: §S— VP - [0,3]

BOOK th;zt flight

S
VP o
Verb NP
book Det Nominal

that Noun

flight

What About Dead Ends?

NNNNNNNNNNNNNNNNNNNNNN

SO0: y— + S[0,0]
S1: S— - NP VP|[0,0]

NP — « Pronoun
NP — « Proper-Noun
NP — « Det Nominal

Book that flight

« NP

book

y

S

VP

SO0: y— + S[0,0]
S1: S— - NP VP|0,0]

Book that flight

y

S

NP VP

book

NNNNNNNNNNNNNNNNNNNNNN

What About Recursion?

NNNNNNNNNNNNNNNNNNNNNN

What about recursion?

NNNNNNNNNNNNNNNNNNNNNN

What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?

What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end

YA/ UNIVERSITY of WASHINGTON 92

What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end

EXxercise: parse ‘table and chair’ using the very simple grammar
Nom -> Nom ‘and’ Nom | ‘table’ | ‘chair’

YA/ UNIVERSITY of WASHINGTON 92

HW #3

YA/ UNIVERSITY of WASHINGTON 93

CKY Parsing: Goals

e Complete implementation of CKY parser
e Implement dynamic programming approach

e Incorporate/follow backpointers to recover parse

Implementation

Build full parser

You may use existing data structures for rules, trees
e.g. NLTK has nice tree data structure

CKY algorithm must be your own
Dynamic programming table filling crucial!
Will use smaller grammar (similar to HW #1)

Back to ATIS for HW #4

Implementation

e For CKY Implementation:

e NLTK’s CFG.productions () method:

e optional rhs= argument only looks at first token of RHS
e Be-ware: NOT the entire RHS

YA/ UNIVERSITY of WASHINGTON Q6

Notes

e [eams:

You may work in teams of two on this assignment

e [est grammar
Pre-converted to CNF
Start symbol: TOP

Parse should span input and be rooted at: TOP

YA/ UNIVERSITY of WASHINGTON Q7

Some Collaboration Basics

NNNNNNNNNNNNNNNNNNNNNN

Git Branches

e (Good for semi-isolating your development code from the shared, reviewed
code

\\eart_‘a‘aSSeS branch

/T EE

master boranch mastec boranch

Recommended Git Flow

Initialize a git repository, with a main branch

e (Create initial commit, if necessary)
Create a new branch, maybe “adding rule objects”
Make regular commits on your branch (like saving)
Switch to main branch, and “pull”
Merge your branch to main
...rinse & repeat

If using GitHub (or GitLab, etc): MUST BE PRIVATE REPO!

https://help.github.com/articles/creating-a-new-repository/

Communication: Check-ins

e For check-ins, three main points:
e \What have you been working on?
e \What do you plan to work on next?

e [s there anything “blocking” you?

e In industry, these brief check-ins among small teams are often done daily

YA/ UNIVERSITY of WASHINGTON 101

Project Planning: Kanban Boards

e Before you start working: . e

DONE

e \Write out tasks on sticky notes. . .
e Place in three columns: -
' -
TO DO Ticket D #42 Chris
e Doing R
e Done (3) @

e As you work, you can move them from column to column

e Add tasks as new issues come up

e trello.com — has free online implementation of Kanban Boards

http://trello.com

