
HW #6

1

Goals
● Semantics
● Gain better understanding of semantic representations
● Develop experience with lambda calculus and FOL
● Create semantic attachments
● Understand semantic composition

2

Compositional Semantics
● Part 1:
● Manually create target semantic representations
● Use Neo-Davidsonian event representation
● e.g. verb representation with event variable, argument conjuncts
● Can use as test cases for part 2

3

Compositional Semantics
● Part 1:
● Manually create target semantic representations
● Use Neo-Davidsonian event representation
● e.g. verb representation with event variable, argument conjuncts
● Can use as test cases for part 2

● Part 2:
● Create semantic attachments to reproduce (NLTK)
● Add to grammatical rules to derive sentence representations

3

Compositional Semantics
● Part 1:
● Manually create target semantic representations
● Use Neo-Davidsonian event representation
● e.g. verb representation with event variable, argument conjuncts
● Can use as test cases for part 2

● Part 2:
● Create semantic attachments to reproduce (NLTK)
● Add to grammatical rules to derive sentence representations

● Note: Lots of ambiguities (scope, etc)
● Only need to produce one

3

Semantics in NLTK
● Grammar files:
● .fcfg extension
● Example format in NLTK Book Chapter 10
● /corpora/nltk/nltk-data/grammars/book_grammars/simple-sem.fcfg

● Note: Not “event-style”

● Parsing:
● Use nltk.parse.FeatureChartParser (or similar)

4

http://www.nltk.org/book/ch10.html

Semantics in NLTK
● Printing semantic representations:

item.label()[‘SEM’].simplify()
 all x.(dog(x) -> exists e.(barking(e) & barker(e,x)))

● Also nltk.sem.util.root_semrep(item)

5

Semantic attachments in NLTK: 
Syntax

● a,b,e,x
● lowercase variables can be arguments:
● \x.dog(x)

● P,Q,X
● uppercase lambda variables are functors
● \P.P(john)

6

λ = \
∃ = exists
∀ = all
∧ = &
∨ = |
⇒ = ->
¬ = -

(The programming kind)

More NLTK Logic Format
● Added to typical CFG rules
● Basic approach similar to HW #5
● Composing semantics:
● S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]

7

More NLTK Logic Format
● Added to typical CFG rules
● Basic approach similar to HW #5
● Composing semantics:
● S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]

● Creating lambdas:
● IV[SEM=<\x.exists e.(barking(e) & barker(e,x))>] -> ‘barks’

7

More NLTK Logic Format
● Added to typical CFG rules
● Basic approach similar to HW #5
● Composing semantics:
● S[SEM=<?np(?vp)>] -> NP[SEM=?np] VP[SEM=?vp]

● Creating lambdas:
● IV[SEM=<\x.exists e.(barking(e) & barker(e,x))>] -> ‘barks’

● Nested lambdas:
● \x.\y. Etc → \x y.  

Can remove ‘.’ between sequences of lambda elements 
Keep ‘.’ between sections: lambdas, quantifiers, body

7

8

SॱSEM <see(john,mary)>ॲ
NPৡৠয়LOC -

NUM sg
SEM <ᅶP.P(john)>৤ৢৣ

PropNৡৠয়LOC -
NUM sg
SEM <ᅶP.P(john)>৤ৢৣ

John

VPঢ়NUM sg
SEM <ᅶy.see(y,mary)>৞

TVৡৠয়NUM sg
SEM <ᅶX y.X(ᅶx.see(y,x))>
TNS pres

৤ৢৣ

sees

NPৡৠয়LOC -
NUM sg
SEM <ᅶP.P(mary)>৤ৢৣ

PropNৡৠয়LOC -
NUM sg
SEM <ᅶP.P(mary)>৤ৢৣ

Mary

