Computational Semantics

LING 571 — Deep Processing for NLP
October 31, 2022

Announcements

® No class on December 5

e Happy Halloween!!

ppy Halloween!

=z
o
T
O
Z
I
b
=
=
>
=
wN
[a
73]
=,
Z
o

ppy Halloween!

YA/ UNIVERSITY of WASHINGTON

Chomp + Ski = Chomsky

0
o
N

Happy Halloween!

YA/ UNIVERSITY of WASHINGTON 4

Happy Halloween!

2020: Sea + Man + Ticks = Semantics

YA/ UNIVERSITY of WASHINGTON 4

Happy Halloween!

5

=z
o
T
O
Z
I
b
=
=
>
=
wN
[a
73]
=,
Z
o

Happy Halloween!

2021: par + sing = parsing

YA/ UNIVERSITY of WASHINGTON 5

Happy Halloween!

w——

acmsenssod snd()
A0 WAIRAS S
Inboverng o wna) anig-amen) my

D0 e s e s

B DLSNI 40 NHOIHL Y

2022: 1!

%0050
2509050520525
105962050520
P6909209265092052020;
05202505%052020,
000500206007
252

Bviedadoedel
oo'eg,ﬁ.ﬁ“&%"
105030308 0803050%
9308080%020205000%
04999000%090%08
230202020305070:030
0%0500020300000
050305000308050
02020903020
020903900
d0d000¢
900900000061}

a0
S
()

a8
S0
hl

0 K
00b 020

0%s20p000¢:10080

:gooo 00t lago,.
aeatacestaieaSole!

setagentatucedtitentatolati oty
4050500

R R

2690%

0gtd
0030300a0a%0%!

0000
0%
020202

0

050,00,) 0
00909 0% o
20%0%9%4% 9 HEH 1 0202094

YA/ UNIVERSITY of WASHINGTON

]
W What am | for Halloween? (one word, dad joke)

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Varieties of Entaillment in the News

Presuppositions, etc

Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'

Presuppositions, etc

e ‘| present to you the King of Europe, Nigel Farage” — Trump (paraphrased)

e presupposes that there is a king of Europe Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'

YA/ UNIVERSITY of WASHINGTON Q

https://www.theguardian.com/commentisfree/2020/oct/30/trump-election-nigel-farage-campaign-us-president-britain

Presuppositions, etc

e ‘| present to you the King of Europe, Nigel Farage” — Trump (paraphrased)

e presupposes that there is a king of Europe Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'

e Consider two sentences:
e “The King of Europe is here today.”
e “The King of Europe is NOT here today.”

e From both, it follows that there is a King of Europe.

YA/ UNIVERSITY of WASHINGTON Q

https://www.theguardian.com/commentisfree/2020/oct/30/trump-election-nigel-farage-campaign-us-president-britain

Presuppositions, etc

e ‘| present to you the King of Europe, Nigel Farage” — Trump (paraphrased)

e presupposes that there is a king of Europe Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'

e Consider two sentences:

e “The King of Europe is here today.”

e “The King of Europe is NOT here today.”

e From both, it follows that there is a King of Europe.
e Contrast:

e “We are talking on Zoom right now.”

e “We are NOT talking on Zoom right now.”

e The former, but not the latter, entails that we are talking right now.

YA/ UNIVERSITY of WASHINGTON Q

https://www.theguardian.com/commentisfree/2020/oct/30/trump-election-nigel-farage-campaign-us-president-britain

Presuppositions, etc

e ‘| present to you the King of Europe, Nigel Farage” — Trump (paraphrased)

e presupposes that there is a king of Europe Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'

e Consider two sentences:
e “The King of Europe is here today.”
e “The King of Europe is NOT here today.”
e From both, it follows that there is a King of Europe.
e Contrast:
e “We are talking on Zoom right now.”
e “We are NOT talking on Zoom right now.”
e The former, but not the latter, entails that we are talking right now.

e Presuppositions (that there is a king) “project out” from negation (and other operators, like questions,
conditionals, etc). Standard logical entailments do not.

e Presuppositions must be true in order for a sentence to be true or false at all.

YA/ UNIVERSITY of WASHINGTON Q

https://www.theguardian.com/commentisfree/2020/oct/30/trump-election-nigel-farage-campaign-us-president-britain

(Scalar) Implicatures

NNNNNNNNNNNNNNNNNNNNNN

(Scalar) Implicatures

e “Some conferences were cancelled this year.”
e Seems to entail: “Not all conferences were cancelled this year.”

e But: can follow with “In fact, all of them were!” (In jargon: the implicature can be cancelled.)

YA/ UNIVERSITY of WASHINGTON 10

(Scalar) Implicatures

e “Some conferences were cancelled this year.”
e Seems to entail: “Not all conferences were cancelled this year.”

e But: can follow with “In fact, all of them were!” (In jargon: the implicature can be cancelled.)

e Conversational implicature: inferences that a speaker would tend to draw assuming a
cooperative and knowledgable speaker.

YA/ UNIVERSITY of WASHINGTON 10

(Scalar) Implicatures

e “Some conferences were cancelled this year.”
e Seems to entail: “Not all conferences were cancelled this year.”

e But: can follow with “In fact, all of them were!” (In jargon: the implicature can be cancelled.)

e Conversational implicature: inferences that a speaker would tend to draw assuming a
cooperative and knowledgable speaker.

e In this example: speaker could have said “All conferences were cancelled.” Since they did
not, assume that it is false.

e Common examples of scales: {some, all}, {or, and}, {may, must}, ...

YA/ UNIVERSITY of WASHINGTON 10

(Scalar) Implicatures

e “Some conferences were cancelled this year.”
e Seems to entail: “Not all conferences were cancelled this year.”

e But: can follow with “In fact, all of them were!” (In jargon: the implicature can be cancelled.)

e Conversational implicature: inferences that a speaker would tend to draw assuming a
cooperative and knowledgable speaker.

e In this example: speaker could have said “All conferences were cancelled.” Since they did
not, assume that it is false.

e Common examples of scales: {some, all}, {or, and}, {may, must}, ...

e Trump’s doctor when he was at the hospital with COVID-19:
e Press: “Has he ever been on supplemental oxygen?”

e Doc: "He hasn’t had supplemental oxygen today or yesterday.”

YA/ UNIVERSITY of WASHINGTON 10

Presupposition, Entallment, Implicature?

Presupposition, Entallment, Implicature?

e “Several students were told that the exam will be postponed.”

Presupposition, Entallment, Implicature?

e “Several students were told that the exam will be postponed.”

e [hereis an exam.

Presupposition, Entallment, Implicature?

e “Several students were told that the exam will be postponed.”
e There is an exam.

e A student was told that the exam will be postponed.

Presupposition, Entallment, Implicature?

e “Several students were told that the exam will be postponed.”
e Thereis an exam.
e A student was told that the exam will be postponed.

e The exam will be postponed.

Presupposition, Entallment, Implicature?

e “Several students were told that the exam will be postponed.”
e Thereis an exam.
e A student was told that the exam will be postponed.
e The exam will be postponed.

e Not every student was told that the exam will be postponed.

An Interesting Example

A top baseball prospect’s Southern California scholarship
was lost to the pandemic

https://www.washingtonpost.com/road-to-recovery/2020/1 1/02/tank-espalin-usc-indiana-baseball/

https://www.washingtonpost.com/road-to-recovery/2020/11/02/tank-espalin-usc-indiana-baseball/

An Interesting Example

A top baseball prospect’s Southern California scholarship
was lost to the pandemic

https://www.washingtonpost.com/road-to-recovery/2020/1 1/02/tank-espalin-usc-indiana-baseball/

“A prospect’s scholarship”: presupposes there is a scholarship
Rest of headline: there is no more scholarship
Complex compositional interaction between tense and presupposition

YA/ UNIVERSITY of WASHINGTON 12

https://www.washingtonpost.com/road-to-recovery/2020/11/02/tank-espalin-usc-indiana-baseball/

Roadmap

e First-order Logic: Syntax and Semantics
e Inference + Events

e Rule-to-rule Model

e More lambda calculus

YA/ UNIVERSITY of WASHINGTON 13

FOL Syntax + Semantics

NNNNNNNNNNNNNNNNNNNNNN

Example Meaning Representation

e A non-stop flight that serves Pittsburgh:
1x Flight(x) A Serves(x, Pittsburgh) A Non-stop(x)

FOL Syntax Summary

Formula — AtomicFormula Connective

— AlvI=
Formula Connective Formula Quantifier - v | 3
Quantifier Variable, ... Formula Constant — VegetarianFood | Maharani | ...
- Formula Variable - z|lyl ..
(Formula) Predicate — Serves | Near | ...
AtomicFormula — Predicate(Term,...) Function — LocationOf | CuisineOf | ...
Term — Function(Term,...)
Constant
Variable

J&M p. 556 (3rd ed. 16.3)

YA/ UNIVERSITY of WASHINGTON 16

https://web.stanford.edu/~jurafsky/slp3/16.pdf#section.16.3

Model-Theoretic Semantics

e A “model” represents a particular state of the world

e Our language has logical and non-logical elements.
e Logical: Symbols, operators, quantifiers, etc

® Non-Logical: Names, properties, relations, etc

Denotation

e Every non-logical element points to a fixed part of the model

Denotation

e Every non-logical element points to a fixed part of the model

e Objects — elements in the domain, denoted by terms

e John, Farah, fire engine, dog, stop sign

Denotation

e Every non-logical element points to a fixed part of the model

e Objects — elements in the domain, denoted by terms

e John, Farah, fire engine, dog, stop sign

® Properties — sets of elements
e red: {fire hydrant, apple,...}

Denotation

e Every non-logical element points to a fixed part of the model

e Objects — elements in the domain, denoted by terms

e John, Farah, fire engine, dog, stop sign

® Properties — sets of elements
e red: {fire hydrant, apple,...}

e Relations — sets of tuples of elements

e CapitalCity: {(Washington, Olympia), (Yamoussokro, Cote d’lvoire),
(Ulaanbaatar, Mongolia),...}

via |&M, p. 554

Sample Domain &

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e, f,g
ltalian, Mexican, Eclectic h,i,j

YA/ UNIVERSITY of WASHINGTON 19

Sample Domain © via J&M, p. 554

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e f,g
ltalian, Mexican, Eclectic h,i,j
Properties

Noisy Frasca, Med, and Rio are noisy Noisy={e,f,g}

YA/ UNIVERSITY of WASHINGTON 19

via |&M, p. 554

Sample Domain &

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e f,g
Italian, Mexican, Eclectic h,i,j
Properties
Noisy Frasca, Med, and Rio are noisy Noisy={e,f,g}
Relations
Likes Matthew likes the Med Likes={ <(a,) , <c,p , (¢, , <be) ,
Katie likes the Med and Rio a,p, {dg }

Franco likes Frasca
Caroline likes the Med and Rio

YA/ UNIVERSITY of WASHINGTON 19

via |&M, p. 554

Sample Domain &

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e f,g
Italian, Mexican, Eclectic h,i,j
Properties
Noisy Frasca, Med, and Rio are noisy Noisy={e,f,g}
Relations
Likes Matthew likes the Med Likes={ <(a,) , <c,p , (¢, , <be) ,
Katie likes the Med and Rio afh , <dg }
Franco likes Frasca
Caroline likes the Med and Rio
Serves Med serves eclectic Serves={ {c,)h , (i) , <eh) }

Rio serves Mexican
Frasca serves ltalian

YA/ UNIVERSITY of WASHINGTON 19

Events

YA/ UNIVERSITY of WASHINGTON 20

Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

e Example:
e The flight arrived
e The flight arrived in Seattle
e The flight arrived in Seattle on Saturday.
e The flight arrived on Saturday.
e The flight arrived in Seattle from SFO.
e The flight arrived in Seattle from SFO on Saturday.

YA/ UNIVERSITY of WASHINGTON 21

Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

e Example:
e The flight arrived
e The flight arrived in Seattle
e The flight arrived in Seattle on Saturday.
e The flight arrived on Saturday.
e The flight arrived in Seattle from SFO.
e The flight arrived in Seattle from SFO on Saturday.

e \ariable number of arguments; many entailment relations here.

YA/ UNIVERSITY of WASHINGTON 21

Representing Events
o Arity:

e How do we deal with different numbers of arguments?

Representing Events
o Arity:

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.

Representing Events
o Arity:

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.

e Davidsonian (Davidson 1967):
e de Arrival(e, Flight, Seattle, SFO) A Time(e, Saturday)

YA/ UNIVERSITY of WASHINGTON 22

Representing Events
o Arity:

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.

e Davidsonian (Davidson 1967):
e de Arrival(e, Flight, Seattle, SFO) A Time(e, Saturday)
® Neo-Davidsonian (Parsons 1990):

e de Arriwval(e) A Arrived(e, Flight) A Destination(e, Seattle) A Origin(e, SFO)
A Time(e, Saturday)

YA/ UNIVERSITY of WASHINGTON 22

Why events?

e “Adverbial modification is thus seen to be logically on a par with adjectival
modification: what adverbial clauses modify is not verbs but the events that
certain verbs introduce.” —Davidson

Neo-Davidsonian Events

e Neo-Davidsonian representation:
e Distill event to single argument for main predicate

e Everything else is additional predication

Neo-Davidsonian Events

e Neo-Davidsonian representation:
e Distill event to single argument for main predicate

e Everything else is additional predication

e Pros
e No fixed argument structure
e Dynamically add predicates as necessary
e NoO unused roles

e Logical connections can be derived

YA/ UNIVERSITY of WASHINGTON 24

Meaning Representation for
Computational Semantics

e Requirements

e \erifiability

e Unambiguous representation

e Canonical Form

e Inference

e Variables

e EXxpressiveness

e Solution:

e First-Order Logic

e Structure

e Semantics

e Event K

lepresentation

YA/ UNIVERSITY of WASHINGTON

25

Rule-to-Rule Model

NNNNNNNNNNNNNNNNNNNNNN

Recap

e Meaning Representation
e (Can represent meaning in natural language in many ways
e We are focusing on First-Order Logic (FOL)

YA/ UNIVERSITY of WASHINGTON 27

Recap

e Meaning Representation
e (Can represent meaning in natural language in many ways
e We are focusing on First-Order Logic (FOL)

e Principle of compositionality
e The meaning of a complex expression is a function of the meaning of its parts

YA/ UNIVERSITY of WASHINGTON 27

Recap

e Meaning Representation
e (Can represent meaning in natural language in many ways
e We are focusing on First-Order Logic (FOL)

e Principle of compositionality
e The meaning of a complex expression is a function of the meaning of its parts

e Lambda Calculus
® A-expressions denote functions
e (Can be nested
e Reduction = function application

YA/ UNIVERSITY of WASHINGTON 27

Semantics Reflects Syntax

NNNNNNNNNNNNNNNNNNNNNN

Chiasmus:
Syntax affects Semantics!

9\
'

1 a A4 - -"‘._

Bowie playing lesla lesla playing Bowie
The Prestige (2006) SpaceX Falcon Heavy Test Launch (2/6/2018)

YA/ UNIVERSITY of WASHINGTON 29

Chiasmus:
Syntax affects Semantics!

e “Never let a fool kiss you or a kiss fool you” (Grothe, 2002)

® “Then you should say what you mean,” the March Hare went on.
“I do,” Alice hastily replied; “at least—at least | mean what | say—that's the same thing, you know.”

“Not the same thing a bit!” said the Hatter. “Why, you might just as well say
that ‘I see what | eat’ is the same thing as ‘I eat what | see’l”

“You might just as well say,” added the March Hare,
“‘that ‘'l like what | get’is the same thing as ‘I get what | like

5,”

“You might just as well say,” added the Dormouse, which seemed to be talking in his sleep,
“that ‘I breathe when | sleep’is the same thing as ‘I sleep when | breathe’l”

—Alice in Wonderland, Lewis Carrol

WA/ UNIVERSITY of WASHINGTON 30

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!

NNNNNNNNNNNNNNNNNNNNNN

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!
e Vuz.Tesla(x) = (3(y).Battery(y) A Powers(y, x))

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!
e Vuz.Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!
e Vuz.Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!
e Vuz.Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.
o V. Tesla(x) = ~(HurtlingTowardMars(x))

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!
e Vuz.Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.
o V. Tesla(x) = ~(HurtlingTowardMars(x))
o —x.(Tesla(x) =(HurtlingTowardMars(x)))

Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous!
e Vuz.Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.
o V. Tesla(x) = ~(HurtlingTowardMars(x))
o —x.(Tesla(x) =(HurtlingTowardMars(x)))
o |3(x).(Tesla(x) A mHurtlingTowardsMars(x))|

State of known Universe: 02/05/2018
Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous Space

Things in

o V. Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.
o V. Tesla(x) = ~(HurtlingTowardMars(x))
o —x.(Tesla(x) =(HurtlingTowardMars(x)))
o [3(x).(Tesla(x) A mHurtlingTowardsMars(x))|

State of known Universe: 02/05/2018
Ambiguity & Models

e "Every lesla is powered by a battery.” — Ambiguous Space

Things in

o V. Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.
o V. Tesla(x) = ~(HurtlingTowardMars(x))
o —x.(Tesla(x) =(HurtlingTowardMars(x)))

»

Wy |
o [3(x).(Tesla(x) A ~HurtlingTowardsMars(x))| § h_P8
Y 4 A\

A(x).(Tesla(x) A HurtlingTowardsMars(x))

YA/ UNIVERSITY of WASHINGTON 31

State of known Universe: 02/06/2018
Ambiguity & Model
Things in

e "Every lesla is powered by a battery.” — Ambiguous! Space

o V. Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

e Every Tesla is not hurtling toward Mars.
o V. Tesla(x) = ~(HurtlingTowardMars(x))
o —x.(Tesla(x) =(HurtlingTowardMars(x)))

»

Wy |
o [3(x).(Tesla(x) A ~HurtlingTowardsMars(x))| § h_P8
Y 4 A\

A(x).(Tesla(x) A HurtlingTowardsMars(x))

YA/ UNIVERSITY of WASHINGTON 31

State of known Universe: 02/06/2018
Ambiguity & Model
Things in

e "Every lesla is powered by a battery.” — Ambiguous! Space

o V. Tesla(x) = (3(y).Battery(y) A Powers(y, x))
e 3(y).Battery(y) A (V. Tesla(x) = Powers(y, x))

® Every Tesla is not hurtling toward Mars.
° VI Tes[alr =gt oward. Tars(z))
e —Vx.(Tesla(x) (HurtlmgTOwardMars(7)) _
o [3(x).(Tesla(x) A ~HurtlingTowardsMars(x))| I

A(x).(Tesla(x) A HurtlingTowardsMars(x))

YA/ UNIVERSITY of WASHINGTON 31

Scope Ambiguity

e Potentially O(n!) scope interpretations (“scopings”)
e \Where n=number of scope-taking operators.
® (every, a, all, no, modals, negations, conditionals, ...)

e Different interpretations correspond to different syntactic parses!

Ambiguity of the Week

NNNNNNNNNNNNNNNNNNNNNN

Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

NNNNNNNNNNNNNNNNNNNNNN

Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e Inthe US, a woman gives birth every fifteen minutes.

Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e Inthe US, a woman gives birth every fifteen minutes.

e \We must find her and put a stop to it.

Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e Inthe US, a woman gives birth every fifteen minutes.

e \We must find her and put a stop to it.

Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e Inthe US, a woman gives birth every fifteen minutes.

e \We must find her and put a stop to it.

e Thank you scope ambiguity! (Not the same as attachment ambiguity.)

Scope Ambiguity in the News

NNNNNNNNNNNNNNNNNNNNNN

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the city's
first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-
elected

YA/ UNIVERSITY of WASHINGTON 34

https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the city's
first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-
elected

e \What do people think this says about Wu?

YA/ UNIVERSITY of WASHINGTON 34

https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the city's
first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-
elected

e \What do people think this says about Wu?

e \What’s a scope ambiguity here?

YA/ UNIVERSITY of WASHINGTON 34

https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the city's
first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-
elected

e \What do people think this says about Wu?
e \What’s a scope ambiguity here?
e ‘first’> ‘and’ vs ‘and’ > "first’

e [ntended is actually the latter: first woman and first POC

YA/ UNIVERSITY of WASHINGTON 34

https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the city's
first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-
elected

e \What do people think this says about Wu?
e \What’s a scope ambiguity here?
e ‘first’ > ‘and’vs ‘and’ > first’
e Intended is actually the latter: first woman and first POC

e [sidebar: Stanford Parser totally botches it}

YA/ UNIVERSITY of WASHINGTON 34

https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the city's
first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-
elected

e \What do people think this says about Wu?

(ROOT
(S

e What's a scope ambiguity here? o (o S (e v

(VP (VBN elected)
(NP
(NP
(NP (NNP City) (NNP Councilor) (NNP Michelle) (NNP Wu))

e ‘first’ > ‘and’ vs ‘and’ > ‘first’

e Intended is actually the latter: first woman and first POC e s

e [sidebar: Stanford Parser totally botches it]

(VP (VBN elected)
(PP (IN to)
(NP (DT the) (NN post))))))))))

(. .)))

YA/ UNIVERSITY of WASHINGTON 34

https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Integrating Semantics into Syntax

1. Pipeline System
e Feed parse tree and sentence to semantic analyzer

e How do we know which pieces of the semantics link to which part of the
analysis?

e Need detailed information about sentence, parse tree
e Infinitely many sentences & parse trees

e Semantic mapping function per parse tree — intractable

YA/ UNIVERSITY of WASHINGTON 35

Integrating Semantics into Syntax

Integrating Semantics into Syntax

2. Integrate Directly into Grammar

e This is the “rule-to-rule” approach we’ve been implicitly examining and will now
make more explicit

e Tie semantics to finite components of grammar (rules & lexicon)

e Augment grammar rules with semantic info
e a.k.a. “attachments” — specify how RHS elements compose to LHS

YA/ UNIVERSITY of WASHINGTON 36

Simple Example

e United serves Houston

NP VP
Prop-N \' NP
United serves Prop-N

Houston

Simple Example

e United serves Houston
EIe(Serving(e) A

NP VP

Prop-N \' NP

United serves Prop-N

Houston

Simple Example

e United serves Houston
EIe(Serving(e) A Server(e, United) N
S

NP VP

Prop-N \' NP

NUnited serves Prop-N

Houston

Simple Example

e United serves Houston
EIe(Serving(e) A Server(e, United) N\ Served(e, Hauston))

NP VP

Prop-N \' NP

SUnited serves Prop-N

7

Houston

Rule-to-rule Model

e Lambda Calculus and the Rule-to-Rule Hypothesis
® A-expressions can be attached to grammar rules

e used to compute meaning representations from syntactic trees based on the
principle of compositionality

e (Go up the tree, using reduction (function application) to compute meanings at
non-terminal nodes

WA/ UNIVERSITY of WASHINGTON 38

Semantic Attachments

e Basic Structure:
A= ay, ..., a, {fla.sem, ... ar.sem)}

Semantic Function

e In NLTK syntax (more later):

A - a3 .. an[SEM=<f(?aj.sem ..

Attachments as SQL! book, ch. 10

>>> nltk.data.show cfg('grammars/book grammars/sql0.fcfg')
% start S

S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]

VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]

NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=2?n]

PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]

AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]

NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China’
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city table'] -> 'cities'’

IV[SEM="'] -> 'are'
A[SEM='"'] -> 'located'
P[SEM=''] -> 'in'

YA/ UNIVERSITY of WASHINGTON 40

https://www.nltk.org/book/ch10.html

Attachments as SQL! book, ch. 10

>>> nltk.data.show cfg('grammars/book grammars/sql0.fcfg')
% start S

S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=2?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China’
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city table'] -> 'cities'’
IV[SEM='"'] -> 'are'

A[SEM=''] -> 'located'

P[SEM=''] -> 'in'

'"What cities are located in China’

parses[0]: SELECT City FROM city table WHERE Country="china"

YA/ UNIVERSITY of WASHINGTON 40

https://www.nltk.org/book/ch10.html

Semantic Attachments: Options

e Why not use SQL? Python?
e Arbitrary power but hard to map to logical form

e No obvious relation between syntactic, semantic elements

e Why Lambda Calculus!?

e First Order Predicate Calculus (FOPC) + function application is highly
expressive, integrates well with syntax

e (Can extend our existing feature-based model, using unification
e (Can ‘translate’ FOL to target / task / downstream language (e.g. SQL)

YA/ UNIVERSITY of WASHINGTON 41

Semantic Analysis Approach

e Semantic attachments:

e Each CFG production gets semantic attachment

® Semantics of a phrase is function of combining the children
e Complex functions need to have parameters

e Verb — ‘arrived’
e [ntransitive verb, so has one argument: subject
e ...but we don’t have this available at the preterminal level of the tree!

YA/ UNIVERSITY of WASHINGTON 42

Defining Representations

Proper Nouns
Intransitive Verbs
Transitive Verbs

Quantifiers

Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:

® NNP[SEM=<Khalil>] -» ‘Khalil’

Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:

® NNP[SEM=<Khalil>] -» ‘Khalil’

e However, we will want to apply our A-closures left-to-right consistently.
S[SEM=np? (vp?)] - NP[SEM=np?] VP[SEM=vp?]

Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:

® NNP[SEM=<Khalil>] -» ‘Khalil’

e However, we will want to apply our A-closures left-to-right consistently.
S[SEM=np? (vp?)] - NP[SEM=np?] VP[SEM=vp?]

NP VP

NNP \%
SEM <Khdlil>| [SEM <Ax.runs(x)>|

KhGIII runs W UNIVERSITY o f WASHINGT ON

Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:

® NNP[SEM=<Khalil>] -» ‘Khalil’

e However, we will want to apply our A-closures left-to-right consistently.
S[SEM=np? (vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM Khalil(\x.runs(x))

NP VP

NNP \Y
SEM <Khalil>| |SEM <Ax.runs(x)>|

KhGIII runs WA UNIVERSITY o f WASHINGT ON

Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:

® NNP[SEM=<Khalil>] -» ‘Khalil’

e However, we will want to apply our A-closures left-to-right consistently.
S[SEM=np? (vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
[SEM KhaIiI(Ax.runs(x))] = [FRROR: Constant “Khalil’’ is not a function!

NP VP

NNP \%
SEM <Khalil>| |SEM <Ax.runs(x)>|

KhGIII runs WA UNIVERSITY o f WASHINGT ON

Proper Nouns & Intransitive Verbs

e Instead, we use a dummy predicate:
e AQ.Q(Khalil)

e “Generalizing to the worst case” (cf. Montague; Partee on type-shifting)

e |.e.:this move will also be necessary for a uniform semantic treatment of NPs,
which can be individual-denoting (like names) or more complex (quantifiers)

Proper Nouns & Intransitive Verbs

e With the dummy predicate:
® NNP[SEM=<\P.P(Khalil)>] -» ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

NP VP

NNP \%
SEM APP(Khali)| [SEM Ax.runs(x)

Khalil runs

Proper Nouns & Intransitive Verbs

e With the dummy predicate:
® NNP[SEM=<\P.P(Khalil)>] -» ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM AP.P(Khalil)(A\x.runs(x))|

NP VP

NNP \Y
SEM APP(Khali)| |SEM Ax.runs(x)|

Khalil runs

Proper Nouns & Intransitive Verbs

e With the dummy predicate:
® NNP[SEM=<\P.P(Khalil)>] -» ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM Ax.runs(x)(Khali)

NP VP

NNP \Y
SEM APP(Khali)| |SEM Ax.runs(x)|

Khalil runs

Proper Nouns & Intransitive Verbs

e With the dummy predicate:
® NNP[SEM=<\P.P(Khalil)>] -» ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM runs(Khalil)|

NP VP

NNP \Y
SEM APP(Khali)| |SEM Ax.runs(x)|

Khalil runs

Transitive Verbs

NNNNNNNNNNNNNNNNNNNNNN

Transitive Verbs

e S0, if we want to say “Alex loves Jim” we would intuitively want
Ay .Ax.loves (X,V)

® ... going Iin linear order, we have one arg to the left and one to the right.

Transitive Verbs

e So, if we want to say “Alex loves Jim” we would want Ay .Ax.loves (x,V)

e ...but going Iin linear order, we have one arg to the left and one to the right.
S

NP VP
NNP TV NP

SEM AP.P(Alex)] SEM Ay Axloves(xy)

NNP
[SEM)\Q.Q(Iim)]

Alex loves Jim

o TV(NP):
® A\v.Ax.loves(x,V)

Transitive Verbs

(AQ.Q(Jim))

Transitive Verbs

o TV(NP):
® A\v.Ax.loves(x,y) (AQ.Q(Jim))
@ Ax.loves(x,AQ.Q(Jim))

Transitive Verbs

o TV(NP):
® A\v.Ax.loves(x,y) (AQ.Q(Jim))
@ Ax.loves(x,AQ.Q(Jim))

®@ ° Error! We can’t reduce Jim.

Transitive Verbs

o TV(NP):
® A\v.Ax.loves(x,y) (AQ.Q(Jim))
@ Ax.loves(x,AQ.Q(Jim))

®@ ° Error! We can’t reduce Jim.

e Instead: AY x.Y(Ay.loves(x,Vv))

Transitive Verbs

o TV(NP):
® A\v.Ax.loves(x,y) (AQ.Q(Jim))
@ Ax.loves(x,AQ.Q(Jim))

®@ ° Error! We can’t reduce Jim.

e Instead: AY x.Y(Ay.loves(x,Vv))

e ("Continuation-passing”)

Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim))

Transitive Verbs

o TV(NP): -
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ax.loves(x,Vy))

AY takes (AQ.Q(Jim))

Transitive Verbs

o TV(NP):
® A\Y x.Y(AysTowes(x,y)) (AQ.Q(Jim))
® Ax.(AQ.Q(Jim)(Ak.loves(x,y))
® Ax.(Ay.loves(x,y) (Jim))

AY takes (AQ.Q(Jim))
AQ takes (Ay.loves(x,y))

Transitive Verbs

o TV(NP):

AY
Ax
Ax
Ax

x.Y(Ay.loves(x,y)) (AQ.Q(Jim))
. (AQ.Q(Jim) (Ax’-/le*QS(x,Y))
. (A\y.loves(x,y) (Jim))

. (loves(x,JdJim))

AY takes (AQ.Q(Jim))
AQ takes (Ay.loves(x,y))
Ay takes (Jim)

Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ax.loves(x,y))
® Ax.(Ay.loves(x,y) (Jim))

@ Ax.(loves(x,Jim))

e NP(VP):
@ AP.P(Alex) (Ax.(loves(x,Jim)))

AY takes (AQ.Q(Jim))
AQ takes (Ay.loves(x,y))
Ay takes (Jim)

Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim)) AY takes (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ax.loves(x,y)) AQ takes (Ay.loves(x,y))
® Ax.(Ay.loves(x,y) (Jim)) Ay takes (Jim)

@ Ax.(loves(x,Jim))

o NP(VPBy
@ A\P.P(Alex) (Ax.(loves(x,Jim))) AP takes (Ax.(loves(x,Jim)
® Ax.(loves(x,Jim) (Alex) Ax takes (Alex)

Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim)) AY takes (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ax.loves(x,y)) AQ takes (Ay.loves(x,y))
® Ax.(Ay.loves(x,y) (Jim)) Ay takes (Jim)

® Ax.(loves(x,Jim))

o NP(VP):
® AP_E ¥ (AX. (loves (x,Jim))) AP takes (Ax.(loves(x,Jim)
® Ax.(loves(x,Jim) (Alex) Ax takes (Alex)

®@ loves(Alex,Jim)

Converting to an Event

e “Xlovesy,” Originally:
® A\Y x.Y(Ay.loves(x,y))

Converting to an Event

e “Xlovesy,” Originally:
® A\Y x.Y(Ay.loves(x,y))

® as a Neo-Davidsonian event:

® AY x.¥(Ay.3e love(e) A lover(e,x) A loved(e,y))

Quantifiers & Scope

NNNNNNNNNNNNNNNNNNNNNN

Semantic Analysis Example

e Basic model S

e Neo-Davidsonian event-style model

L NP
e Complex quantification

Det Nom

e Example: Every flight arrived every Noun

flight
v Flight(x) = 3e Arrived(e) A Arrived Thing(e,x)

VP

\'

arrived

"Every flight arrived’

e First intuitive approach
e Every flight = va Flight(x)

"Every flight arrived’

e First intuitive approach

e Everyflight=vz F Zzght(:z:)x
e “Everything is a flight”

"Every flight arrived’

e First intuitive approach:
e Every flight = vz Flz'ght(:z;)x
e "Everything is a flight”
e Instead, we want:
o VvV Flight(x) = Q(x)

"Every flight arrived’

e First intuitive approach

e Everyflight=vz F Zzght(:z:)x
e “Everything is a flight”

e Instead, we want:

o VvV Flight(x) = Q(x)
e “if a thing is a flight, then it is Q”

"Every flight arrived’

e First intuitive approach

e Everyflight=vz F Zzght(:z:)x
e “Everything is a flight”

e Instead, we want:
o VvV Flight(x) = Q(x)
e “if a thing is a flight, then it is Q’

e Since Q isn’t available yet... Dummy predicate!

"Every flight arrived’

e First intuitive approach

e Everyflight=vz F Zzght(:z:)x
e “Everything is a flight”

e Instead, we want:
o VvV Flight(x) = Q(x)
e “if a thing is a flight, then it is Q’
e Since Q isn’t available yet... Dummy predicate!
o \Q.vx Flight(x) = Q(x)

"Every flight arrived

NNNNNNNNNNNNNNNNNNNNNN

e “Every flight’ is:

"Every flight arrived

NNNNNNNNNNNNNNNNNNNNNN

"Every flight arrived

e “Every flight’ is:
o \Q.vx Flight(x) = Q(x)

NNNNNNNNNNNNNNNNNNNNNN

"Every flight arrived

e “Every flight’ is:
o \Q.vx Flight(x) = Q(x)

® ...S0 what is the representation for “every”?

"Every flight arrived

e “Every flight’ is:
o \Q.vx Flight(x) = Q(x)

® ...S0 what is the representation for “every”?
o \P)Q.vx P(x) = Q(z)

"A flight arrived”’

e We just need one item for truth value

e SO, start with 3x...
o \P.A(Q.3x P(zx)AQ(x)

Det
Noun
Verb
VP
Nom

NP

Creating Attachments

— ‘Fvery’
— ‘flight’
— ‘arrived’
— Verb
— Noun
— NP VP
— Det Nom

“Every flight arrived”

[APLQ.VE P(z) = Qz))

{ Az Flight(z) }

{\y.3eArrived(e) n ArrivedThing(e, y)}

{ Verb.sem }
{ Noun.sem }

{ NP.sem(VP.sem) }
{ Det.sem(Nom.sem) }

S

{NP.sem(V P.sem)}

NP VP

{ Det.sem(N oun.sem)}

Det Noun \'
{AP.AOQNXxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived

NP.sem— Det.sem(Noun.sem)

S

{NP.sem(V P.sem)}

NP VP
{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived

NP.sem— Det.sem(Noun.sem)

AP.AQ.vzP(z)=Q(z)(\y.Flight(y)) S
{N P.sem(V P.sem)}

NP VP
{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived

NP.sem— Det.sem(Noun.sem)

AP.AQ.VxP(x)=Q(x)(\y.Flight(y)) S
AQ.vwﬂy-Flight(y) (:1;)=>Q(:13) {NP.sem(V P.sem)}

NP VP
{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived

NP.sem— Det.sem(Noun.sem)

AP.AQ.VxP(x)=Q(x)(\y.Flight(y)) S
AQ.vwﬂy-Flight(y) (m):'Q(fE) {NP.sem(V P.sem)}
AQ.VxFlight(x)= Q(x)
NP VP

{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived

NP.sem— Det.sem(Noun.sem)

AP.AQ.vzP(x)=Q(x)(\y.Flight(y)) S
AQ.vzAy.Flight(y)(x)= Q(x) INP.sem(V P.sem)}
AQ.VxFlight(x)= Q(x)
NP VP

{AONXxFlight(x) = 0(x)}

Det Noun \'
{AP.AONxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A\ ArrivedT hing(e, z)}

Every flight arrived

S

{NP.sem(V P.sem)}

NP VP
{AONXxFlight(x) = 0(x)} {Az.deArrived(e) A\ ArrivedT hing(e, z)}
Det Noun \Y

{AP.AONXxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A\ ArrivedT hing(e, z)}

Every flight arrived

S

{NP.sem(V P.sem)}

NP
{AONXxFlight(x) = 0O(x)}

Det Noun
{AP.AONXxP(x) = O(x)} {Ay. Flight(y)}

Every flight

VP
{Az.deArrived(e) A ArrivedT hing(e, z)}

\Y
{Az.deArrived(e) A ArrivedT hing(e, z)}

arrived

S

{NP.sem(V P.sem)}

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

YA/ UNIVERSITY of WASHINGTON 63

S

{IVxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP VP
{AONxFlight(x) = O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

YA/ UNIVERSITY of WASHINGTON 63

S

{IVxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VxFlhight(x)=Q(x)(Az.3eArrived(e) A ArrivedThing(e, z))

S

{IVxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VxFlhight(x)=Q(x)(Az.3eArrived(e) A ArrivedThing(e, z))
VvaFlight(x)= Az.3eArrived(e) A ArrivedThing(e, z)(x)

S

{IVxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VxFlhight(x)=Q(x)(Az.3eArrived(e) A ArrivedThing(e, z))
VvaFlight(x)= Az.3eArrived(e) A ArrivedThing(e, z)(x)
voFlight(x)=3eArrived(e) n ArrivedThing(e, x)

S

{VxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP
{AONxFlight(x) = O(x)}

Det Noun
{AP.AONXxP(x) = O(x)} {Ax.Flight(x)}

Every flight

VP
{Ay.deArrived(e) A ArrivedT hing(e, y)}

\Y
{Ay.deArrived(e) A ArrivedT hing(e, y)}

arrived

Det = ‘a’
Det = ‘every’
NN = ‘flight’

NNP — “John’
NP — NNP
S— NP VP

VP — Verb NP
Verb = ‘booked’

John booked a flight’

{ A\P.Q.3x P(z) A Q(z)
{ A\P\Q.Vx P(z) = Q(x)
{\z.Flight(x)}
{\X.X(John)}
{ NNP.sem}
{NP.sem(VP.sem)}

{ Verb.sem(NP.sem)}

;
;

{A\W.hz. W(3eBooked(e) n Booker(e,z) A BookedThing(e,y))}

...we'll step through this next time.

YA/ UNIVERSITY of WASHINGTON

65

Strategy for Semantic Attachments

e (General approach:

e Create complex lambda expressions with lexical items

Strategy for Semantic Attachments

e (General approach:
e Create complex lambda expressions with lexical items

e Introduce quantifiers, predicates, terms

Strategy for Semantic Attachments

e (General approach:
e Create complex lambda expressions with lexical items
e Introduce quantifiers, predicates, terms

e Percolate up semantics from child if non-branching

Strategy for Semantic Attachments

e (General approach:

Create complex lambda expressions with lexical items
Introduce quantifiers, predicates, terms
Percolate up semantics from child if non-branching

Apply semantics of one child to other through lambda

Strategy for Semantic Attachments

e (General approach:
e Create complex lambda expressions with lexical items
e Introduce quantifiers, predicates, terms
e Percolate up semantics from child if non-branching

e Apply semantics of one child to other through lambda
e Combine elements, don’t introduce new ones

Parsing with Semantics

e Implement semantic analysis in parallel with syntactic parsing

e Enabled by this rule-to-rule compositional approach

Parsing with Semantics

e Implement semantic analysis in parallel with syntactic parsing

e Enabled by this rule-to-rule compositional approach

e Required modifications
e Augment grammar rules with semantics field
e Augment chart states with meaning expression

e Incrementally compute semantics

YA/ UNIVERSITY of WASHINGTON 67

Sidenote: Idioms

e Not purely compositional
® Kick the bucket — die

® Iip of the iceberg — small part of the entirety

e Handling
e Mix lexical items with constituents
e (Create idiom-specific construct for productivity

e Allow non-compositional semantic attachments

e Extremely complex, e.g. metaphor

YA/ UNIVERSITY of WASHINGTON 68

