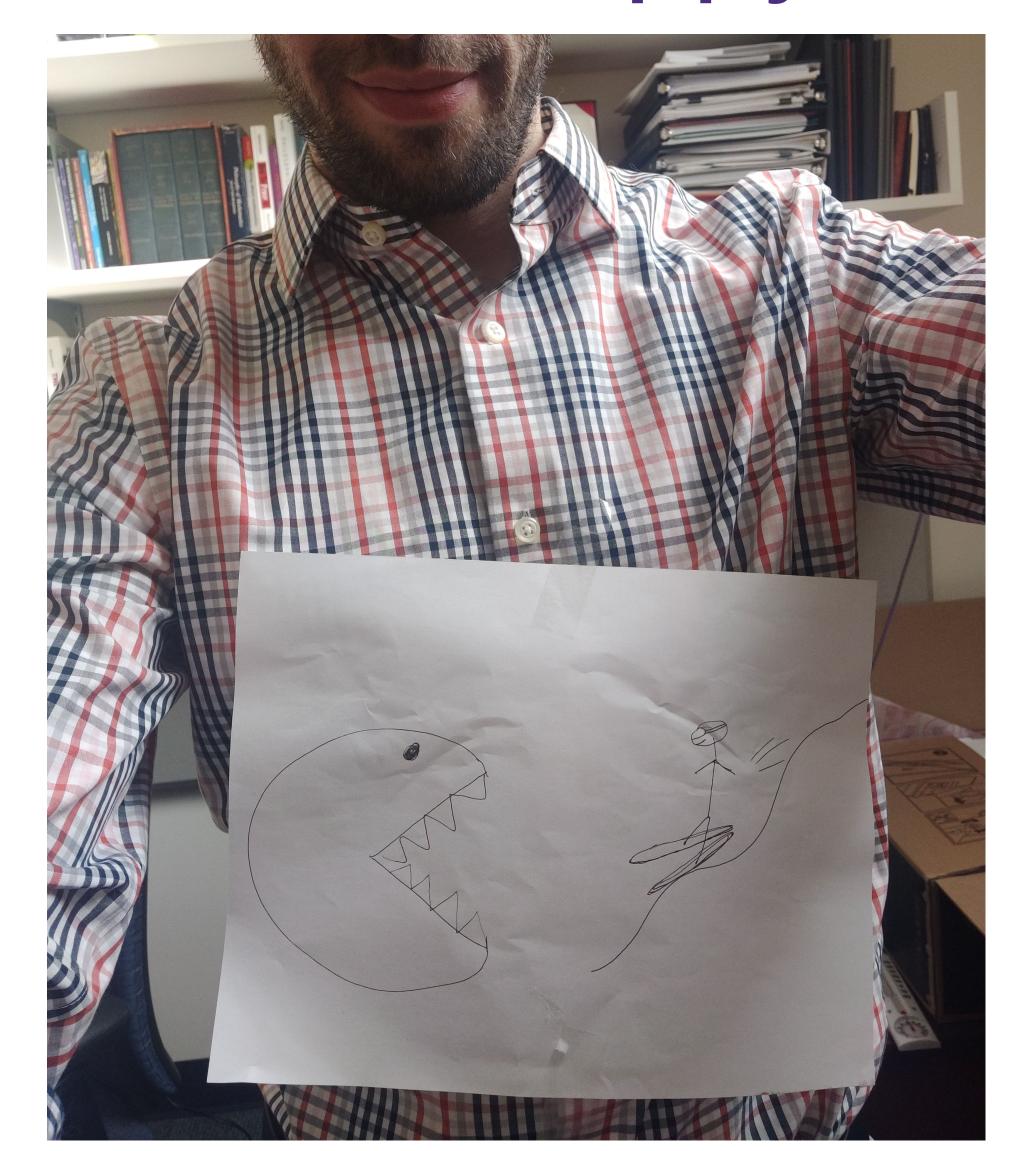
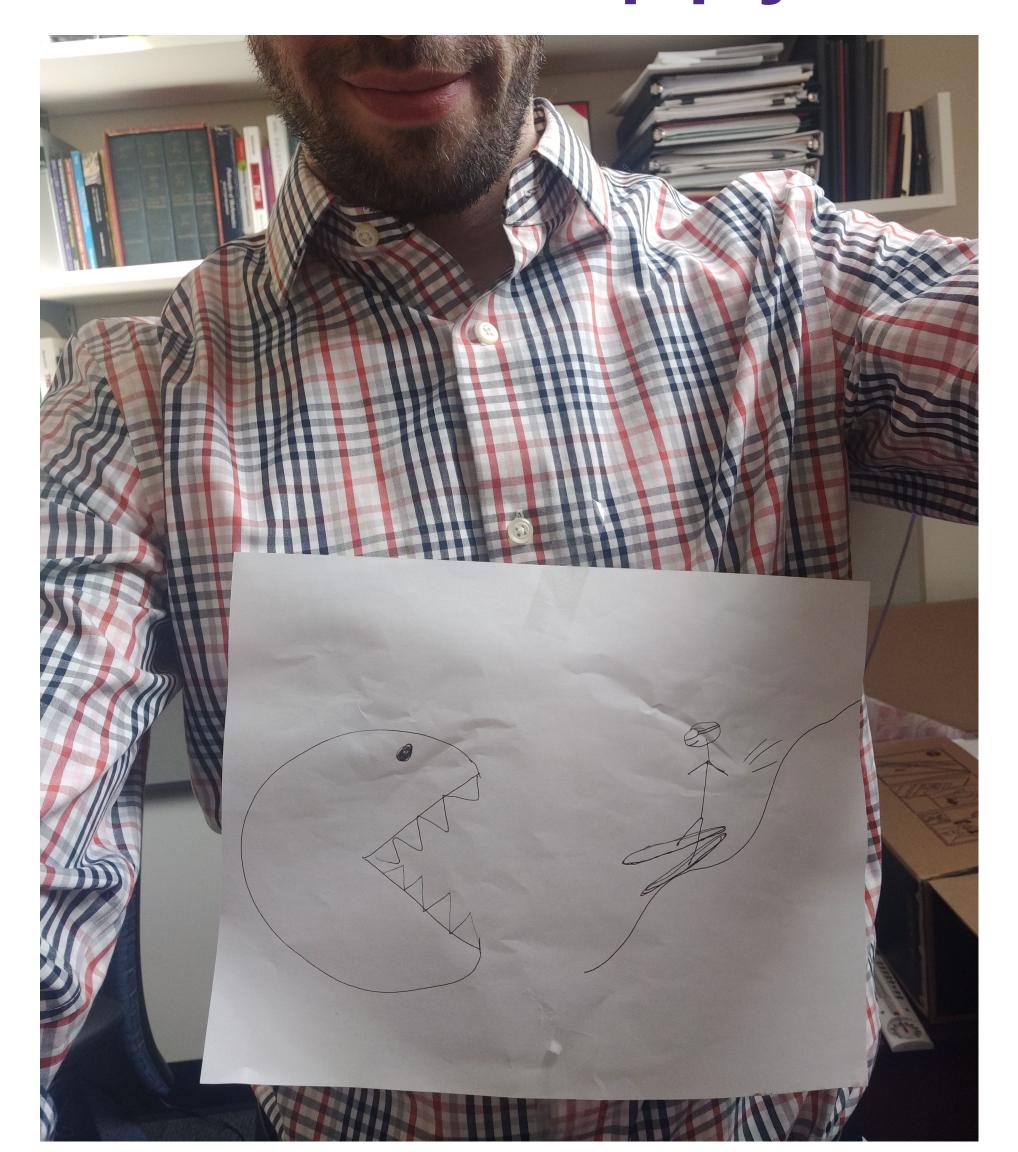
Computational Semantics

LING 571 — Deep Processing for NLP October 31, 2022

Announcements

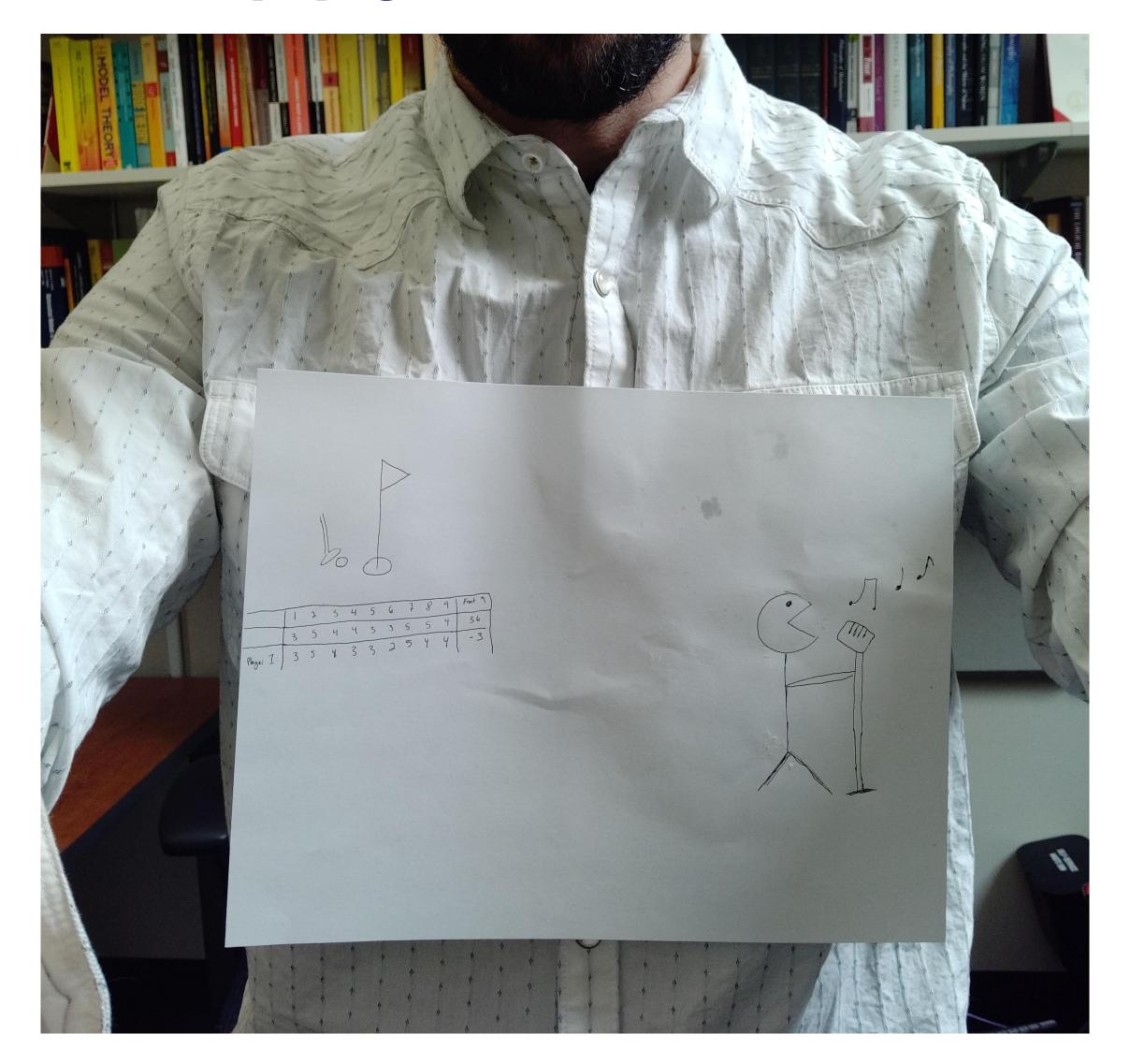
- No class on December 5
- Happy Halloween!!

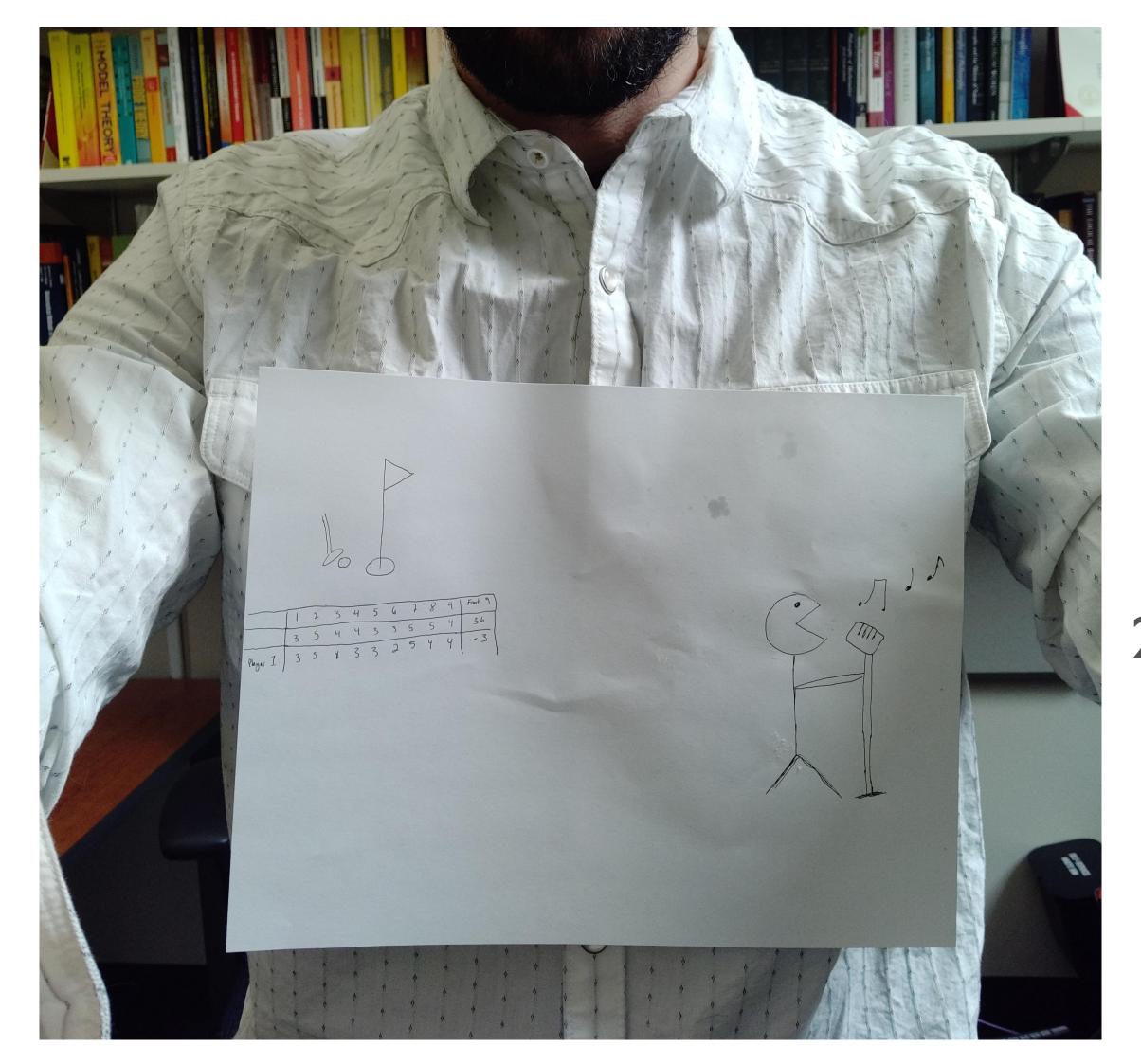




2019: Chomp + Ski = Chomsky

2020: Sea + Man + Ticks = Semantics





2021: par + sing = parsing

2022: ????

W What am I for Halloween? (one word, dad joke)

Total Results: 0

Varieties of Entailment in the News

- "I present to you the King of Europe, Nigel Farage" —Trump (paraphrased)
 - presupposes that there is a king of Europe

- "I present to you the King of Europe, Nigel Farage" —Trump (paraphrased)
 - presupposes that there is a king of Europe
- Consider two sentences:
 - "The King of Europe is here today."
 - "The King of Europe is NOT here today."
 - From both, it follows that there is a King of Europe.

- "I present to you the King of Europe, Nigel Farage" —Trump (paraphrased)
 - presupposes that there is a king of Europe
- Consider two sentences:
 - "The King of Europe is here today."
 - "The King of Europe is NOT here today."
 - From both, it follows that there is a King of Europe.
- Contrast:
 - "We are talking on Zoom right now."
 - "We are NOT talking on Zoom right now."
 - The former, but not the latter, entails that we are talking right now.

- "I present to you the King of Europe, Nigel Farage" —Trump (paraphrased)
 - presupposes that there is a king of Europe
- Consider two sentences:
 - "The King of Europe is here today."
 - "The King of Europe is NOT here today."
 - From both, it follows that there is a King of Europe.
- Contrast:
 - "We are talking on Zoom right now."
 - "We are NOT talking on Zoom right now."
 - The former, but not the latter, entails that we are talking right now.
- Presuppositions (that there is a king) "project out" from negation (and other operators, like questions, conditionals, etc). Standard logical entailments do not.
 - Presuppositions must be true in order for a sentence to be true or false at all.

- "Some conferences were cancelled this year."
 - Seems to entail: "Not all conferences were cancelled this year."
 - But: can follow with "In fact, all of them were!" (In jargon: the implicature can be cancelled.)

- "Some conferences were cancelled this year."
 - Seems to entail: "Not all conferences were cancelled this year."
 - But: can follow with "In fact, all of them were!" (In jargon: the implicature can be cancelled.)
- Conversational implicature: inferences that a speaker would tend to draw assuming a cooperative and knowledgable speaker.

- "Some conferences were cancelled this year."
 - Seems to entail: "Not all conferences were cancelled this year."
 - But: can follow with "In fact, all of them were!" (In jargon: the implicature can be cancelled.)
- Conversational implicature: inferences that a speaker would tend to draw assuming a cooperative and knowledgable speaker.
- In this example: speaker could have said "All conferences were cancelled." Since they did not, assume that it is false.
 - Common examples of scales: {some, all}, {or, and}, {may, must}, ...

- "Some conferences were cancelled this year."
 - Seems to entail: "Not all conferences were cancelled this year."
 - But: can follow with "In fact, all of them were!" (In jargon: the implicature can be cancelled.)
- Conversational implicature: inferences that a speaker would tend to draw assuming a cooperative and knowledgable speaker.
- In this example: speaker could have said "All conferences were cancelled." Since they did not, assume that it is false.
 - Common examples of scales: {some, all}, {or, and}, {may, must}, ...
- Trump's doctor when he was at the hospital with COVID-19:
 - Press: "Has he ever been on supplemental oxygen?"
 - Doc: "He hasn't had supplemental oxygen today or yesterday."

"Several students were told that the exam will be postponed."

- "Several students were told that the exam will be postponed."
 - There is an exam.

- "Several students were told that the exam will be postponed."
 - There is an exam.
 - A student was told that the exam will be postponed.

- "Several students were told that the exam will be postponed."
 - There is an exam.
 - A student was told that the exam will be postponed.
 - The exam will be postponed.

- "Several students were told that the exam will be postponed."
 - There is an exam.
 - A student was told that the exam will be postponed.
 - The exam will be postponed.
 - Not every student was told that the exam will be postponed.

An Interesting Example

A top baseball prospect's Southern California scholarship was lost to the pandemic

https://www.washingtonpost.com/road-to-recovery/2020/11/02/tank-espalin-usc-indiana-baseball/

An Interesting Example

A top baseball prospect's Southern California scholarship was lost to the pandemic

https://www.washingtonpost.com/road-to-recovery/2020/11/02/tank-espalin-usc-indiana-baseball/

"A prospect's scholarship": presupposes there is a scholarship Rest of headline: there is no more scholarship Complex compositional interaction between tense and presupposition

Roadmap

- First-order Logic: Syntax and Semantics
- Inference + Events
- Rule-to-rule Model
 - More lambda calculus

FOL Syntax + Semantics

Example Meaning Representation

A non-stop flight that serves Pittsburgh:

 $\exists x \; Flight(x) \land Serves(x, Pittsburgh) \land Non-stop(x)$

FOL Syntax Summary

```
Formula 

                                                                 Connective \rightarrow
                                   Atomic Formula
                                                                                                    \wedge | \vee | \Rightarrow
                           Formula Connective Formula
                                                                 Quantifier \rightarrow
                                                                                                      AI∃
                         Quantifier Variable, ... Formula
                                                                  Constant
                                                                                      Vegetarian Food \mid Maharani \mid \dots
                                      \neg Formula
                                                                   Variable \rightarrow
                                                                                                   x \mid y \mid \dots
                                                                  Predicate \rightarrow
                                      (Formula)
                                                                                              Serves \mid Near \mid ...
AtomicFormula \rightarrow
                                Predicate(Term,...)
                                                                  Function
                                                                                        LocationOf \mid CuisineOf \mid ...
                                Function(Term,...)
      Term
                                      Constant
                                       Variable
```

J&M p. 556 (3rd ed. 16.3)

Model-Theoretic Semantics

- A "model" represents a particular state of the world
- Our language has logical and non-logical elements.
 - Logical: Symbols, operators, quantifiers, etc
 - Non-Logical: Names, properties, relations, etc

Denotation

• Every non-logical element points to a fixed part of the model

Denotation

- Every non-logical element points to a fixed part of the model
- Objects elements in the domain, denoted by terms
 - John, Farah, fire engine, dog, stop sign

Denotation

- Every non-logical element points to a fixed part of the model
- Objects elements in the domain, denoted by terms
 - John, Farah, fire engine, dog, stop sign
- Properties sets of elements
 - red: {fire hydrant, apple,...}

Denotation

- Every non-logical element points to a fixed part of the model
- Objects elements in the domain, denoted by terms
 - John, Farah, fire engine, dog, stop sign
- Properties sets of elements
 - red: {fire hydrant, apple,...}
- Relations sets of tuples of elements
 - CapitalCity: {(Washington, Olympia), (Yamoussokro, Cote d'Ivoire), (Ulaanbaatar, Mongolia),...}

via J&M, p. 554

Sample Domain 29

Objects

Matthew, Franco, Katie, Caroline Frasca, Med, Rio Italian, Mexican, Eclectic

a,b,c,d e,f,g h,i,j

via J&M, p. 554

Sample Domain 20

Objects

Matthew, Franco, Katie, Caroline

Frasca, Med, Rio

Italian, Mexican, Eclectic

a,b,c,d

e,f,g

h,i,j

Properties

Noisy Frasca, Med, and Rio are noisy

Noisy={*e,f,g*}

via J&M, p. 554

Sample Domain 20

Objects

Matthew, Franco, Katie, Caroline

Frasca, Med, Rio

Italian, Mexican, Eclectic

a,b,c,d e,f,g h,i,j

Properties

Noisy Frasca, Med, and Rio are noisy

Noisy={*e,f,g*}

Relations

Likes Matthew likes the Med

Katie likes the Med and Rio

Franco likes Frasca

Caroline likes the Med and Rio

Likes=
$$\{ \langle a, f \rangle, \langle c, f \rangle, \langle c, g \rangle, \langle b, e \rangle, \langle d, f \rangle, \langle d, g \rangle \}$$

Sample Domain 20

Objects

Matthew, Franco, Katie, Caroline

Frasca, Med, Rio

Italian, Mexican, Eclectic

a,b,c,d e,f,g h,i,j

Properties

Noisy Frasca, Med, and Rio are noisy

Noisy={*e,f,g*}

Relations

Likes Matthew likes the Med

Katie likes the Med and Rio

Franco likes Frasca

Caroline likes the Med and Rio

Serves Med serves eclectic

Rio serves Mexican Frasca serves Italian

Likes=
$$\{ \langle a, f \rangle, \langle c, f \rangle, \langle c, g \rangle, \langle b, e \rangle, \langle d, f \rangle, \langle d, g \rangle \}$$

Serves={
$$\langle c, f \rangle$$
, $\langle f, i \rangle$, $\langle e, h \rangle$ }

Events

- Initially, single predicate with some arguments
 - Serves(United, Houston)
 - Assume # of args = # of elements in subcategorization frame

- Initially, single predicate with some arguments
 - Serves(United, Houston)
 - Assume # of args = # of elements in subcategorization frame
- Example:
 - The flight arrived
 - The flight arrived in Seattle
 - The flight arrived in Seattle on Saturday.
 - The flight arrived on Saturday.
 - The flight arrived in Seattle from SFO.
 - The flight arrived in Seattle from SFO on Saturday.

- Initially, single predicate with some arguments
 - Serves(United, Houston)
 - Assume # of args = # of elements in subcategorization frame
- Example:
 - The flight arrived
 - The flight arrived in Seattle
 - The flight arrived in Seattle on Saturday.
 - The flight arrived on Saturday.
 - The flight arrived in Seattle from SFO.
 - The flight arrived in Seattle from SFO on Saturday.
- Variable number of arguments; many entailment relations here.

- Arity:
 - How do we deal with different numbers of arguments?

- Arity:
 - How do we deal with different numbers of arguments?
- The flight arrived in Seattle from SFO on Saturday.

- Arity:
 - How do we deal with different numbers of arguments?
- The flight arrived in Seattle from SFO on Saturday.
 - Davidsonian (Davidson 1967):
 - $\exists e \ Arrival(e, Flight, Seattle, SFO) \land Time(e, Saturday)$

- Arity:
 - How do we deal with different numbers of arguments?

- The flight arrived in Seattle from SFO on Saturday.
 - Davidsonian (Davidson 1967):
 - $\exists e \ Arrival(e, Flight, Seattle, SFO) \land Time(e, Saturday)$
 - Neo-Davidsonian (Parsons 1990):
 - $\exists e \ Arrival(e) \land Arrived(e, \ Flight) \land Destination(e, \ Seattle) \land Origin(e, \ SFO)$ $\land \ Time(e, \ Saturday)$

Why events?

 "Adverbial modification is thus seen to be logically on a par with adjectival modification: what adverbial clauses modify is not verbs but the events that certain verbs introduce." — Davidson

Neo-Davidsonian Events

- Neo-Davidsonian representation:
 - Distill event to single argument for main predicate
 - Everything else is additional predication

Neo-Davidsonian Events

- Neo-Davidsonian representation:
 - Distill event to single argument for main predicate
 - Everything else is additional predication
- Pros
 - No fixed argument structure
 - Dynamically add predicates as necessary
 - No unused roles
 - Logical connections can be derived

Meaning Representation for Computational Semantics

- Requirements
 - Verifiability
 - Unambiguous representation
 - Canonical Form
 - Inference
 - Variables
 - Expressiveness
- Solution:
 - First-Order Logic
 - Structure
 - Semantics
 - Event Representation

Rule-to-Rule Model

Recap

- Meaning Representation
 - Can represent meaning in natural language in many ways
 - We are focusing on First-Order Logic (FOL)

Recap

- Meaning Representation
 - Can represent meaning in natural language in many ways
 - We are focusing on First-Order Logic (FOL)
- Principle of compositionality
 - The meaning of a complex expression is a function of the meaning of its parts

Recap

- Meaning Representation
 - Can represent meaning in natural language in many ways
 - We are focusing on First-Order Logic (FOL)
- Principle of compositionality
 - The meaning of a complex expression is a function of the meaning of its parts
- Lambda Calculus
 - λ-expressions denote functions
 - Can be nested
 - Reduction = function application

Semantics Reflects Syntax

Chiasmus:

Syntax affects Semantics!

Bowie playing Tesla

The Prestige (2006)

Tesla playing Bowie

SpaceX Falcon Heavy Test Launch (2/6/2018)

Chiasmus: Syntax affects Semantics!

• "Never let a fool kiss you or a kiss fool you" (Grothe, 2002)

• "Then you should say what you mean," the March Hare went on.

"I do," Alice hastily replied; "at least—at least I mean what I say—that's the same thing, you know."

"Not the same thing a bit!" said the Hatter. "Why, you might just as well say that 'I see what I eat' is the same thing as 'I eat what I see'!"

"You might just as well say," added the March Hare, "that 'I like what I get' is the same thing as 'I get what I like'!"

"You might just as well say," added the Dormouse, which seemed to be talking in his sleep, "that 'I breathe when I sleep' is the same thing as 'I sleep when I breathe'!"

-Alice in Wonderland, Lewis Carrol

• "Every Tesla is powered by a battery." — Ambiguous!

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$

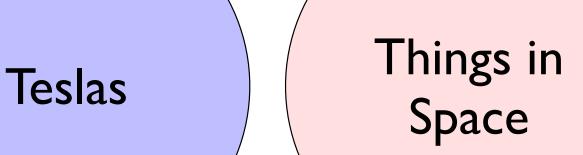
- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow \neg (HurtlingTowardMars(x))$

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow \neg (HurtlingTowardMars(x))$
 - $\neg \forall x. (Tesla(x) \Rightarrow (HurtlingTowardMars(x)))$

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow \neg (Hurtling Toward Mars(x))$
 - $\neg \forall x. (Tesla(x) \Rightarrow (HurtlingTowardMars(x)))$
 - $[\exists(x).(Tesla(x) \land \neg HurtlingTowardsMars(x))]$

- "Every Tesla is powered by a battery." Ambiguous
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow \neg (HurtlingTowardMars(x))$
 - $\neg \forall x. (Tesla(x) \Rightarrow (HurtlingTowardMars(x)))$
 - $[\exists(x).(Tesla(x) \land \neg HurtlingTowardsMars(x))]$



State of known Universe: 02/05/2018

Ambiguity & Model

- "Every Tesla is powered by a battery." Ambiguous
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow \neg (HurtlingTowardMars(x))$
 - $\neg \forall x. (Tesla(x) \Rightarrow (HurtlingTowardMars(x)))$
 - $[\exists(x).(Tesla(x) \land \neg HurtlingTowardsMars(x))]$

Things in Space

 $\exists (\boldsymbol{x}).(Tesla(\boldsymbol{x}) \land HurtlingTowardsMars(\boldsymbol{x}))$

State of known Universe: 02/06/2018

Ambiguity & Models

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow \neg (HurtlingTowardMars(x))$
 - $\neg \forall x. (Tesla(x) \Rightarrow (HurtlingTowardMars(x)))$
 - $[\exists(x).(Tesla(x) \land \neg HurtlingTowardsMars(x))]$

Things in Space

 $\exists (\boldsymbol{x}).(Tesla(\boldsymbol{x}) \land HurtlingTowardsMars(\boldsymbol{x}))$

State of known Universe: 02/06/2018

Ambiguity & Models

- "Every Tesla is powered by a battery." Ambiguous!
 - $\forall x. Tesla(x) \Rightarrow (\exists (y). Battery(y) \land Powers(y, x))$
 - $\exists (y).Battery(y) \land (\forall x.Tesla(x) \Rightarrow Powers(y, x))$
- Every Tesla is not hurtling toward Mars.
 - $\forall x. Tesla(x) \Rightarrow (HurtlingTowardMars(x))$
 - $\neg \forall x. (Tesla(x) \Rightarrow (HurtlingTowardMars(x)))$
 - $[\exists(x).(Tesla(x) \land \neg HurtlingTowardsMars(x))]$

Things in Space

 $\exists (\boldsymbol{x}).(Tesla(\boldsymbol{x}) \land HurtlingTowardsMars(\boldsymbol{x}))$

Scope Ambiguity

- Potentially O(n!) scope interpretations ("scopings")
 - Where *n*=number of scope-taking operators.
 - (every, a, all, no, modals, negations, conditionals, ...)
- Different interpretations correspond to different syntactic parses!

Derivative of an alleged Groucho Marx-ism:

- Derivative of an alleged Groucho Marx-ism:
- In the US, a woman gives birth every fifteen minutes.

- Derivative of an alleged Groucho Marx-ism:
- In the US, a woman gives birth every fifteen minutes.
 - We must find her and put a stop to it.

- Derivative of an alleged Groucho Marx-ism:
- In the US, a woman gives birth every fifteen minutes.
 - We must find her and put a stop to it.

- Derivative of an alleged Groucho Marx-ism:
- In the US, a woman gives birth every fifteen minutes.
 - We must find her and put a stop to it.

• Thank you scope ambiguity! (Not the same as attachment ambiguity.)

- "Boston voters have elected City Councilor Michelle Wu as mayor, the city's first woman and person of color elected to the post."
 - Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected

- "Boston voters have elected City Councilor Michelle Wu as mayor, the city's first woman and person of color elected to the post."
 - Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
- What do people think this says about Wu?

- "Boston voters have elected City Councilor Michelle Wu as mayor, the city's first woman and person of color elected to the post."
 - Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
- What do people think this says about Wu?
- What's a scope ambiguity here?

- "Boston voters have elected City Councilor Michelle Wu as mayor, the city's first woman and person of color elected to the post."
 - Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
- What do people think this says about Wu?
- What's a scope ambiguity here?
- 'first' > 'and' vs 'and' > 'first'
 - Intended is actually the latter: first woman and first POC

- "Boston voters have elected City Councilor Michelle Wu as mayor, the city's first woman and person of color elected to the post."
 - Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
- What do people think this says about Wu?
- What's a scope ambiguity here?
- 'first' > 'and' vs 'and' > 'first'
 - Intended is actually the latter: first woman and first POC
- [sidebar: Stanford Parser totally botches it]

- "Boston voters have elected City Councilor Michelle Wu as mayor, the city's first woman and person of color elected to the post."
 - Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
- What do people think this says about Wu?
- What's a scope ambiguity here?
- 'first' > 'and' vs 'and' > 'first'
 - Intended is actually the latter: first woman and first POC
- [sidebar: <u>Stanford Parser</u> totally botches it]

Integrating Semantics into Syntax

1. Pipeline System

- Feed parse tree and sentence to semantic analyzer
- How do we know which pieces of the semantics link to which part of the analysis?
- Need detailed information about sentence, parse tree
- Infinitely many sentences & parse trees
- Semantic mapping function per parse tree → intractable

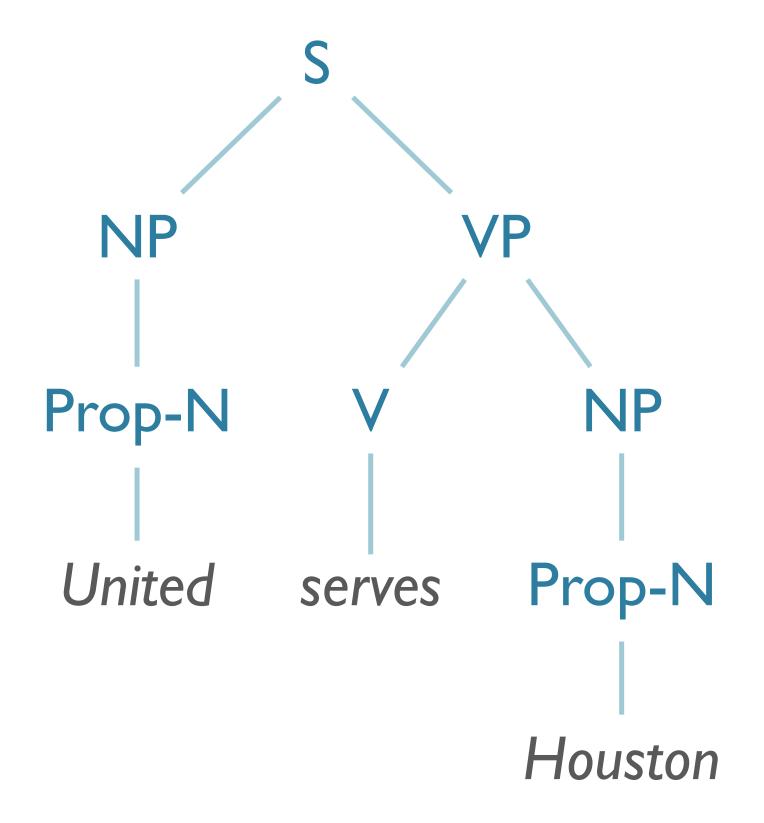
Integrating Semantics into Syntax

Integrating Semantics into Syntax

2. Integrate Directly into Grammar

- This is the "rule-to-rule" approach we've been implicitly examining and will now make more explicit
- Tie semantics to finite components of grammar (rules & lexicon)
- Augment grammar rules with semantic info
 - a.k.a. "attachments" specify how RHS elements compose to LHS

United serves Houston

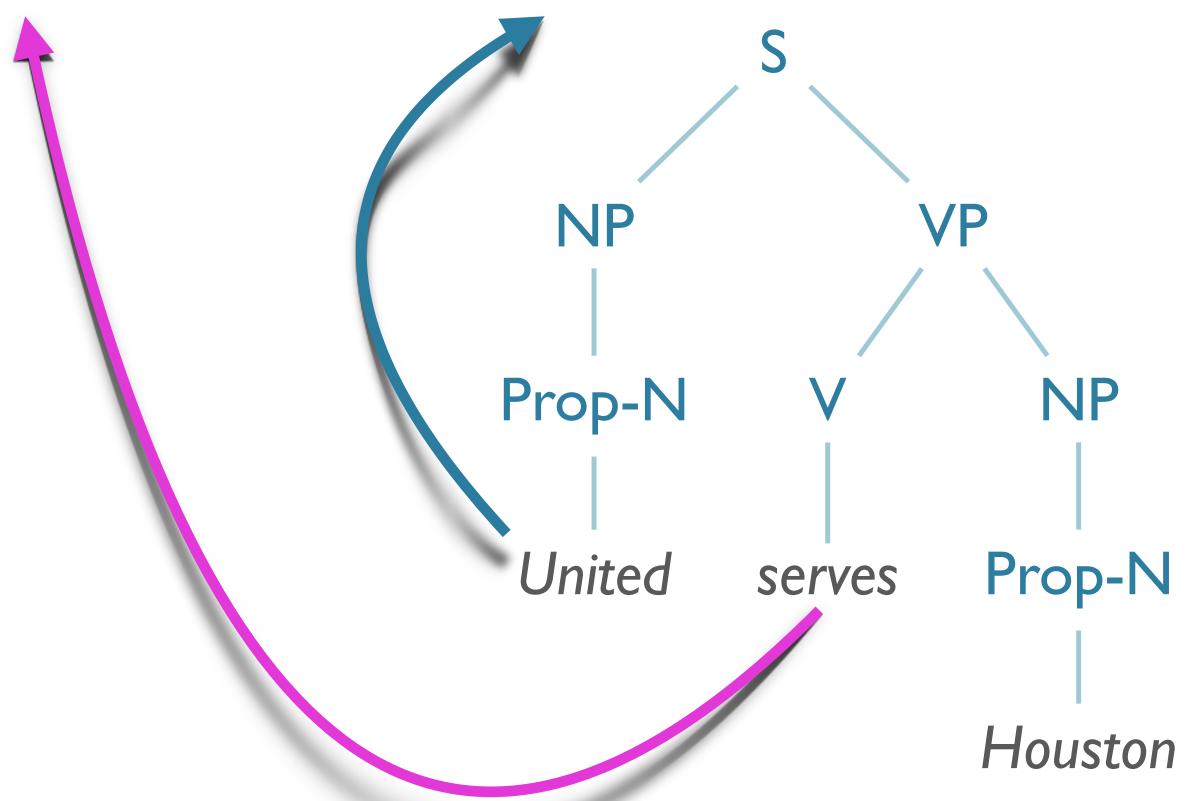


United serves Houston

 $\exists e(Serving(e) \land$ NP Prop-N NP United Prop-N serves Houston

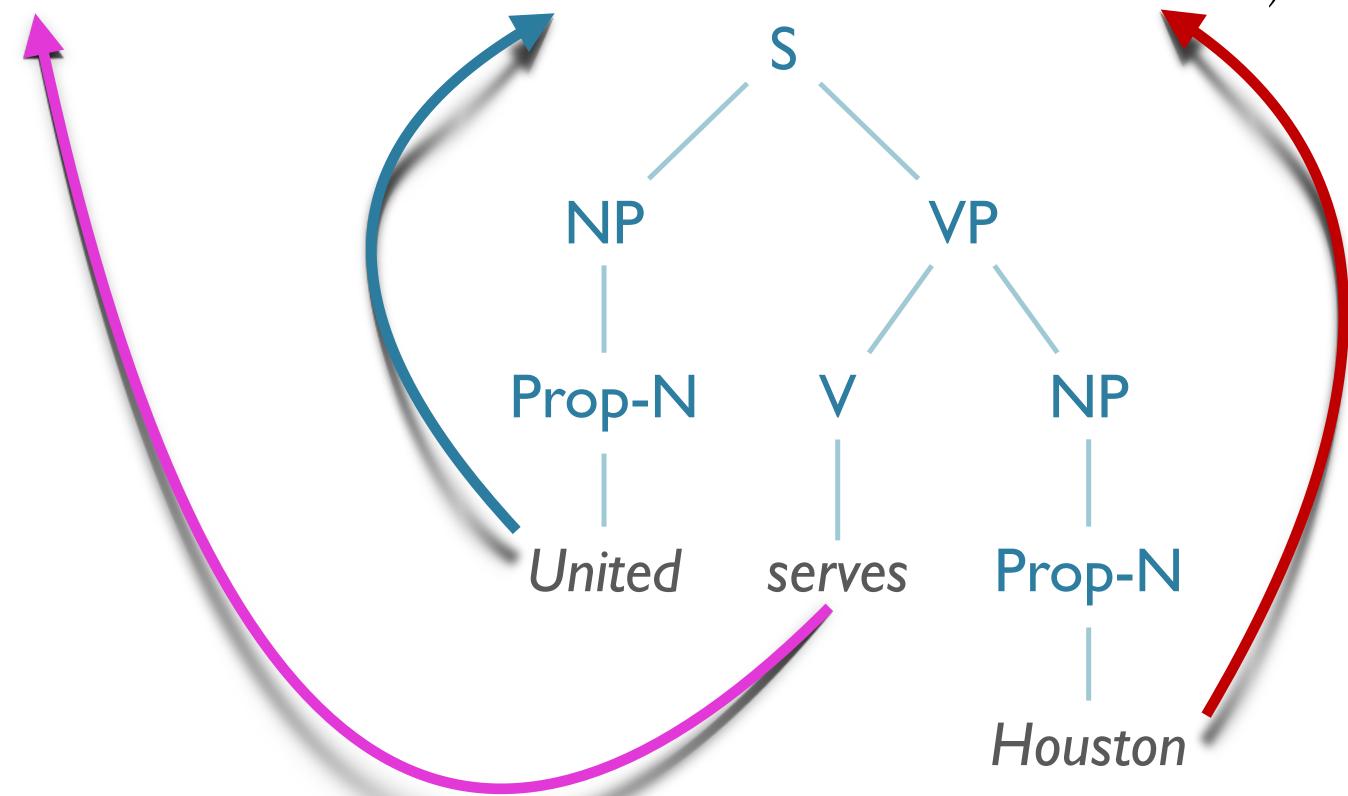
United serves Houston

 $\exists e(Serving(e) \land Server(e, United) \land$



United serves Houston

 $\exists e(Serving(e) \land Server(e, United) \land Served(e, Houston))$



Rule-to-rule Model

- Lambda Calculus and the Rule-to-Rule Hypothesis
 - λ-expressions can be attached to grammar rules
 - used to compute meaning representations from syntactic trees based on the principle of compositionality
 - Go up the tree, using reduction (function application) to compute meanings at non-terminal nodes

Semantic Attachments

Basic Structure:

$$A \rightarrow a_1, ..., a_n \{f(a_j.sem, ... a_k.sem)\}$$

Semantic Function

• In NLTK syntax (more later):

$$A \rightarrow a_1 \dots a_n[SEM=]$$

Attachments as SQL!

NLTK book, ch. 10

```
>>> nltk.data.show_cfg('grammars/book_grammars/sq10.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city_table'] -> 'cities'
IV[SEM=''] -> 'are'
A[SEM=''] -> 'located'
P[SEM=''] -> 'in'
```

Attachments as SQL!

NLTK book, ch. 10

```
>>> nltk.data.show_cfg('grammars/book_grammars/sql0.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city_table'] -> 'cities'
IV[SEM=''] -> 'are'
A[SEM=''] -> 'located'
P[SEM=''] -> 'in'
```

'What cities are located in China'

parses[0]: SELECT City FROM city_table WHERE Country="china"

Semantic Attachments: Options

- Why not use SQL? Python?
 - Arbitrary power but hard to map to logical form
 - No obvious relation between syntactic, semantic elements
- Why Lambda Calculus?
 - First Order Predicate Calculus (FOPC) + function application is highly expressive, integrates well with syntax
 - Can extend our existing feature-based model, using unification
 - Can 'translate' FOL to target / task / downstream language (e.g. SQL)

Semantic Analysis Approach

- Semantic attachments:
 - Each CFG production gets semantic attachment
- Semantics of a phrase is function of combining the children
 - Complex functions need to have parameters
 - $Verb \rightarrow$ 'arrived'
 - Intransitive verb, so has one argument: subject
 - ...but we don't have this available at the preterminal level of the tree!

Defining Representations

- Proper Nouns
- Intransitive Verbs
- Transitive Verbs
- Quantifiers

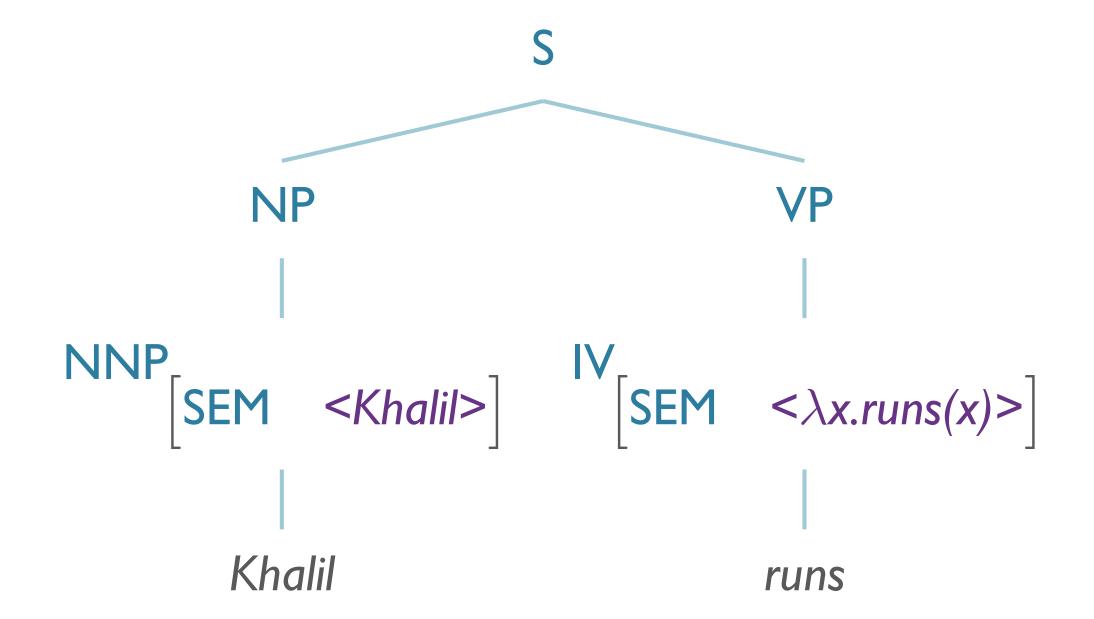
- Our instinct for names is to just use the constant:
 - NNP[SEM=<Khalil>] → 'Khalil'

- Our instinct for names is to just use the constant:
 - NNP[SEM=<Khalil>] → 'Khalil'
- However, we will want to apply our λ-closures left-to-right consistently.

```
S[SEM=np?(vp?)] \rightarrow NP[SEM=np?] VP[SEM=vp?]
```

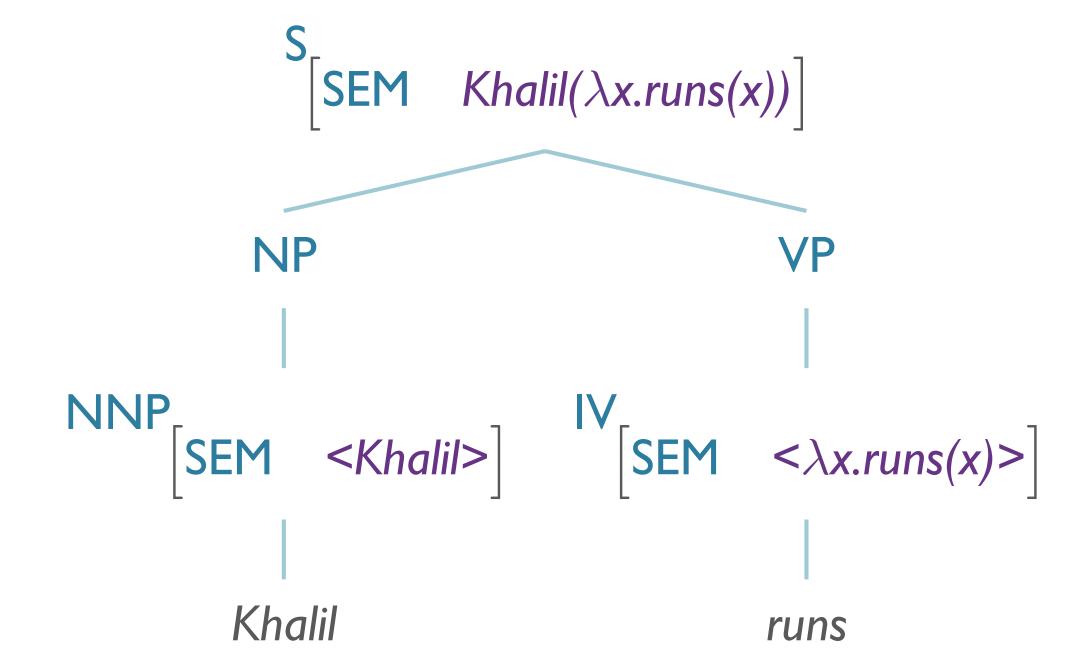
- Our instinct for names is to just use the constant:
 - NNP[SEM=<Khalil>] → 'Khalil'
- However, we will want to apply our λ-closures left-to-right consistently.

```
S[SEM=np?(vp?)] → NP[SEM=np?] VP[SEM=vp?]
```



- Our instinct for names is to just use the constant:
 - NNP[SEM=<Khalil>] → 'Khalil'
- However, we will want to apply our λ-closures left-to-right consistently.

```
S[SEM=np?(vp?)] → NP[SEM=np?] VP[SEM=vp?]
```



- Our instinct for names is to just use the constant:
 - NNP[SEM=<Khalil>] → 'Khalil'
- However, we will want to apply our λ-closures left-to-right consistently.

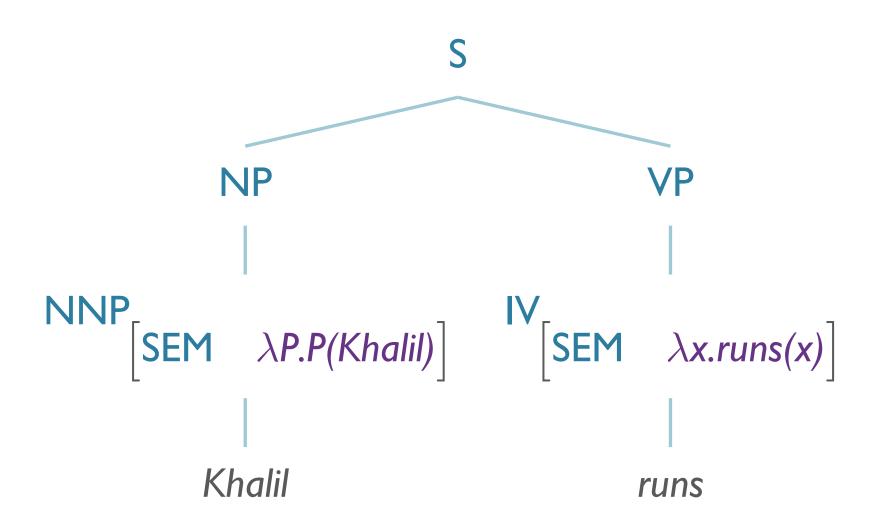
```
S[SEM=np?(vp?)] \rightarrow NP[SEM=np?] VP[SEM=vp?]
```

```
[SEM | Khalil(\lambda x.runs(x))] \longrightarrow ERROR: Constant "Khalil" is not a function!
NP \qquad VP
| \qquad | \qquad | \qquad |
NNP[SEM | < Khalil >] \qquad [SEM | < \lambda x.runs(x) >]
| \qquad | \qquad | \qquad |
Khalil \qquad runs
```

- Instead, we use a dummy predicate:
- "Generalizing to the worst case" (cf. Montague; Partee on type-shifting)
 - I.e.: this move will also be necessary for a uniform semantic treatment of NPs, which can be individual-denoting (like names) or more complex (quantifiers)

- With the dummy predicate:
 - NNP[SEM=<\P.P(Khalil)>] → 'Khalil'

```
S[SEM=np?(vp?)] \rightarrow NP[SEM=np?] VP[SEM=vp?]
```



- With the dummy predicate:
 - NNP[SEM=<\P.P(Khalil)>] → 'Khalil'

```
S[SEM=np?(vp?)] → NP[SEM=np?] VP[SEM=vp?]
```

```
\begin{bmatrix} \mathsf{SEM} & \lambda P.P(Khalil)(\lambda x.runs(x)) \end{bmatrix} \\ \mathsf{NP} & \mathsf{VP} \\ | & | \\ \mathsf{NNP} \\ [\mathsf{SEM} & \lambda P.P(Khalil)] & \mathsf{IV} \\ \mathsf{SEM} & \lambda x.runs(x) \end{bmatrix} \\ | & | \\ \mathsf{Khalil} & \mathsf{runs} \end{bmatrix}
```

Proper Nouns & Intransitive Verbs

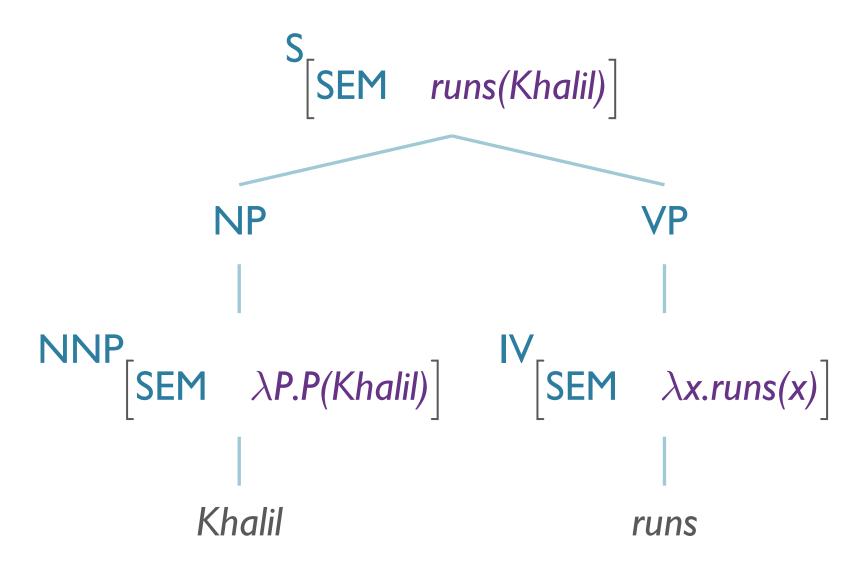
- With the dummy predicate:
 - NNP[SEM=<\P.P(Khalil)>] → 'Khalil'

```
S[SEM=np?(vp?)] \rightarrow NP[SEM=np?] VP[SEM=vp?]
```

Proper Nouns & Intransitive Verbs

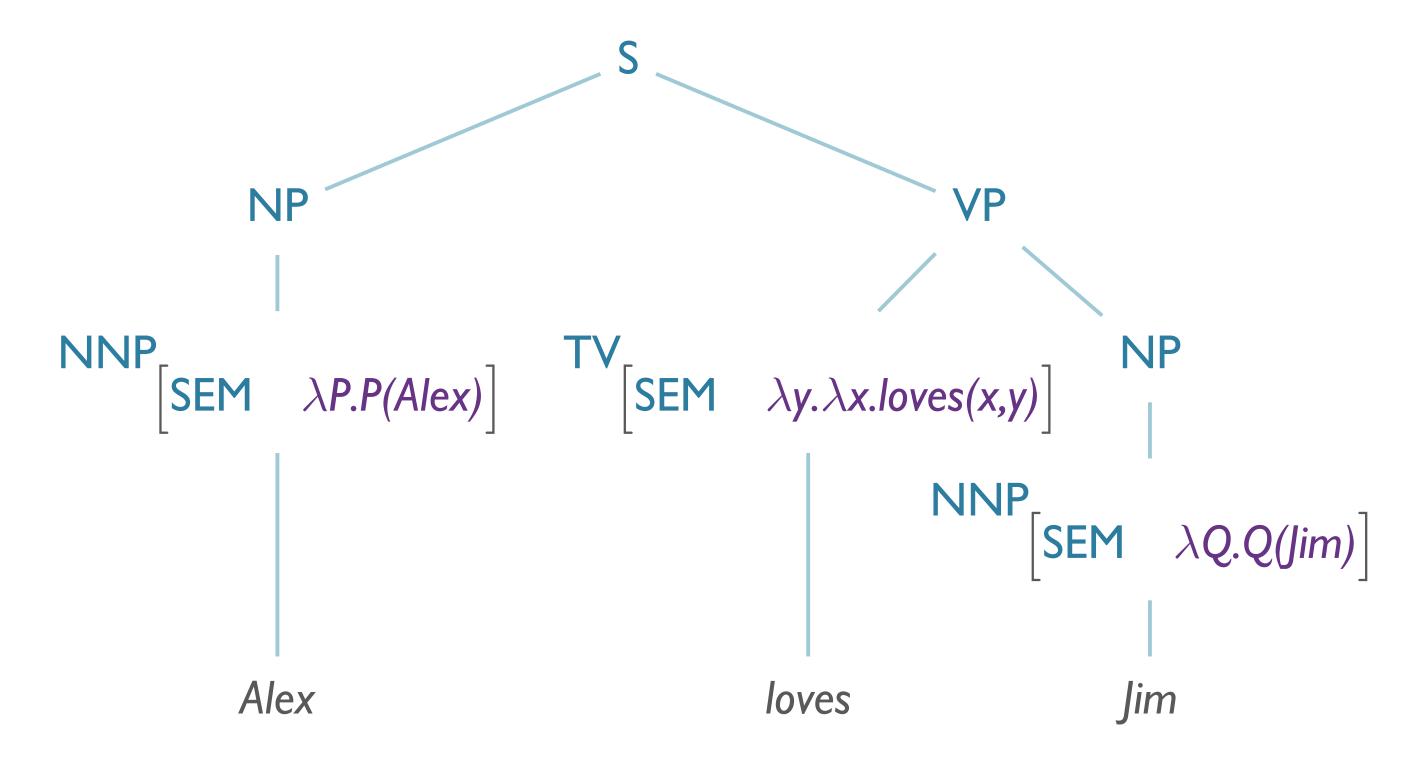
- With the dummy predicate:
 - NNP[SEM=<\P.P(Khalil)>] → 'Khalil'

```
S[SEM=np?(vp?)] \rightarrow NP[SEM=np?] VP[SEM=vp?]
```



- So, if we want to say "Alex loves Jim" we would intuitively want $\lambda y \cdot \lambda x \cdot loves(x, y)$
- ... going in linear order, we have one arg to the left and one to the right.

- So, if we want to say "Alex loves Jim" we would want $\lambda y \cdot \lambda x \cdot loves(x, y)$
- ...but going in linear order, we have one arg to the left and one to the right.



```
• TV(NP):
```

```
• \lambda y \cdot \lambda x \cdot loves(x, y) (\lambda Q \cdot Q(Jim))
```

50

```
    TV(NP):
    λy.λx.loves(x,y) (λQ.Q(Jim))
    λx.loves(x,λQ.Q(Jim))
```

TV(NP):
λy.λx.loves(x,y) (λQ.Q(Jim))
λx.loves(x,λQ.Q(Jim))
→ Error! We can't reduce Jim.

```
TV(NP):
λy.λx.loves(x,y) (λQ.Q(Jim))
λx.loves(x,λQ.Q(Jim))
→ Error! We can't reduce Jim.
Instead: λΥ x.Υ(λγ.loves(x,γ))
```

TV(NP):
λy.λx.loves(x,y) (λQ.Q(Jim))
λx.loves(x,λQ.Q(Jim))
→ Error! We can't reduce Jim.
Instead: λY x.Y(λy.loves(x,y))
("Continuation-passing")

```
TV(NP):
```

```
• \lambda \mathbf{Y} \times \mathbf{Y}(\lambda \mathbf{y}.loves(\mathbf{x}, \mathbf{y})) (\lambda \mathbf{Q}.\mathbf{Q}(\mathbf{Jim}))
```

```
TV(NP):
λΥ x.Υ(λγ.loves(x,γ)) (λQ.Q(Jim)) λΥ takes (λQ.Q(Jim))
λχ.(λQ.Q(Jim)(λχ.loves(x,γ))
```

• TV(NP):

```
• \lambda Y \times Y(\lambda Y \cdot \text{loves}(X,Y)) (\lambda Q \cdot Q(\text{Jim})) \lambda Y \text{ takes } (\lambda Q \cdot Q(\text{Jim}))
• \lambda X \cdot (\lambda Q \cdot Q(\text{Jim}) (\lambda X \cdot \text{loves}(X,Y)) \lambda Q \text{ takes } (\lambda Y \cdot \text{loves}(X,Y))
• \lambda X \cdot (\lambda Y \cdot \text{loves}(X,Y) (\text{Jim}))
```

• TV(NP):

```
λΥ x.Υ(λγ.loves(x,γ)) (λQ.Q(Jim))
λχ.(λQ.Q(Jim)(λχ.loves(x,γ))
λχ.(λQ.Q(Jim)(λχ.loves(x,γ))
λχ.(λγ.loves(x,γ)(Jim))
λχ.(loves(x,Jim))
```

```
    TV(NP):
    λΥ x.Υ(λγ.loves(x,γ)) (λQ.Q(Jim))
    λχ.(λQ.Q(Jim)(λχ.loves(x,γ))
    λχ.(λγ.loves(x,γ)(Jim))
    λχ.(loves(x,Jim))
    NP(VP):
    λΡ.P(Alex)(λχ.(loves(x,Jim)))
```

```
λY takes (λQ.Q(Jim))
λQ takes (λy.loves(x,y))
λy takes (Jim)
```

TV(NP):
λΥ x.Υ(λγ.loves(x,γ)) (λQ.Q(Jim))
λχ.(λQ.Q(Jim)(λχ.loves(x,γ))
λχ.(λγ.loves(x,γ)(Jim))
λχ.(loves(x,Jim))
NP(VP)
λΡ.P(Alex)(λχ.(loves(x,Jim)))

• $\lambda x.(loves(x, Jim)(Alex))$

```
\lambda \mathbf{Y} takes (\lambda \mathbf{Q}.\mathbf{Q}(\mathbf{Jim}))
\lambda \mathbf{Q} takes (\lambda \mathbf{Y}.loves(\mathbf{X},\mathbf{Y}))
\lambda \mathbf{Y} takes (\mathbf{Jim})
```

```
\lambda_{\mathbf{P}} takes (\lambda_{\mathbf{x}}.(loves(\mathbf{x}, Jim)) \lambda_{\mathbf{x}} takes (Alex)
```

```
• TV(NP):
 • \lambda Y \times Y(\lambda y.loves(x,y)) (\lambda Q.Q(Jim))
 • \lambda x.(\lambda Q.Q(Jim)(\lambda x.loves(x,y))
 • \lambda x.(\lambda y.loves(x,y)(Jim))
 • \lambda x. (loves(x, Jim))
NP(VP):
 • \lambda P.P(Alex)(\lambda x.(loves(x,Jim)))
 • \lambda x.(loves(x, Jim)(Alex))
```

loves (Alex, Jim)

```
\lambda y takes (\lambda Q.Q(Jim))
\lambda Q takes (\lambda y.loves(x,y))
\lambda y takes (Jim)
```

```
\lambda P takes (\lambda x.(loves(x, Jim)))
\lambda x takes (Alex)
```

Converting to an Event

- "x loves y," Originally:
 - $\lambda \mathbf{Y} \times \mathbf{Y}(\lambda \mathbf{y}.loves(\mathbf{x}, \mathbf{y}))$

Converting to an Event

- "x loves y," Originally:
 - $\lambda \mathbf{Y} \times \mathbf{Y}(\lambda \mathbf{y}.loves(\mathbf{x}, \mathbf{y}))$

- as a Neo-Davidsonian event:
 - $\lambda \mathbf{Y} \times \mathbf{Y}(\lambda \mathbf{y}.\exists \mathbf{e} \text{ love}(\mathbf{e}) \land \text{ lover}(\mathbf{e},\mathbf{x}) \land \text{ loved}(\mathbf{e},\mathbf{y}))$

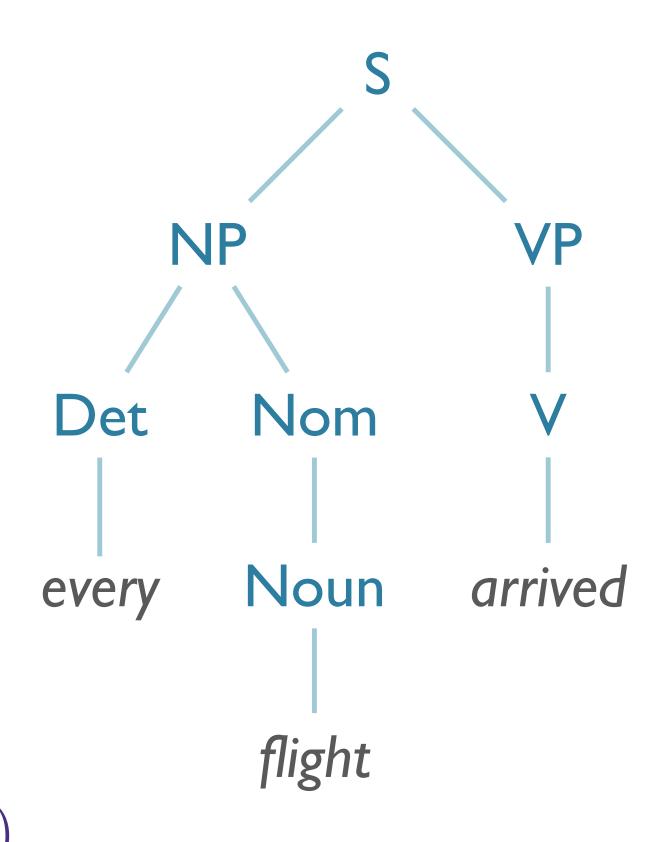
Quantifiers & Scope

Semantic Analysis Example

- Basic model
 - Neo-Davidsonian event-style model
 - Complex quantification

• Example: Every flight arrived

 $\forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow \exists \boldsymbol{e} \ Arrived(\boldsymbol{e}) \land ArrivedThing(\boldsymbol{e}, \boldsymbol{x})$



- First intuitive approach:
 - Every flight = $\forall x \ Flight(x)$

55

- First intuitive approach:
 - Every flight = $\forall x \ Flight(x)$
 - "Everything is a flight"

- First intuitive approach:
 - Every flight = $\forall x \ Flight(x)$
 - "Everything is a flight"
- Instead, we want:
 - $\forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow Q(\boldsymbol{x})$

- First intuitive approach:
 - Every flight = $\forall x \ Flight(x)$
 - "Everything is a flight"
- Instead, we want:
 - $\forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow Q(\boldsymbol{x})$
 - "if a thing is a flight, then it is Q"

- First intuitive approach:
 - Every flight = $\forall x \ Flight(x)$
 - "Everything is a flight"
- Instead, we want:
 - $\forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow Q(\boldsymbol{x})$
 - "if a thing is a flight, then it is Q"
 - Since Q isn't available yet... Dummy predicate!

- First intuitive approach:
 - Every flight = $\forall x \ Flight(x)$
 - "Everything is a flight"
- Instead, we want:
 - $\forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow Q(\boldsymbol{x})$
 - "if a thing is a flight, then it is Q"
 - Since Q isn't available yet... Dummy predicate!
 - $\lambda Q. \forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow Q(\boldsymbol{x})$

• "Every flight" is:

- "Every flight" is:
 - $\lambda Q. \forall x \ Flight(x) \Rightarrow Q(x)$

- "Every flight" is:
 - $\lambda Q. \forall x \ Flight(x) \Rightarrow Q(x)$
- ...so what is the representation for "every"?

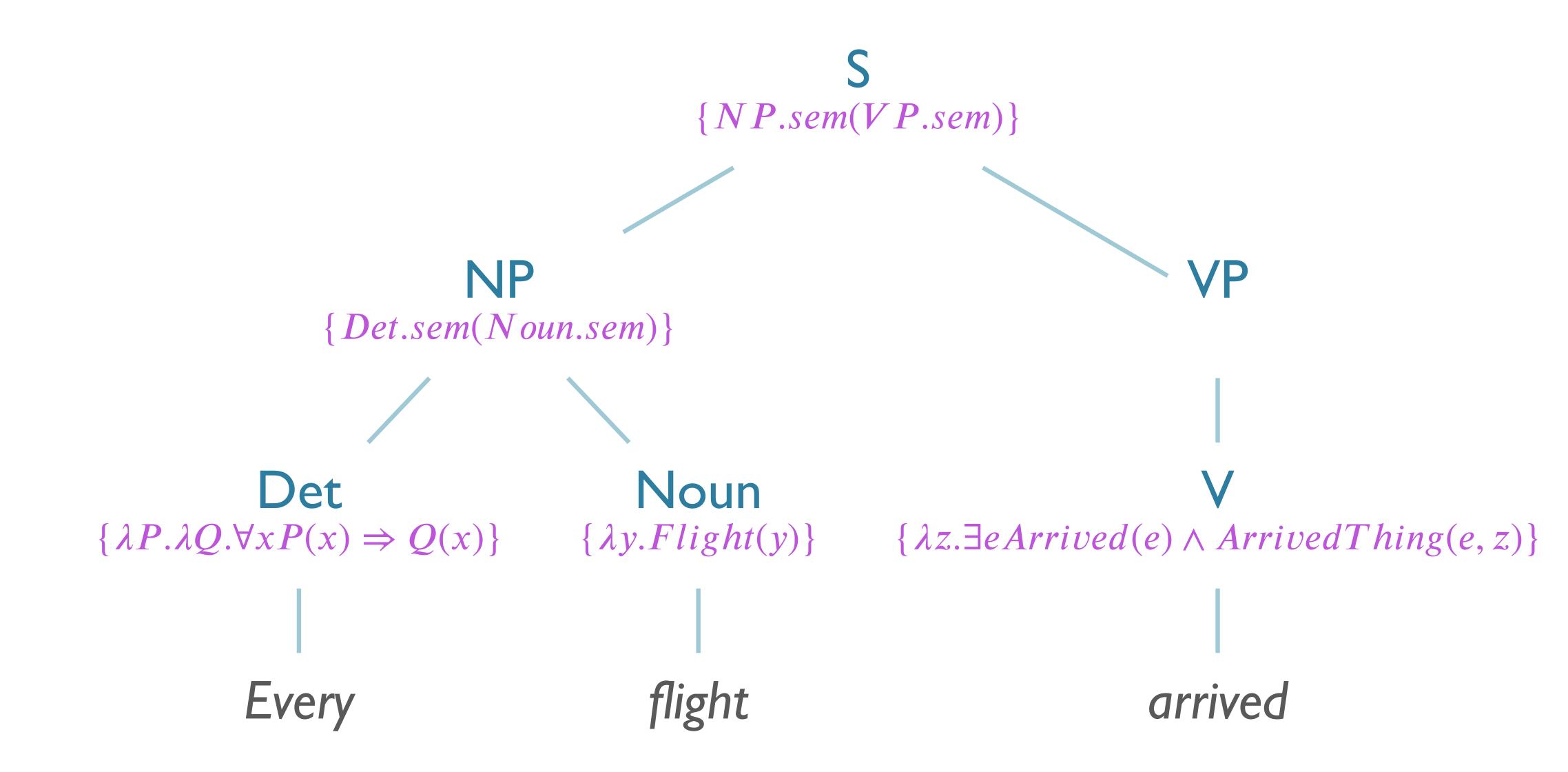
- "Every flight" is:
 - $\lambda Q. \forall x \ Flight(x) \Rightarrow Q(x)$
- ...so what is the representation for "every"?
 - $\bullet \quad \lambda \boldsymbol{P}.\lambda \boldsymbol{Q}. \forall \boldsymbol{x} \; \boldsymbol{P}(\boldsymbol{x}) \Rightarrow \boldsymbol{Q}(\boldsymbol{x})$

"A flight arrived"

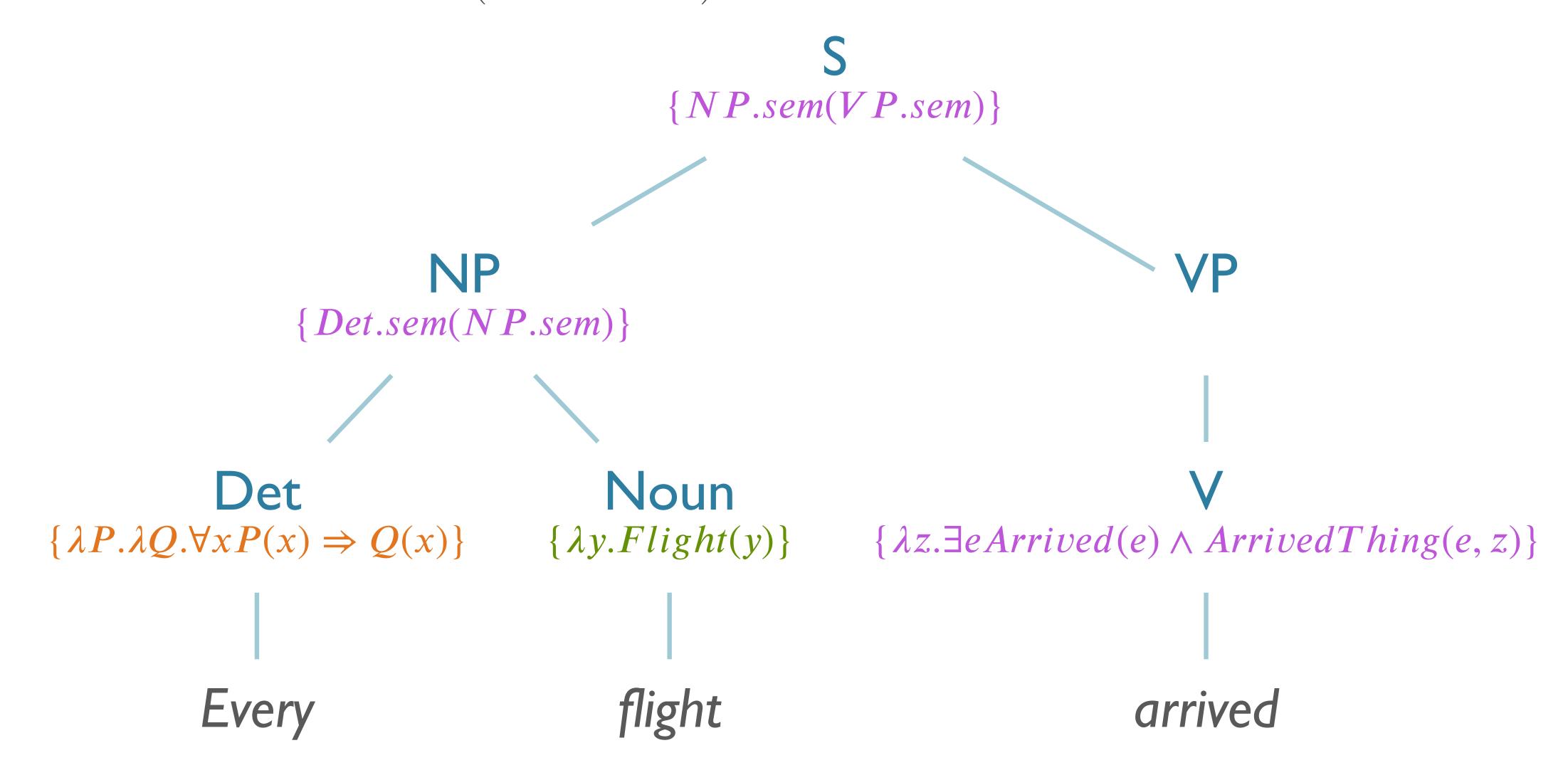
- We just need one item for truth value
 - So, start with ∃x…
 - $\lambda P.\lambda Q.\exists x P(x) \land Q(x)$

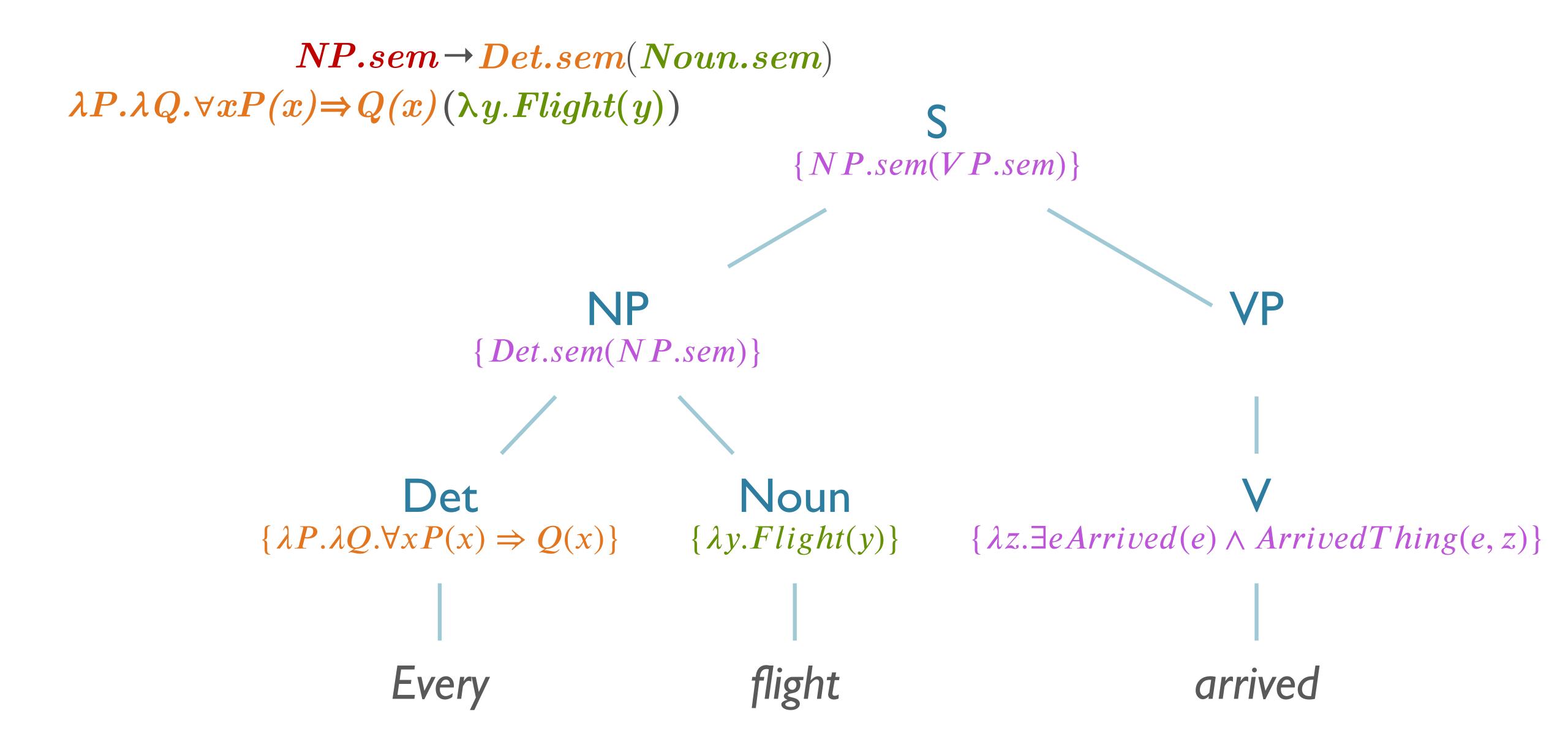
Creating Attachments

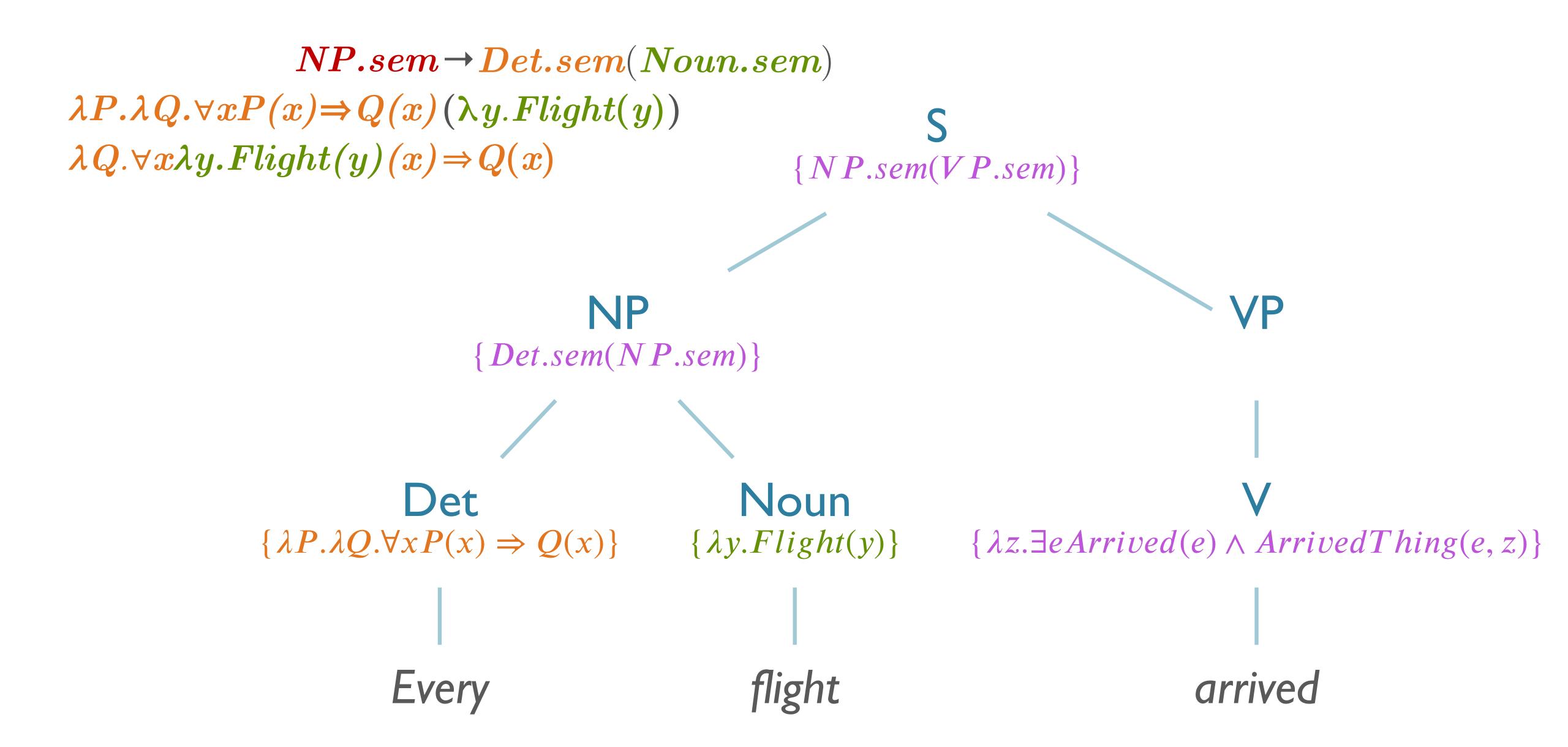
```
\{ \lambda P.\lambda Q. \forall \boldsymbol{x} P(\boldsymbol{x}) \Rightarrow Q(\boldsymbol{x}) \}
 Det
              \rightarrow 'Every'
                                                          \{ \lambda x.Flight(x) \}
Noun
              → 'flight'
                                       \{\lambda y. \exists eArrived(e) \land ArrivedThing(e, y)\}
             → 'arrived'
 Verb
  VP
                \rightarrow Verb
                                                            { Verb.sem }
                                                            { Noun.sem }
Nom
               \rightarrow Noun
                                                      \{NP.sem(VP.sem)\}
              \rightarrow NP VP
                                                     \{ Det.sem(Nom.sem) \}
             \rightarrow Det Nom
```

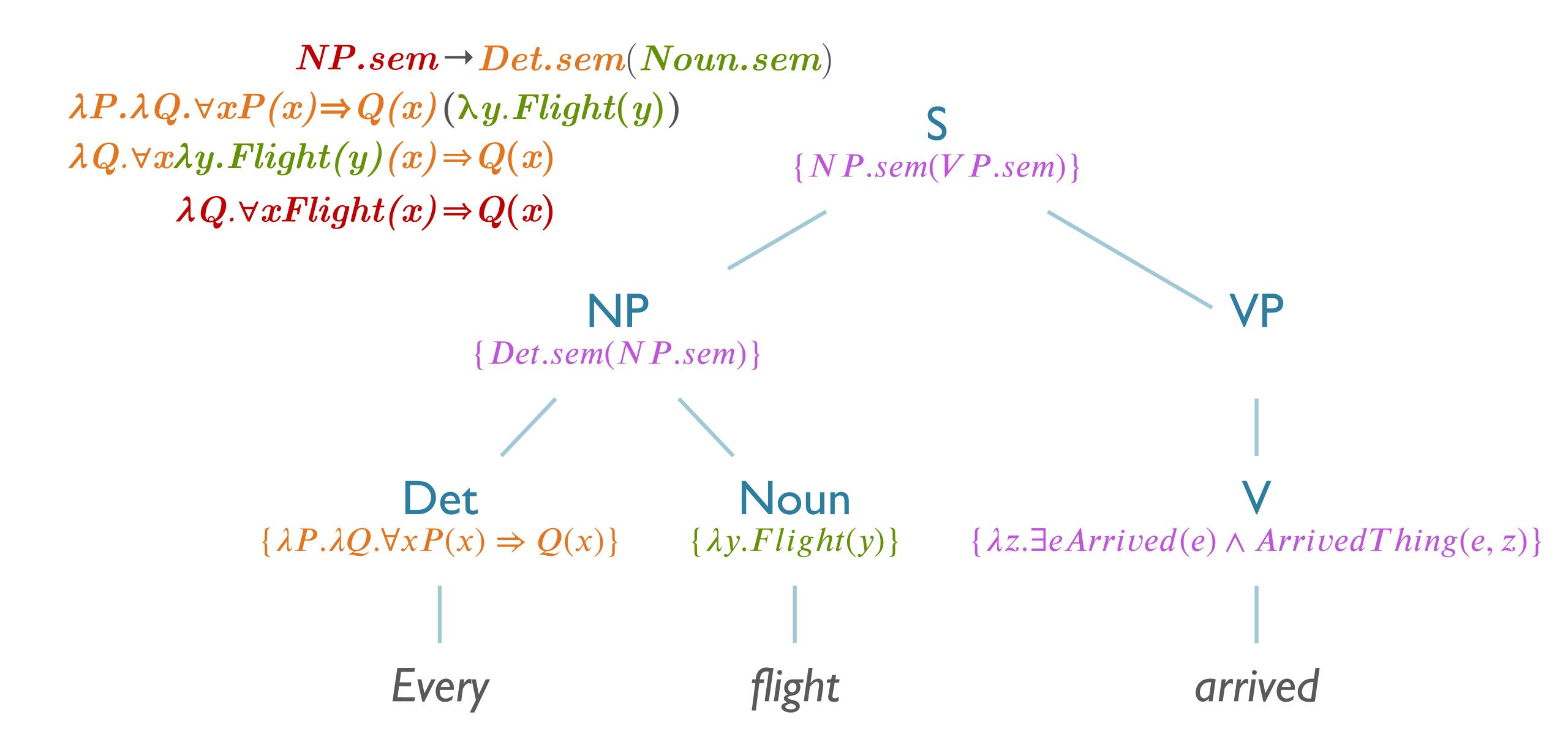


$NP.sem \rightarrow Det.sem(Noun.sem)$

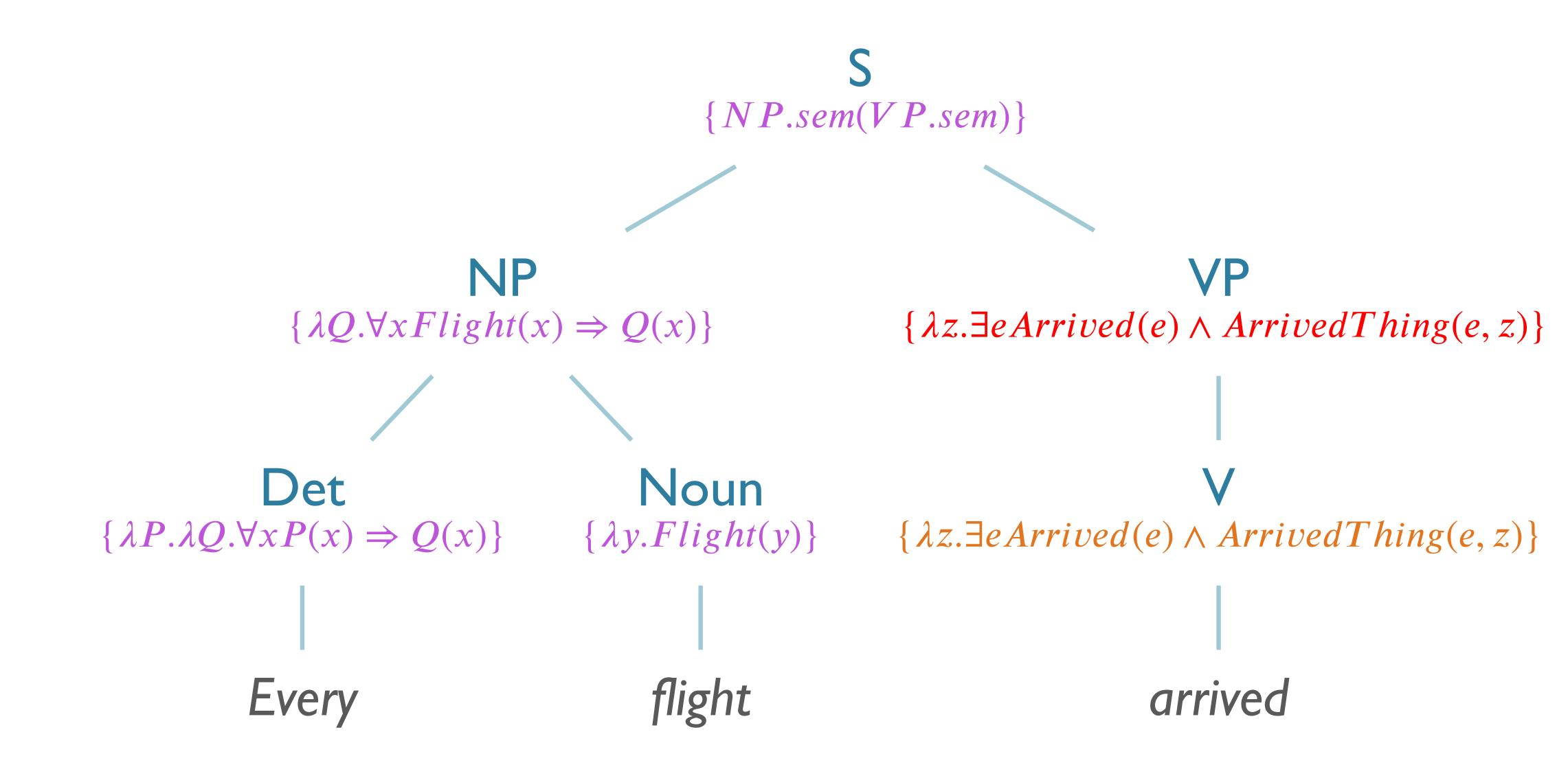


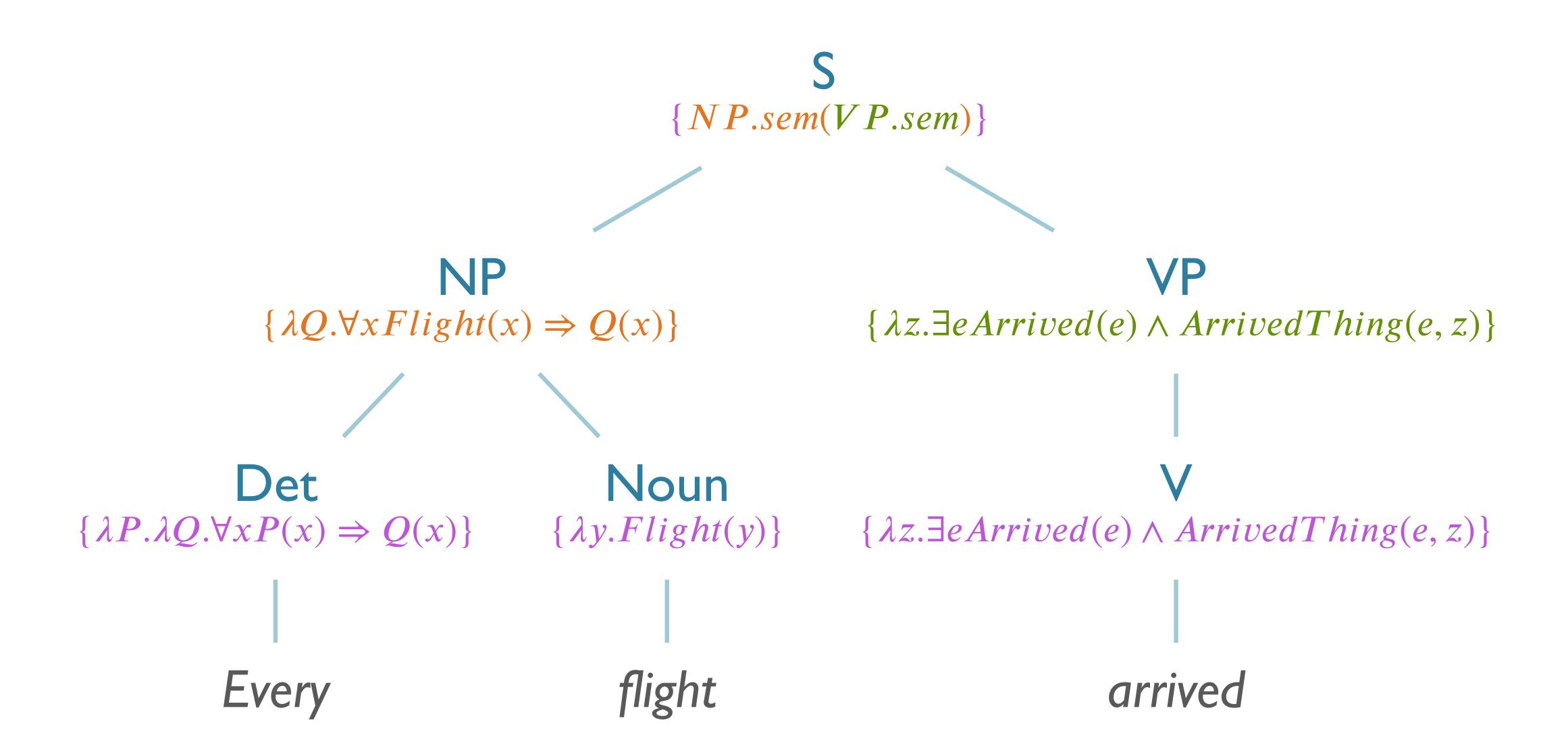






```
NP.sem \rightarrow Det.sem(Noun.sem)
\lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x) (\lambda y. Flight(y))
\lambda Q. \forall x \lambda y. Flight(y)(x) \Rightarrow Q(x)
                                                                           \{NP.sem(VP.sem)\}
           \lambda Q. \forall x Flight(x) \Rightarrow Q(x)
                                                      NP
                                     \{\lambda Q. \forall x Flight(x) \Rightarrow Q(x)\}
                                                                     Noun
                                   Det
                    \{\lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x)\}\ \{\lambda y. Flight(y)\}
                                                                                              \{\lambda z.\exists eArrived(e) \land ArrivedThing(e, z)\}
                                                                       flight
                                  Every
```





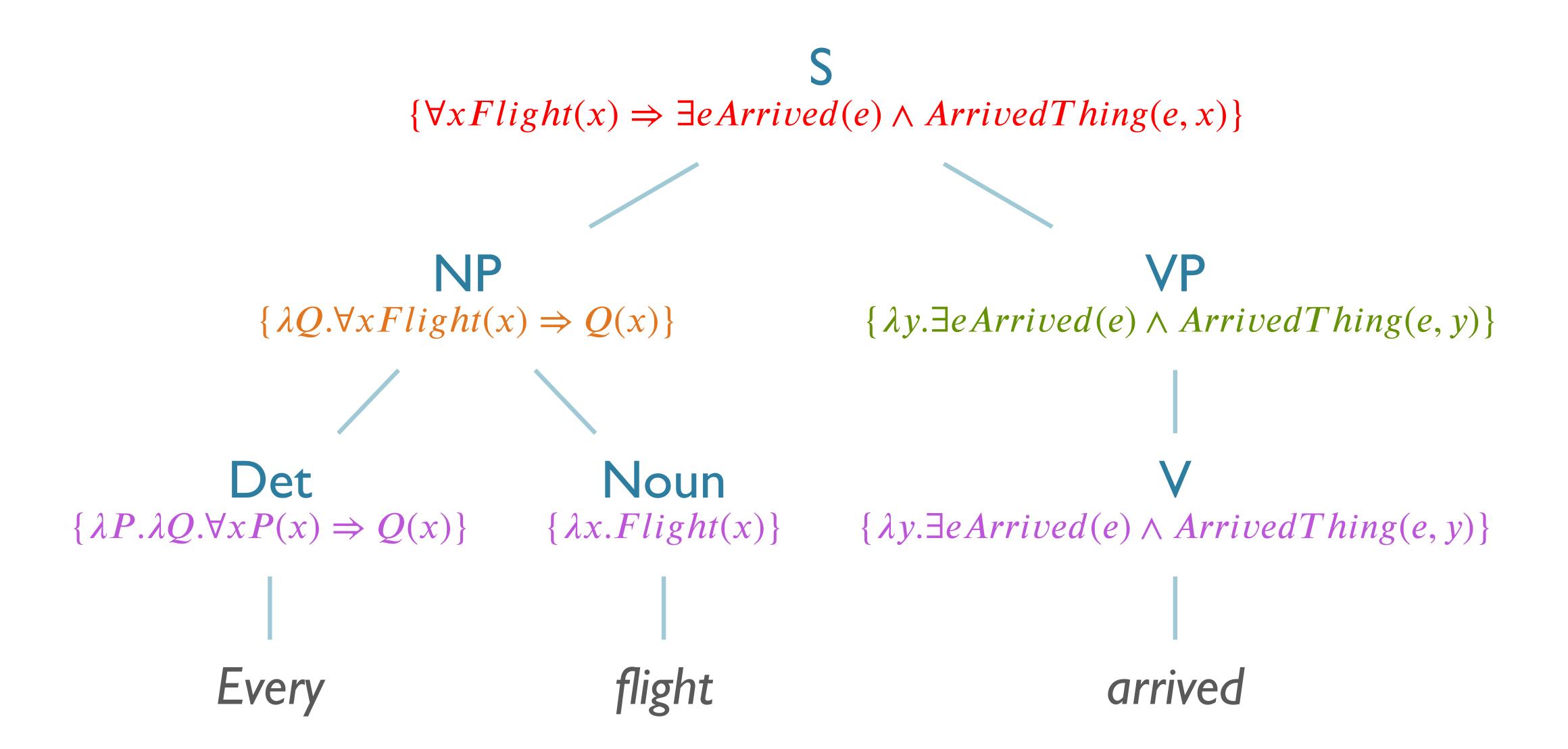
 $\begin{cases} NP.sem(VP.sem) \} \\ \\ NP \\ \\ \lambda Q. \forall xFlight(x) \Rightarrow Q(x) \} \end{cases} \begin{cases} \lambda z. \exists eArrived(e) \land ArrivedThing(e,z) \} \end{cases}$

 $\begin{cases} \forall x Flight(x) \Rightarrow \exists e Arrived(e) \land ArrivedThing(e,x) \end{cases}$ $\begin{cases} \mathsf{NP} & \mathsf{VP} \\ \{\lambda Q. \forall x Flight(x) \Rightarrow Q(x) \} \end{cases}$ $\{\lambda z. \exists e Arrived(e) \land ArrivedThing(e,z) \}$

 $\lambda Q. \forall x Flight(x) \Rightarrow Q(x)(\lambda z. \exists eArrived(e) \land ArrivedThing(e, z))$

 $\lambda Q. \forall x Flight(x) \Rightarrow Q(x) (\lambda z. \exists e Arrived(e) \land ArrivedThing(e, z))$ $\forall x Flight(x) \Rightarrow \lambda z. \exists e Arrived(e) \land ArrivedThing(e, z)(x)$ $\{\forall x Flight(x) \Rightarrow \exists e Arrived(e) \land ArrivedThing(e, x)\}$ NP $\{\lambda Q. \forall x Flight(x) \Rightarrow Q(x)\}$ $\{\lambda z. \exists e Arrived(e) \land ArrivedThing(e, z)\}$

 $\lambda Q. \forall x Flight(x) \Rightarrow Q(x) (\lambda z. \exists e Arrived(e) \land Arrived Thing(e, z))$ $\forall x Flight(x) \Rightarrow \lambda z. \exists e Arrived(e) \land Arrived Thing(e, z)(x)$ $\forall x Flight(x) \Rightarrow \exists e Arrived(e) \land Arrived Thing(e, x)$



'John booked a flight'

```
\{ \lambda P.\lambda Q.\exists x P(x) \land Q(x) \}
     Det \rightarrow 'a'
                                                                \{ \lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x) \}
  Det \rightarrow 'every'
                                                                          \{\lambda x. Flight(x)\}
  NN \rightarrow 'flight'
                               \{\lambda X.X(John)\}
NNP \rightarrow 'John'
                               \{NNP.sem\}
NP \rightarrow NNP
S \rightarrow NP VP
                               \{NP.sem(VP.sem)\}
                                                                    \{ Verb.sem(NP.sem) \}
 VP \rightarrow Verb NP
                               \{\lambda W.\lambda z. W(\exists eBooked(e) \land Booker(e,z) \land BookedThing(e,y))\}
 Verb \rightarrow `booked'
```

...we'll step through this next time.

- General approach:
 - Create complex lambda expressions with lexical items

- General approach:
 - Create complex lambda expressions with lexical items
 - Introduce quantifiers, predicates, terms

- General approach:
 - Create complex lambda expressions with lexical items
 - Introduce quantifiers, predicates, terms
 - Percolate up semantics from child if non-branching

- General approach:
 - Create complex lambda expressions with lexical items
 - Introduce quantifiers, predicates, terms
 - Percolate up semantics from child if non-branching
 - Apply semantics of one child to other through lambda

- General approach:
 - Create complex lambda expressions with lexical items
 - Introduce quantifiers, predicates, terms
 - Percolate up semantics from child if non-branching
 - Apply semantics of one child to other through lambda
 - Combine elements, don't introduce new ones

Parsing with Semantics

- Implement semantic analysis in parallel with syntactic parsing
 - Enabled by this rule-to-rule compositional approach

Parsing with Semantics

- Implement semantic analysis in parallel with syntactic parsing
 - Enabled by this rule-to-rule compositional approach
- Required modifications
 - Augment grammar rules with semantics field
 - Augment chart states with meaning expression
 - Incrementally compute semantics

Sidenote: Idioms

- Not purely compositional
 - kick the bucket → die
 - tip of the iceberg → small part of the entirety
- Handling
 - Mix lexical items with constituents
 - Create idiom-specific construct for productivity
 - Allow non-compositional semantic attachments
- Extremely complex, e.g. metaphor