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Announcements

e [hanks for the mid-term feedback!
e \We appreciate the kind words, and
e Will work on incorporating a few of the themes that came up a couple of times.

e (Small note on Markdown / .md)

e Parent annotation and evaluation:
e Splitting non-terminals = introducing new ones, may not be in gold/eval data

e For this assignment, need to “de-parent” your parses at the end
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If you could replace the grating alarm bell in Thomson Hall with

any other sound, what would it be?

Total Results: 0

Pawered hv ‘h Pall Fvervwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



Roadmap

e Feature-based parsing

e Computational Semantics
e I[ntroduction
e Semantics

e Representing Meaning
e First-Order Logic
e Events

e HW#5

e Feature grammars in NLTK

e Practice with animacy
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Computational Semantics



Dialogue System

e User: What do | have on Thursday?



Dialogue System

e User: What do | have on Thursday?

e Parser:
e Yes! It's grammatical!



Dialogue System

e User: What do | have on Thursday? S

e Parser: Q-WH-Obj

e Yes! It's grammatical!
Whwd Aux NP VP/NP

e Here’s the structure!
What do Pron V NP/NP PP
|  have *t* Prep NP

on N

Thursday
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Dialogue System

e User: What do | have on Thursday? S

e Parser: Q-WH-Obj

e Yes! It's grammatical!
, Whwd Aux NP VP/NP
e Here’s the structure!

@ System: What do Pron V NP/NP PP

O Great, but what do | DO now? | have  ** Prep NP

on N

Thursday
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Dialogue System

e User: What do | have on Thursday? S

e Parser: Q-WH-Obj

e Yes! It's grammatical!
, Whwd Aux NP VP/NP
e Here’s the structure!

e System: What do Pron V NP/NP PP
e Great, but whatdo | DO now? | have %t Prep NP

e Need to associate meaning w/structure on N

Thursday
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Dialogue System

S
Q-WH-Obj
Whwd Aux NP

What do Pron

VP/NP

V. NP/NP

| have KK

Prep

PP

NP



Dialogue System

S
Q-WH-Obj
Whwd  Aux NP VP/NP

What do Pron V NP/NP PP
on N
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Dialogue System

Action:
check (Cal=USER,

Date=Thursday) S
Q-WH-Ob;
Whwd Aux NP VP/NP

What do Pron V NP/NP PP

on N
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Syntax vs. Semantics

e Syntax:

e Determine the structure of natural language input



Syntax vs. Semantics

e Syntax:

e Determine the structure of natural language input

e Semantics:

e Determine the meaning of natural language input



High-Level Overview

e Semantics = meaning
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High-Level Overview

e Semantics = meaning

1" . b P,
e ...but what does “meaning” mean* HILARY PUTNAM

The Meaning of “Meaning”™

Language is the first broad area of human cognitive capacity for which
we are beginning to obtain a description which is not exaggeratedly over-
simplified. Thanks to the work of contemporary transformational lin-
guists,! a very subtle description of at least some human languages is
in the process of being constructed. Some features of these languages
appear to be universal. Where such features turn out to be “species-spe-
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“The sky is blue.”
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r Sky(x) N Blue(x)
Logic

“The sky is blue.”

Speech & Text



r Sky(x) N Blue(x)
Logic

Psychology



r Sky(x) N Blue(x)
Logic

Psychology

Epistemology



z-Sky(z) A Blue(x)
Logic

Psychology

Epistemology



We Will Focus On:

e Concepts that we believe to be true about the world.

e How to connect strings and those concepits.



We Won’t Focus On:

1. Building knowledge bases / semantic networks

Truck
Bus House
Car
Vehicle
Fire
Street Fire
Ambulary Engine Apples
Pears
Orange Cherries
Yellow Red

Green
Violet \®

Flowers

Violets



Roadmap

e Computational Semantics
e Overview
e Semantics

e Representing Meaning
e First-Order Logic
e Events

e HW#5

e Feature grammars in NLTK

e Practice with animacy
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Semantics: an Introduction
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Uses for Semantics

e Semantic interpretation required for many tasks
e Answering questions
e Following instructions in a software manual

e Following a recipe
e Requires more than phonology, morphology, syntax

e Must link linguistic elements to world knowledge
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Semantics is Complex

® Sentences have many entailments, presuppositions, implicatures

® Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
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Semantics is Complex

® Sentences have many entailments, presuppositions, implicatures

® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
e [he protests became bloody.
e The protests had been peaceful.

e Crowds oppose the government.
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Semantics is Complex

® Sentences have many entailments, presuppositions, implicatures

® Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

e [he protests became bloodqy.

e The protests had been peacetul.
e Crowds oppose the government.
e Some support Mubarak.

e There was a confrontation between two groups.
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Semantics is Complex

® Sentences have many entailments, presuppositions, implicatures
® Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
e [he protests became bloody.
e The protests had been peacetul.
e Crowds oppose the government.
e Some support Mubarak.
e [here was a confrontation between two groups.

e Anti-government crowds are not Mubarak supporters
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Semantics is Complex

® Sentences have many entailments, presuppositions, implicatures
® Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
e [he protests became bloody.
e The protests had been peaceful.
e Crowds oppose the government.
e Some support Mubarak.
e There was a confrontation between two groups.
e Anti-government crowds are not Mubarak supporters

® ...celc.
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Challenges in Semantics

e Semantic Representation:

e \What is the appropriate formal language to express propositions in linguistic
input?

® e.g.: predicate calculus: Hx (dag (x) A disappear (x))



Challenges in Semantics

e Semantic Representation:

e \What is the appropriate formal language to express propositions in linguistic
input?

® e.g.: predicate calculus: Hx (dag (x) A disappear (x))

e Entailment:

e \What are all the conclusions that can be validly drawn from a sentence?
e Lincoln was assassinated = Lincoln is dead
e = “semantically entails”: if former is true, the latter must be too
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Challenges in Semantics

e Reference

e How do linguistic expressions link to objects/concepts in the real world?
e ‘the dog,’ ‘the evening star,” ‘The Superbow!’



Challenges in Semantics

e Reference

e How do linguistic expressions link to objects/concepts in the real world?
e ‘the dog,’ ‘the evening star,” ‘The Superbow!’

e Compositionality
e How can we derive the meaning of a unit from its parts?
e How do syntactic structure and semantic composition relate?
e ‘rubber duck’vs. ‘rubber chicken’ vs. ‘rubber-neck’
® Kick the bucket
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Tasks in Computational Semantics

e Extract, interpret, and reason about utterances.
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® ...convert strings from natural language to meaning representations



Tasks in Computational Semantics

Extract, interpret, and reason about utterances.

Define a meaning representation

Develop technigues for semantic analysis
® ...convert strings from natural language to meaning representations

Develop methods for reasoning about these representations
e ...and performing inference



Tasks in Computational Semantics

Semantic similarity (words, texts)
Semantic role labeling
Semantic analysis / semantic “parsing”

Recognizing textual entailment (RTE) / natural
language inference (NLI)

Sentiment analysis



Complexity of Computational Semantics

e Knowledge of language

® words, syntax, relationships between structure & meaning, composition procedures
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e How do they relate?
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Complexity of Computational Semantics

e Knowledge of language

® words, syntax, relationships between structure & meaning, composition procedures

e Knowledge of the world:
e what are the objects that we refer to?
e How do they relate?

e \What are their properties?

e Reasoning

e (Given a representation and world, what new conclusions (bits of meaning) can we
infer?

YA/ UNIVERSITY of WASHINGTON 22



Complexity of Computational Semantics

e Effectively Al-complete

e Needs representation, reasoning, world model, etc.



Representing Meaning
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“I have a car’

First-Order Logic: de,y (Having (e) A Haver (e, Speaker) A HadThing (e, y) A Car (y) )
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rHaving\

Semantic Network: Haver Had- T hing
Speaker Car



“I have a car’

First-Order Logic: de,y (Having (e) A Haver (e, Speaker) A HadThing (e, y) A Car (y) )

rHaving\

Semantic Network: Haver Had- T hing
Speaker Car
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Dependency: /H\ POss-By
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“I have a car’

First-Order Logic: de,y (Having (e) A Haver (e, Speaker) A HadThing (e, y) A Car (y) )

rHavingN

Semantic Network: Haver Had- T hing
Speaker Car
Car : .
Conceptual /H\ . . Frame-Based: Having
Dependency: O55-BY Haver: Speaker
Speaker HadThing: Car
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Meaning Representations

® All consist of structures from set of symbols
e Representational vocabulary
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Meaning Representations

® All consist of structures from set of symbols
e Representational vocabulary

e Symbol structures correspond to:
e Objects
e Properties of objects
e Relations among objects

e Can be viewed as:
e Representation of meaning of linguistic input
e Representation of state of world
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Meaning Representations

® All consist of structures from set of symbols
e Representational vocabulary

e Symbol structures correspond to:
e Objects
e Properties of objects
e Relations among objects

e Can be viewed as:
e Representation of meaning of linguistic input
e Representation of state of world

e Here we focus on literal meaning (“what is said”)
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Representational Requirements
Verifiablility

Unambiguous representations
Canonical Form
Inference and Variables

EXxpressiveness
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e Can compare representation of sentence to KB model (generally:“executable™)

Unambiguous representations

® Semantic representation itself is unambiguous

Canonical Form
® Alternate expressions of same meaning map to same representation

Inference and Variables

EXxpressiveness
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Representational Requirements
Verifiablility

e Can compare representation of sentence to KB model (generally:“executable™)

Unambiguous representations

® Semantic representation itself is unambiguous

Canonical Form

® Alternate expressions of same meaning map to same representation

Inference and Variables

® Way to draw valid conclusions from semantics and KB

EXxpressiveness
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Representational Requirements
Verifiablility

e Can compare representation of sentence to KB model (generally:“executable™)

Unambiguous representations

® Semantic representation itself is unambiguous

Canonical Form

® Alternate expressions of same meaning map to same representation

Inference and Variables

® Way to draw valid conclusions from semantics and KB

EXxpressiveness

e Represent any natural language utterance
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Meaning Structure of Language

e Human Languages:

Display basic predicate-argument structure
Employ variables
Employ quantifiers

Exhibit a (partially) compositional semantics



Predicate-Argument Structure

e Represent concepts and relationships
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Predicate-Argument Structure

e Represent concepts and relationships

e Some words behave like predicates
e Book(John, United); Non-stop(Flight)

e Some words behave like arguments
e Book(John, United); Non-stop( Flight)

e Subcategorization frames indicate:

e Number, Syntactic category, order of args, possibly
other features of args



First-Order Logic
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First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference, expressiveness



First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference, expressiveness

e Supports determination of propositional truth
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e Provides sound computational basis for verifiability, inference, expressiveness
e Supports determination of propositional truth

e Supports compositionality of meaning*
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e Supports inference
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First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiabllity, inference, expressiveness
e Supports determination of propositional truth
e Supports compositionality of meaning*
e Supports inference

e Supports generalization through variables
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First-Order Logic Terms

e Constants: specific objects in world;

o A, B, John
e Refer to exactly one object

e Each object can have multiple constants refer to it
e WAStateGovernor and Jaylnslee
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First-Order Logic Terms

e Constants: specific objects in world;

o A, B, John
e Refer to exactly one object

e Each object can have multiple constants refer to it
e WAStateGovernor and Jaylnslee

e Functions: concepts relating objects — objects

e GovernerOf(WA)
e Refer to objects, avoid using constants
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First-Order Logic Terms

e Constants: specific objects in world;

o A, B, John
e Refer to exactly one object

e Each object can have multiple constants refer to it
e WAStateGovernor and Jaylnslee

e Functions: concepts relating objects — objects

e GovernerOf(WA)
e Refer to objects, avoid using constants

e Variables:

o I, €

® Refer to any potential object in the world
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First-Order Logic Language

e Predicates
e Relate objects to other objects

e ‘United serves Chicago’
o Serves(United, Chicago)



First-Order Logic Language

e Predicates
e Relate objects to other objects

e ‘United serves Chicago’
o Serves(United, Chicago)

e Logical Connectives
o {A, v, =}={and, or, implies}
e Allow for compositionality of meaning™ [* many subtleties]

® ‘Frontier serves Seattle and is cheap.’
o Serves(Frontier, Seattle) A Cheap(Frontier)
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Quantifiers

e d: existential quantifier: “there exists”



Quantifiers

e d: existential quantifier: “there exists”

e Indefinite NP

® >one such object required for truth
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Quantifiers

e d: existential quantifier: “there exists”

e Indefinite NP

® >one such object required for truth

e A non-stop flight that serves Pittsburgh:
1x Flight(x) A Serves(x, Pittsburgh) A Non-stop(x)
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Quantifiers

e V: universal quantifier: “for all”

® All flights include beverages.



Quantifiers

e V: universal quantifier: “for all”

® All flights include beverages.
va Flight(x) = Includes(x, beverages)
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FOL Syntax Summary

Formula — AtomicFormula Connective

— AlvI=
Formula Connective Formula Quantifier - v | 3
Quantifier Variable, ... Formula  Constant — VegetarianFood | Maharani | ...
- Formula Variable - z|lyl ..
(Formula) Predicate — Serves | Near | ...
AtomicFormula — Predicate(Term,...) Function —  LocationOf | CuisineOf | ...
Term — Function(Term,...)
Constant
Variable

J&M p. 556 (3rd ed. 16.3)
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Compositionality

e The meaning of a complex expression is a function of the meaning of its
parts, and the rules for their combination.
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e Formal languages are compositional.



Compositionality

e The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

e Formal languages are compositional.

e Natural language meaning is largely compositional, though arguably not

fully.”



Compositionality

® ...how can we derive:

e loves(John, Mary)



Compositionality

® ...how can we derive:

e loves(John, Mary)

e from:
e John
o loves(x, y)

o Mary



Compositionality

® ...how can we derive:

e loves(John, Mary)

e from:
e John

o loves(x, y)

o Mary

e Lambda expressions!



Lambda Expressions
e Lambda (A) notation (Church, 1940)

e Just like lambda in Python, Scheme, etc

e Allows abstraction over FOL formulae

e Supports compositionality

e Form: (A) + variable + FOL expression
o \x.P(x
o \z.P(x

“Function taking xto P(x)”

)
)(A) = P(A) [called beta-reduction]


http://www.jstor.org/stable/2266170

A-Reduction

e A-reduction: Apply A-expression to logical term

e Binds formal parameter to term

Azx.P(x)
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e Binds formal parameter to term

Azx.P(x)
Ax.P(x)(A)
P(A)



A-Reduction

e A-reduction: Apply A-expression to logical term

e Binds formal parameter to term

Azx.P(x)
Ax.P(x)(A)
P(A)

e Equivalent to function application



Nested A-Reduction

e Lambda expression as body of another

Ax.Ay.Near(x, y)
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e Lambda expression as body of another

Ax.Ay.Near(x, y)
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Nested A-Reduction

e Lambda expression as body of another

Ax.Ay.Near(x, y)
Ax.\y.Near(x, y)( Midway)

Ay.Near( Midway, y)
Ay.Near(Midway, y)( Chicago)
Near( Midway, Chicago)



ted A-Reduction
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Nested A-Reduction

e If it helps, think of As as binding sites:

CicagP /-\

\
Xy.Near(:;:, )

Midway



Nested A-Reduction

e If it helps, think of As as binding sites:



Lambda Expressions

e Currying
e Converting multi-argument predicates to sequence of single argument predicates
o Why?

e |Incrementally accumulates multiple arguments spread over different parts of
parse tree

YA/ UNIVERSITY of WASHINGTON 45
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Lambda Expressions

e Currying
e Converting multi-argument predicates to sequence of single argument predicates
o Why?

e |Incrementally accumulates multiple arguments spread over different parts of
parse tree

® ...0r Schonkfinkelization
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Logical Formulae

e FOL terms (objects): denote elements in a domain
e Properties: sets of domain elements

e Relations: sets of tuples of domain elements



Logical Formulae

e FOL terms (objects): denote elements in a domain
e Properties: sets of domain elements

e Relations: sets of tuples of domain elements

e Atomic formulae: P(x), R(x,y), etc
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Logical Formulae

e FOL terms (objects): denote elements in a domain
e Properties: sets of domain elements

e Relations: sets of tuples of domain elements

e Atomic formulae: P(x), R(x,y), etc

e Formulae based on logical operators:

P Q =P PArQ Pv(@ P=Q

—~ 4 = =

F

~ |

T

I

F

F
F
T

F

=l

T

=
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Logical Formulae: Finer Points

® V IS not exclusive:
® Your choice Is pepperoni or sausage

® ...use vy or&e



Logical Formulae: Finer Points

® V IS not exclusive:
® Your choice Is pepperoni or sausage

® ...use vy or&e

e = IS the logical form

e Does not mean the same as natural language “if”, just
that if LHS=T, then RHS=T
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2. oc=>@

Inference
1. Vz o(z)



2. o =0
3. . [3

Inference
1. Vz o(z)
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2. oc=>@

3. - [

Inference
1. Vz o(z)

2. oat)



Inference
1. VegetarianRestaurant( Leaf )



Inference
1. VegetarianRestaurant( Leaf )

2. Vx VegetarianRestaurant(z)= Serves(x, VegetarianFood )



Inference
1. VegetarianRestaurant( Leaf )

2. Vx VegetarianRestaurant(z)= Serves(x, VegetarianFood )

3. VegetarianRestaurant( Leaf)= Serves( Leaf, VegFood )



Inference
1. VegetarianRestaurant( Leaf )

2. Vx VegetarianRestaurant(z)= Serves(x, VegetarianFood )

3. VegetarianRestaurant( Leaf)= Serves( Leaf, VegFood )

4. .. Serves(Leaf, VegetarianFood )



Inference

e Standard Al-type logical inference procedures
e Modus Ponens
e Forward-chaining, Backward Chaining
e Abduction
e Resolution
o Etc...
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Inference

e Standard Al-type logical inference procedures
e Modus Ponens
e Forward-chaining, Backward Chaining
e Abduction
e Resolution
o Etc...

e We’'ll assume we have a theorem prover.
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Roadmap

e Computational Semantics
e Introduction
e Semantics

e Representing Meaning
e First-Order Logic
e Events

e HW#5

e Feature grammars in NLTK

e Practice with animacy
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Events
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Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame



Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

e Example:
e The flight arrived
e The flight arrived in Seattle
e The flight arrived in Seattle on Saturday.
e The flight arrived on Saturday.
e The flight arrived in Seattle from SFO.
e The flight arrived in Seattle from SFO on Saturday.
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Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

e Example:
e The flight arrived
e The flight arrived in Seattle
e The flight arrived in Seattle on Saturday.
e The flight arrived on Saturday.
e The flight arrived in Seattle from SFO.
e The flight arrived in Seattle from SFO on Saturday.

e \ariable number of arguments; many entailment relations here.
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Representing Events
o Arity:

e How do we deal with different numbers of arguments?



Representing Events
o Arity:

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.



Representing Events
o Arity:

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.

e Davidsonian (Davidson 1967):
e de Arrival(e, Flight, Seattle, SFO) A Time(e, Saturday)
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Representing Events
o Arity:

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.

e Davidsonian (Davidson 1967):
e de Arrival(e, Flight, Seattle, SFO) A Time(e, Saturday)
® Neo-Davidsonian (Parsons 1990):

e de Arriwval(e) A Arrived(e, Flight) A Destination(e, Seattle) A Origin(e, SFO)
A Time(e, Saturday)
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Why events?

e “Adverbial modification is thus seen to be logically on a par with adjectival
modification: what adverbial clauses modify is not verbs but the events that
certain verbs introduce.” —Davidson



Neo-Davidsonian Events

e Neo-Davidsonian representation:
e Distill event to single argument for main predicate

e Everything else is additional predication



Neo-Davidsonian Events

e Neo-Davidsonian representation:
e Distill event to single argument for main predicate

e Everything else is additional predication

e Pros
e No fixed argument structure
e Dynamically add predicates as necessary
e NoO unused roles

e Logical connections can be derived
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Meaning Representation for
Computational Semantics

e Requirements

e \erifiability

e Unambiguous representation

e Canonical Form

e Inference

e Variables

e EXxpressiveness

e Solution:

e First-Order Logic

e Structure

e Semantics

e Event K

lepresentation
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Summary

e FOL can be used as a meaning representation language for natural
language

e Principle of compositionality:

e The meaning of a complex expression is a function of the meaning of its parts

® A-expressions can be used to compute meaning representations from
syntactic trees based on the principle of compositionality

e In next classes, we will look at syntax-driven approach to semantic
analysis in more detall
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