
Distributional Semantics, Pt. II
LING 571 — Deep Processing for NLP

Shane Steinert-Threlkeld

1

Announcements
● HW6: be detailed in readme!

● A note on ‘or’ and polymorphism (Partee and Rooth 1983)
● They ate rice or they drank milk.
● They ate rice or beans.
● Walking or talking is their favorite thing.
● …

● ‘or’_sentence: \p:<s,t> . \q:<s,t> . \w:s . p(w) = 1 or q(w) = 1

● ‘or’_IV: \v1:<e, t> . \v2:<e, t> . \x:e . or_sentence(v1(x) , v2(x))

● Generally: reduce all others systematically to boolean ‘or’, systematically

2

https://semanticsarchive.net/Archive/ThiYWY5Y/BHP_Rooth83Generalized%20Conjunction.pdf

Roadmap
● Curse of Dimensionality

● Dimensionality Reduction
● Principle Components Analysis (PCA)
● Singular Value Decomposition (SVD) / LSA

● Prediction-based Methods
● CBOW / Skip-gram (word2vec)

● Word Sense Disambiguation

3

The Curse of Dimensionality

4

The Problem with High Dimensionality

5

tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

The Problem with High Dimensionality

6

tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

The cosine similarity for these words will be zero!

The Problem with High Dimensionality

7

tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

The cosine similarity for these words will be >0 (0.293)

The Problem with High Dimensionality

8

tasty delicious disgusting flavorful tree

pear 0 1 0 0 0

apple 0 0 0 1 1

watermelon 1 0 0 0 0

paw_paw 0 0 1 0 0

family 0 0 0 0 1

But if we could collapse all of these into one “meta-dimension”…

The Problem with High Dimensionality

9

<taste> tree

pear 1 0

apple 1 1

watermelon 1 0

paw_paw 1 0

family 0 1

Now, these things have “taste” associated with them as a concept

Curse of Dimensionality
● Vector representations are sparse, very high dimensional
● # of words in vocabulary
● # of relations × # words, etc

10

https://catalog.ldc.upenn.edu/LDC2006T13

Curse of Dimensionality
● Vector representations are sparse, very high dimensional
● # of words in vocabulary
● # of relations × # words, etc

● Google 1T 5-gram corpus:
● In bigram 1M × 1M matrix: < 0.05% non-zero values

10

https://catalog.ldc.upenn.edu/LDC2006T13

Curse of Dimensionality
● Vector representations are sparse, very high dimensional
● # of words in vocabulary
● # of relations × # words, etc

● Google 1T 5-gram corpus:
● In bigram 1M × 1M matrix: < 0.05% non-zero values

● Computationally hard to manage
● Lots of zeroes
● Can miss underlying relations

10

https://catalog.ldc.upenn.edu/LDC2006T13

Roadmap
● Curse of Dimensionality

● Dimensionality Reduction
● Principle Components Analysis (PCA)
● Singular Value Decomposition (SVD) / LSA

● Prediction-based Methods
● CBOW / Skip-gram (word2vec)

● Word Sense Disambiguation

11

Reducing Dimensionality
● Can we use fewer features to build our matrices?

12

Reducing Dimensionality
● Can we use fewer features to build our matrices?

● Ideally with
● High frequency — means fewer zeroes in our matrix
● High variance — larger spread over values makes items easier to separate

12

Reducing Dimensionality
● One approach — filter out features
● Can exclude terms with too few occurrences

● Can include only top X most frequently seen features

● 𝜒2 selection

13

Reducing Dimensionality

14

Reducing Dimensionality
● Things to watch out for:
● Feature correlation — if features strongly correlated, give redundant information
● Joint feature selection complex, computationally expensive

14

Reducing Dimensionality
● Approaches to project into lower-dimensional spaces
● Principal Components Analysis (PCA)
● Locality Preserving Projections (LPP) [link]
● Singular Value Decomposition (SVD)

15

https://papers.nips.cc/paper/2359-locality-preserving-projections.pdf

Reducing Dimensionality

16

Reducing Dimensionality
● All approaches create new lower dimensional space that
● Preserves distances between data points
● (Keep like with like)

16

Reducing Dimensionality
● All approaches create new lower dimensional space that
● Preserves distances between data points
● (Keep like with like)

● Approaches differ on exactly what is preserved

16

Principal Component Analysis (PCA)

17

Original Dimension 1

O
rig

in
al

 D
im

en
si

on
 2

Principal Component Analysis (PCA)

18

PCA dimensio
n 1PCA dimension 2

Original Dimension 1

O
rig

in
al

 D
im

en
si

on
 2

Principal Component Analysis (PCA)

19

PCA dimension 1

PC
A

di
m

en
si

on
 2

PCA dimension 1

Principal Component Analysis (PCA)

20via [A layman’s introduction to PCA]

https://www.youtube.com/watch?v=BfTMmoDFXyE

Principal Component Analysis (PCA)

20via [A layman’s introduction to PCA]

https://www.youtube.com/watch?v=BfTMmoDFXyE

Principal Component Analysis (PCA)

21via [A layman’s introduction to PCA]

This →

Preserves more information than

These →

https://www.youtube.com/watch?v=BfTMmoDFXyE

PCA for Word Vectors
● Take |V| x N matrix of word-vectors

● Apply PCA to get new |V| x N matrix
● Truncate to |V| x m matrix, for some choice of m < N

● Even with other methods discussed later, very useful for 2/3-D visualization

22

SVD and LSA

23

Singular Value Decomposition (SVD)
● Enables creation of reduced dimension model
● Low rank approximation of of original matrix
● Best-fit at that rank (in least-squares sense)

24

Singular Value Decomposition (SVD)
● Original matrix: high dimensional, sparse
● Similarities missed due to word choice, etc

● Create new, projected space
● More compact, better captures important variation

● Landauer et al (1998) argue identifies underlying “concepts”
● Across words with related meanings

25

http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

Latent Semantic Analysis (LSA)
● Apply SVD to |V | × c term-document matrix X
● V → Vocabulary

● c → documents

● X
● row → word
● column → document
● cell → count of word/document

26

Latent Semantic Analysis (LSA)
● Factor X into three new matrices:
● W → one row per word, but columns are now arbitrary m dimensions

● Σ → Diagonal matrix, where every (1,1) (2,2) etc… is the rank for m

● CT → arbitrary m dimensions, as spread across c documents

27

word-word
PPMI matrix

X W

w x c w x m

=
Σ C

m x m m x c

SVD
Animation

youtu.be/R9UoFyqJca8

Enjoy some 3D Graphics from 1976!

28

https://youtu.be/R9UoFyqJca8

SVD
Animation

youtu.be/R9UoFyqJca8

Enjoy some 3D Graphics from 1976!

28

https://youtu.be/R9UoFyqJca8

Latent Semantic Analysis (LSA)
● LSA implementations typically:
● truncate initial m dimensions to top k

29

word-word
PPMI matrix

X W

w x c w x m

=
Σ C

m x m m x cW

kw x m

≈
m x m m x c

Σ C
k k k

Latent Semantic Analysis (LSA)
● LSA implementations typically:
● truncate initial m dimensions to top k
● then discard Σ and C matrices
● Leaving matrix W
● Each row is now an “embedded” representation of each w across k dimensions

30

W
1
2
.
.
.
i
.
w

w x k

Σ C
1……k

Singular Value Decomposition (SVD)

31

Avengers Star Wars Iron Man Titanic The
Notebook

User1 1 1 1

User2 3 3 3

User3 4 4 4

User4 5 5 5

User5 2 4 4

User6 5 5

User7 1 2 2

Original Matrix X (zeroes blank)

Singular Value Decomposition (SVD)

32

m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

Singular Value Decomposition (SVD)

33

m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

“Sci-fi-ness”

Singular Value Decomposition (SVD)

34

m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

“Romance-ness”

Singular Value Decomposition (SVD)

35

m1 m2 m3
User1 0.13 0.02 -0.01
User2 0.41 0.07 -0.03
User3 0.55 0.09 -0.04
User4 0.68 0.11 -0.05
User5 0.15 -0.59 0.65
User6 0.07 -0.73 -0.67
User7 0.07 -0.29 -0.32

m1 m2 m3
m1 12.4
m2 9.5
m3 1.3

Avengers Star Wars Iron Man Titanic The
Notebook

m1 0.56 0.59 0.56 0.09 0.09
m2 0.12 -0.02 0.12 -0.69 -0.69
m3 0.40 -0.80 0.40 0.09 0.09

W (w×m)

C (m×c)

Σ (m×m)

Catchall (noise)

LSA Document Contexts
● Deerwester et al, 1990: "Indexing by Latent Semantic Analysis"
● Titles of scientific articles

36

c1 Human machine interface for ABC computer applications
c2 A survey of user opinion of computer system response time
c3 The EPS user interface management system
c4 System and human system engineering testing of EPS
c5 Relation of user perceived response time to error measurement

m1 The generation of random, binary, ordered trees
m2 The intersection graph of paths in trees
m3 Graph minors IV: Widths of trees and well-quasi-ordering
m4 Graph minors: A survey

http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf

Document Context Representation
● Term x document:
● corr(human, user) = -0.38; corr(human, minors)=-0.29

37

c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1

Improved Representation
● Reduced dimension projection:
● corr(human, user) = 0.98; corr(human, minors)=-0.83

38

c1 c2 c3 c4 c5 m1 m2 m3 m4
human 0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09
interface 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12
user 0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19
system 0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
response 0.16 0.58 0.38 0.42 0.28 0.05 0.13 0.19 0.22
time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11
survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.33 0.42
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
minors -0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 0.62

Python Tutorial for LSA
● For those interested in seeing how LSA works in practice:
● technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/

39

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/

Dimensionality Reduction for Visualization
● “I see well in many dimensions as long as the dimensions are around two.”
● —Martin Shubek

● Even with ‘dense’ embeddings, techniques like PCA are useful for
visualization

● Another popular one: t-SNE

● Useful for exploratory analysis

40

https://lvdmaaten.github.io/tsne/

Prediction-Based Models

41

Prediction-based Embeddings
● LSA models: good, but expensive to compute

42

Prediction-based Embeddings
● LSA models: good, but expensive to compute

● Skip-gram and Continuous Bag of Words (CBOW) models

42

Prediction-based Embeddings
● LSA models: good, but expensive to compute

● Skip-gram and Continuous Bag of Words (CBOW) models

● Intuition:
● Words with similar meanings share similar contexts
● Train models to learn to predict context words
● Models train embeddings that make current word more like nearby words and

less like distance words
● Provably related to PPMI models under SVD

42

Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW):
● P(word |context)

● Input: (wt-1, wt-2, wt+1, wt+2 …)

● Output: p(wt)

43

Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW):
● P(word |context)

● Input: (wt-1, wt-2, wt+1, wt+2 …)

● Output: p(wt)

● Skip-gram:
● P(context |word)

● Input: wt

● Output: p(wt-1, wt-2, wt+1, wt+2 …)

43

Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW):
● P(word |context)

● Input: (wt-1, wt-2, wt+1, wt+2 …)

● Output: p(wt)

● Skip-gram:
● P(context |word)

● Input: wt

● Output: p(wt-1, wt-2, wt+1, wt+2 …)

43

Mikolov et al 2013a (the OG word2vec paper)

https://arxiv.org/abs/1301.3781

● Learns two embeddings
● W : word, matrix of shape [vocab_size, embedding_dimension]

● C : context embedding, matrix of same shape

Skip-Gram Model

44

p(wk |wj) =
eCk⋅Wj

∑i eCi⋅Wj

● Learns two embeddings
● W : word, matrix of shape [vocab_size, embedding_dimension]

● C : context embedding, matrix of same shape

● Prediction task:
● Given a word, predict each neighbor word in window

● Compute p(wk|wj) as proportional to ck · wj

● For each context position
● Convert to probability via softmax

Skip-Gram Model

44

p(wk |wj) =
eCk⋅Wj

∑i eCi⋅Wj

Training The Model
● Approach:
● Randomly initialize W, C

● Iterate over corpus, update w/ stochastic gradient descent
● Update embeddings to improve loss function

● Use trained embeddings directly as word representations

45

Training The Model
● Issue:
● Denominator computation is very expensive

● Strategy:
● Approximate by negative sampling (efficient

approximation to Noise Contrastive Estimation):
● + example: true context word
● – example: k other words, sampled

46

p(wk |wj) =
Ck ⋅ Wj

∑i Ci ⋅ Wj

Negative Sampling, Idea
● Skip-Gram:

● : what is the probability that occurred in the context of
● Classifier with |V| classes

● Negative sampling:

● : what is the probability that was a true co-occurrence?

●
● Probability that was not a true co-occurrence
● Examples of “fake” co-occurrences = negative samples
● Binary classifier

P(wk |wj) wk wj

P(+ |wk, wj) (wk, wj)
P(− |wk, wj) = 1 − P(+ |wk, wj)

(wk, wj)

47

Generating Positive Examples

48

Generating Positive Examples
● Iterate through the corpus. For each word: add all words within a

window_size of the current word as a positive pair.

48

Generating Positive Examples
● Iterate through the corpus. For each word: add all words within a

window_size of the current word as a positive pair.
● NB: window_size is a hyper-parameter

48

Negative Samples
● For each positive (w, c) sample, generate num_negatives samples
● (w, c’), where c’ is different from c
● NB: num_negatives is a hyper-parameter

49

Negative Samples, up-weighting
● It’s also common to “upsample” less frequent words

● Instead of sampling from raw frequencies from the corpus, raise them to a
power to “flatten” the distribution

50

The Data, Summary
● X = pairs of words

● Y = {0, 1}
● 1 = + (positive example), 0 = - (negative example)

● Example pairs:
● ((“apricot”, “tablespoon”), 1)
● ((“apricot”, “jam”), 1)
● ((“apricot”, “aardvark”), 0)
● ((“apricot”, “my”), 0)

(x, y)

51

The Model
● So what is (more specifically,)?

● As before, learns two embeddings
● W : word, matrix of shape [vocab_size, embedding_dimension]
● : embedding for word w [row of the matrix]

● C : context embedding, matrix of same shape

P(1 |w, c) P(1 |w, c; θ)

Ww

52

The Model

53

P(1 |w, c) = σ (Ww ⋅ Cc)

The Model

53

P(1 |w, c) = σ (Ww ⋅ Cc)

Target word
embedding

The Model

53

P(1 |w, c) = σ (Ww ⋅ Cc)

Target word
embedding

Context word
embedding

The Model

53

P(1 |w, c) = σ (Ww ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

The Model

53

P(1 |w, c) = σ (Ww ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

sigmoid

σ(x) =
1

1 + e−x

The Model

54

P(1 |w, c) = σ (Ww ⋅ Cc)
● Target and context words that are more similar to each other (have more

similar embeddings) have a higher probability of being a positive example.

Learning: Intuitively

55

Relationships via Offsets

56

MAN

WOMAN

UNCLE

AUNT

KING

QUEEN

Mikolov et al 2013b

https://www.aclweb.org/anthology/N13-1090/

Relationships via Offsets

56

MAN

WOMAN

UNCLE

AUNT

KING

QUEEN KING

QUEEN
KINGS

QUEENS

Mikolov et al 2013b

https://www.aclweb.org/anthology/N13-1090/

One More Example

57

Mikolov et al 2013c

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

One More Example

58

Caveat Emptor

59

Linzen 2016, a.o.

https://www.aclweb.org/anthology/W16-2503/

Power of Prediction-based Embeddings
● Count-based embeddings:
● Very high-dimensional (|V|)
● Sparse
● Pro: features are interpretable [“occurred with word W N times in corpus”]

● Prediction-based embeddings:
● “Low”-dimensional (typically ~300-1200)
● Dense
● Con: features are not immediately interpretable
● i.e. what does “dimension 36 has value -9.63” mean?

60

Diverse Applications
● Unsupervised POS tagging

● Word Sense Disambiguation

● Essay Scoring

● Document Retrieval

● Unsupervised Thesaurus Induction

● Ontology/Taxonomy Expansion

● Analogy Tests, Word Tests

● Topic Segmentation

61

General Recipe

62

General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice

62

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/

General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice

62

Depiction of seq2seq NMT architecture
c/o Hewitt & Kriz

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf

General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice

62

Depiction of seq2seq NMT architecture
c/o Hewitt & Kriz

Pre-trained embeddings!

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf

General Recipe
● Embedding layer (~300-dimensions):
● download pre-trained embeddings
● Use as look-up table for every word
● Then feed those vectors into model of choice

● Newer embeddings:
● fastText
● GloVe

62

Depiction of seq2seq NMT architecture
c/o Hewitt & Kriz

Pre-trained embeddings!

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf

Contextual Word Representations
● Global embeddings: single fixed word-vector look-up table

● Contextual embeddings:
● Get a different vector for every occurrence of every word

● A recent revolution in NLP (via pre-trained large language models)

● Here’s a nice “contextual introduction”

63

https://arxiv.org/pdf/1902.06006.pdf

Contextual Word Representations

64

Peters et al 2018Devlin et al 2018 Radford et al 2019

https://www.aclweb.org/anthology/N18-1202/
https://arxiv.org/abs/1810.04805
https://openai.com/blog/better-language-models/

Contextual Word Representations

64

Peters et al 2018Devlin et al 2018 Radford et al 2019

“Embeddings from Language Models”

https://www.aclweb.org/anthology/N18-1202/
https://arxiv.org/abs/1810.04805
https://openai.com/blog/better-language-models/

Global vs Contextual Representations

65

Global embedding

Model for task

Raw tokens

Model for task

Contextual embedding
(pre-trained)

Raw tokens

Ethical Issues Around Embeddings
● Models that learn representations from reading human-produced raw text

also learn our biases

66

Boukbasi et al 2016

https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings

Ethical Issues Around Contextual
Embeddings

● Gebru, Bender, and others’ “On the
Dangers of Stochastic Parrots: Can
Language Models Be Too Big? 🦜”
● Environmental + financial costs
● Research opportunity costs
● Datasets so large they are impossible

to audit

● Media coverage, including of
Google’s response (e.g.firing of
Gebru and Mitchell): https://
faculty.washington.edu/ebender/
stochasticparrots.html

● More on this during the last week of
class

67

https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/stochasticparrots.html

