
Discourse Structure
LING 571 — Deep Processing Methods in NLP

Shane Steinert-Threlkeld

1



Ambiguity of the Week

2



Breaking Language Technology

3

https://twitter.com/xkcd/status/1333529967079120896

https://twitter.com/xkcd/status/1333529967079120896


Breaking Language Technology

3

https://twitter.com/xkcd/status/1333529967079120896

https://twitter.com/xkcd/status/1333529967079120896
https://arxiv.org/abs/2211.17257


Roadmap
● Coreference
● Recap
● (Hobbs Walkthrough)
● Other approaches
● Evaluation

● Discourse Structure
● Cohesion [Segmentation]
● Coherence
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What is Discourse?
● Discourse is “a coherent structured group of sentences.” (J&M p. 

681)
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What is Discourse?
● Discourse is “a coherent structured group of sentences.” (J&M p. 

681)

● Understanding depends on context
● Word sense — plant
● Intention — Do you have the time?
● Referring expressions — it, that, the screen
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Reference: Terminology

7

Queen Elizabeth set about transforming her husband, King George VI, into a 
viable monarch. Logue, a renowned speech therapist, was summoned to help 
the King overcome his speech impediment.
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Reference: Terminology
● referring expression: (refexp)
● An expression that picks out entity (referent) in some knowledge model
● Referring expressions used for the same entity corefer
● Queen Elizabeth, her, the Queen

● Logue, a renowned speech therapist

● Entities in purple do not corefer to anything.
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Reference: Terminology
● Antecedent:
● An expression that introduces an item to the discourse for other items to refer 

back to
● Queen Elizabeth… her
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Reference: Terminology
● Anaphora: An expression that refers back to a previously introduced entity.
● cataphora: Introduction of expression before referent:
● “Even before she saw it, Dorothy had been thinking about…”
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Reference: Terminology
● Anaphora: An expression that refers back to a previously introduced entity.
● cataphora: Introduction of expression before referent:
● “Even before she saw it, Dorothy had been thinking about…”

*Not all anaphora is referential! e.g. “No dancer hurt their knee.”
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the King overcome his speech impediment.



Referring Expressions
● Many forms:
● Queen Elizabeth
● she/her
● the Queen
● HRM
● the British Monarch
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Reference and Model
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Reference Tasks
● Coreference resolution:
● Find all expressions referring to the same entity in a text.
● A set of coreferring expressions is a coreference chain.
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Reference Tasks
● Coreference resolution:
● Find all expressions referring to the same entity in a text.
● A set of coreferring expressions is a coreference chain.

● Pronomial anaphora resolution: 

● Find antecedent for a single pronoun.
● Subtask of coreference resolution
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Other Coreference Approaches
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Data-driven Reference Resolution
● Prior approaches:
● Knowledge-based, hand-crafted (e.g. Hobbs’ Algorithm)

● Surely, there must be ML methods to approach the problem?
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Other kinds of Coreference Models
● Mention-Pair Models
● Treat coreference chain as pairwise decisions (classification task)
● For each NPi, NPj, do they corefer?  YES/NO
● Join together by transitivity
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● Treat coreference chain as pairwise decisions (classification task)
● For each NPi, NPj, do they corefer?  YES/NO
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Other kinds of Coreference Models
● Mention Ranking Models
● For each NPk and all candidate antecedents, which one is the best suggestion?
● Can be thought of as clustering method
● Each entity a different cluster
● Ranking problems, also well-studied category
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Other kinds of Coreference Models
● Entity-Mention Model:
● Posit underlying entities in discourse model
● Each “mention” is linked to a discourse entity
● More theoretically satisfying, but less successful work done on this approach

17
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ML Methods for Coreference Resolution
● Annotated corpora provide ground truth with which to train supervised ML
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ML Methods for Coreference Resolution
● Annotated corpora provide ground truth with which to train supervised ML

● We can take Noun Phrases (NPs) from our corpus and represent them 
as…
● …feature vectors! Hooray!
● You know the drill, what are our features?
● Word embeddings plus…
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Typical Feature Set (Soon et. al, 2001)
● lexical
● String Matching (e.g. Mrs. Clinton ⇔ Clinton)
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Typical Feature Set (Soon et. al, 2001)
● lexical
● String Matching (e.g. Mrs. Clinton ⇔ Clinton)

● grammatical/syntactic
● i-Pronoun, j-Pronoun — Are the NPs pronouns
● Demonstrative, Definite… — Are the NPs a demonstrative, or definite noun phrase
● Agreement — number, gender, animacy 
● appositive (The prime minister of Germany, Angela Merkel…)
● binding constraints
● span, maximal-np, …
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Typical Feature Set (Soon et. al, 2001)
● semantic
● Same semantic class (e.g. Person, Organization, Location, etc)
● Alias (e.g. 1-08-2018, Jan 8)

● positional
● distance between the NPs in terms of # of words/sentences

● knowledge-based
● Naïve pronoun resolution algorithm (Hobbs)

20
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Reference Resolution Algorithms
● Coreference Models with NNs:
● (Clark and Manning, 2016)
● Assign a score to each candidate antecedent
● Each possible candidate also has possible “new referent” symbol
● Also utilize word embeddings + avg embeddings
● Plus ‘manual’ features as well
● Non-RNN, essentially just local classification w/some distributional semantics

21
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Coreference Evaluation
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Coreference Annotated Corpora
● Available Shared Task Corpora
● MUC-6, MUC-7 (Message Understanding Conference)
● 60 documents each, newswire, English
● ACE (Automatic Content Extraction)
● English, Chinese, Arabic
● blogs, newswire, Usenet, broadcast

● Treebanks
● OntoNotes — English, Chinese (Trad/Simp), Arabic
● Used in CoNLL 2012 shared task
● German, Czech, Japanese, Spanish, Catalalan, Medline

23
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Coreference Evaluation
● Which NPs are evaluated? 

● Gold standard tagged?
● Automatically extracted?
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Coreference Evaluation
● Which NPs are evaluated? 

● Gold standard tagged?
● Automatically extracted?

● How good are the coreference chains? 

● Any cluster-based evaluation could be used
● MUC scorer (Vilain et al, 1995)
● F1 for hypothesized vs gold co-reference links
● Problem: Link-based — ignores singletons; penalizes large clusters
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How do the muppets corefer?

25

No significant improvement over
global embedding baseline 
[BERT slightly better]

Liu et al 2019

https://www.aclweb.org/anthology/N19-1112/
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Coreference and World Knowledge
● The trophy doesn't fit into the brown suitcase because it's too [small/large]. What is too [small/

large]? 
● Answers:The suitcase/the trophy.

● Joan made sure to thank Susan for all the help she had [given/received]. Who had [given/
received] help?
● Answers: Susan/Joan.

● Paul tried to call George on the phone, but he wasn't [successful/available]. Who was not 
[successful/available]? 
● Answers: Paul/George.

● The lawyer asked the witness a question, but he was reluctant to [answer/repeat] it . Who was 
reluctant to [answer/repeat] the question?
● Answers: The witness/the lawyer. 
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Winograd Schema Challenge
● Still hard!
● WSC
● Winogrande
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Winograd Schema Challenge
● Still hard!
● WSC
● Winogrande
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Heavily supervised 
(benchmark “saturated” now)
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Questions
● Decent results on (clean) text.     What about…
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Questions
● Decent results on (clean) text.     What about…

● Conversational speech?
● Fragments, disfluencies, etc…

● Dialogue?
● Multiple speakers introduce referents

● Multimodal communication?
● How can entities be evoked in other ways?
● Are all equally salient?

33



Questions
● Other languages?
● Are salience hierarchies the same?
● Syntactic constraints?
● Reflexives in Chinese, Korean…?

● Zero anaphora?
● How do you resolve a pronoun if you can’t find it?
● e.g. “There are two roads to eternity, a straight and narrow, and a broad and 

crooked.”
● Each indefinite here implies a gap [road], that would be anaphoric, but leaves a 

gap

34



Conclusions
● Coreference establishes coherence

● Reference resolution depends on coherence

● Variety of approaches:
● Syntactic constraints, recency, frequency, role

● Similar effectiveness - different requirements

● Coreference can enable summarization within and across documents (and 
potentially languages!), question answering, information retrieval, …

35



Discourse Structure
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Why Model Discourse Structure?
Theoretical Concerns

● Discourse: not just constituent utterances
● Creation of joint meaning
● Context guides interpretation of constituents
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Why Model Discourse Structure?
Theoretical Concerns

● Understanding how discourse is structured:
● What are the units of discourse?
● How do they combine to establish meaning?
● How can we derive structure from surface forms?
● What makes discourse coherent vs. incoherent?
● How do the units of discourse influence reference resolution? 
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Why Model Discourse Structure?
Applied Concerns

● Design better summarization, understanding systems

● Improve speech synthesis (discourse-contextual intonation, emphasis)

● Develop approach for generation of discourse

● Design dialogue agents for task interaction

● Guide reference resolution
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Discourse (Topic) Segmentation
● BBC Global News Podcast 11/26/2018:

● “I’m Valerie Saunderson, and in the early hours of Monday, the 26th of 
November, these are our main stories. || After forty-five years, both parties call 
it a day as Britain’s Brexit agreement is signed off by EU leaders. So, what 
happens next? We hear from our correspondents in Brussels and London.  || 
There’s been a sharp escalation in a Naval dispute near Crimea, with Ukraine 
accusing Russian special forces of seizing three of its vessels || An 
investigation discovers many medical implants haven’t been properly tested 
before they’re put in patients. || Also in this podcast, NASA prepares for 
“seven minutes of terror,” the latest landing on the Red planet [Voice #2:] 
Although we’ve done it before, landing on Mars is hard, and this mission is no 
different. || [Voice #1:] A year and a half after the start of Brexit Negotiations…”
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Discourse Segmentation
● Basic form of discourse structure
● Divide document into linear sequence of subtopics

● Many genres have conventional structures
● Academic: Intro, Hypothesis, Previous Work, Methods, Results, Conclusion
● Newspapers: Headline, Byline, Lede, Elaboration
● Patient Reports: Subjective, Objective, Assessment, Plan

● Can guide summarization, retrieval

41



Cohesion
● Use of linguistic devices to link text units
● Lexical cohesion: Link with relations between words
● Synonymy, Hypernymy
● Peel, core, and slice the pears and apples. Add the fruit to the skillet.
● Nonlexical Cohesion
● e.g. anaphora
● Peel, core, and slice the pears and apples. Add them to the skillet.
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Cohesion
● Use of linguistic devices to link text units
● Lexical cohesion: Link with relations between words
● Synonymy, Hypernymy
● Peel, core, and slice the pears and apples. Add the fruit to the skillet.
● Nonlexical Cohesion
● e.g. anaphora
● Peel, core, and slice the pears and apples. Add them to the skillet.

● Cohesion chain establish link through sequence of words

● Segment boundary = dip in cohesion.
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TextTiling (Hearst, 1997)
● Lexical, cohesion-based segmentation
● Boundaries at dips in cohesion scores
● Tokenization, Lexical cohesion score, Boundary ID

● Tokenization
● Units?
● Whitespace delimited words
● Stopped
● Stemmed
● 20 words = 1 pseudo-sentence

43
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Lexical Cohesion Score
● Similarity between spans of text
● b = ‘Block’ of 10 pseudo-sentences before gap
● a = ‘Block’ of 10 pseudo-sentences after gap
● How do we compute similarity?
● Vectors and cosine similarity (again!)

44
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Segmentation
● Depth Score:
● Difference between position and adjacent peaks
● e.g.
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Embedding-Based Cohesion
● Aggregation:
● Sentence similarity
● Sentence vector:  sum of word embedding vectors

● Pairwise sentence cohesion: 

● Document cohesion: average pairwise cohesion

● Baseline (Xu et al, 2019)
● Train RNN LM
● Compute log likelihood of si with and without preceding context
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Local Coherence Discriminator
● LCD (Xu et al, 2019)
● Coherence of text = average coherence b/t adj pairs
● Supervised model
● Trained to distinguish b/t:
● Adjacent pairs of sentences in training data (pos examples)
● Randomly associated sentence pairs (assumed negative)

● Approach:
● Compute sentence embeddings for s, t
● Concatenate: each vector, diff (s-t); abs diff |s-t|; 

elementwise product
● Train FFN s.t. positive examples score higher than neg

47



LCD
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Coherence Relations & Discourse Structure
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Coherence Relations
    John hid Bill’s car keys. He was drunk.
?? John hid Bill’s car keys. He likes spinach.
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Coherence Relations
    John hid Bill’s car keys. He was drunk.
?? John hid Bill’s car keys. He likes spinach.

● Why is this odd?
● No obvious relation between sentences
● Readers often try to construct relations

● How are the first two related?
● Explanation/cause

● Utterances should have meaningful connection
● Establish through coherence relations

50



Coherence Relations
● Result: Infer that the state or event asserted by S0 causes, or could cause 

the state asserted by S1.
● The Tin Woodman was caught in the rain. His joints rusted.
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Coherence Relations
● Result: Infer that the state or event asserted by S0 causes, or could cause 

the state asserted by S1.
● The Tin Woodman was caught in the rain. His joints rusted.

● Explanation: Infer that the state or event asserted by S1 causes or could 
cause the state or event asserted by S0.
● John hid Bill’s car keys. He was drunk.

● Parallel: Infer p(a1,a2,…) from the assertion of S0 and p(b1,b2,…) from 
the assertion of S1, where ai and bi are similar, for all i.
● The Scarecrow wanted some brains. The Tin Woodman wanted a heart.
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Coherence Relations
● Elaboration: Infer the same proposition P from the assertions of S0 and 

S1.
● Dorothy was from Kansas. She lived in the midst of the great Kansas prairies.
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Coherence Relations
● Elaboration: Infer the same proposition P from the assertions of S0 and 

S1.
● Dorothy was from Kansas. She lived in the midst of the great Kansas prairies.

● Occasion: A change of state can be inferred from the assertion of S0 
whose final state can be inferred from S1, or a change of state can be 
inferred from the assertion of S1.
● Dorothy picked up the oil-can. She oiled the Tin Woodman’s joints.
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Coherence Relation Hierarchy
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S1 – Armin went to the bank to deposit his paycheck
S2 – He then took a train to Kim’s car dealership.
S3 – He needed to buy a car.
S4 – The company he works for now isn’t near any public transportation.
S5 – He also wanted to talk to Kim about their softball league.

Adapted from J&M 2nd ed p. 690
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S1 – Armin went to the bank to deposit his paycheck
S2 – He then took a train to Kim’s car dealership.
S3 – He needed to buy a car.
S4 – The company he works for now isn’t near any public transportation.
S5 – He also wanted to talk to Kim about their softball league.

● This discourse isn’t linear

● Primarily about S1, S2
● S3-S5 relate to different parts of S1, S2

Adapted from J&M 2nd ed p. 690



Coherence Relation Hierarchy
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S1 – Armin went to the bank to deposit his paycheck
S2 – He then took a train to Kim’s car dealership.
S3 – He needed to buy a car.
S4 – The company he works for now isn’t near any public transportation.
S5 – He also wanted to talk to Kim about their softball league.

EXPLANATION (e1)
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OCCASION (e1;e2)

S1 (e1)

S2 (e2) PARALLEL (e3;e5)

EXPLANATION (e3) S5 (e5)

S3 (e3) S4 (e4)

S1 – Armin went to the bank to deposit his paycheck
S2 – He then took a train to Kim’s car dealership.
S3 – He needed to buy a car.
S4 – The company he works for now isn’t near any public transportation.
S5 – He also wanted to talk to Kim about their softball league.

Adapted from J&M 2nd ed p. 690
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OCCASION (e1;e2)

S1 (e1) EXPLANATION (e1)

S2 (e2) PARALLEL (e3;e5)

EXPLANATION (e3) S5 (e5)

S3 (e3) S4 (e4)

S1 – Armin went to the bank to deposit his paycheck
S2 – He then took a train to Kim’s car dealership.
S3 – He needed to buy a car.
S4 – The company he works for now isn’t near any public transportation.
S5 – He also wanted to talk to Kim about their softball league.

Adapted from J&M 2nd ed p. 690



Coherence Relations: 
The Penn Discourse Treebank (PDTB) (Prasad et al, 2008)

● “Theory-neutral” discourse model
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Coherence Relations: 
The Penn Discourse Treebank (PDTB) (Prasad et al, 2008)

● “Theory-neutral” discourse model

● No stipulation of overall structure, local sequence relations

● U.S. Trust, a 136-year-old institution that is one of the earliest high-net 
worth banks in the U.S., has faced intensifying competition from other firms 
that have established, and heavily promoted, private-banking businesses 
of their own. As a result, U.S. Trust’s earnings have been hurt.
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Coherence Relations: 
The Penn Discourse Treebank (PDTB) (Prasad et al, 2008)

● “Theory-neutral” discourse model

● No stipulation of overall structure, local sequence relations

● U.S. Trust, a 136-year-old institution that is one of the earliest high-net 
worth banks in the U.S., has faced intensifying competition from other firms 
that have established, and heavily promoted, private-banking businesses 
of their own. As a result, U.S. Trust’s earnings have been hurt.

● PDTB annotation links S1 to S2 by way of connective
● Provides sense label
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Coherence Relations: 
The Penn Discourse Treebank (PDTB) (Prasad et al, 2008)

● Discourse units (sentential, or sub-sentential) marked in pairs:
● Arg1, Arg2
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● Explicit Relations:
● triggered by lexical markers (‘but’, ‘as a result’) between spans
● Arg2 syntactically bound to connective unit,  Arg1
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Coherence Relations: 
The Penn Discourse Treebank (PDTB) (Prasad et al, 2008)

● Discourse units (sentential, or sub-sentential) marked in pairs:
● Arg1, Arg2

● Explicit Relations:
● triggered by lexical markers (‘but’, ‘as a result’) between spans
● Arg2 syntactically bound to connective unit,  Arg1

● Implicit Relations:
● Adjacent sentences assumed related
● Arg1: first sentence (can be anywhere in discourse)
● Arg2: second sentence, in linear sequence
● Annotators provide implicit discourse unit, label

60
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PDTB

● PDTB corpus: 18K explicit relations; 16K implicit

● Also Chinese Discourse Treebank,

●   ~ half as many explicit discourse connectives 61



Shallow Discourse Parsing
● For extended discourse

● …for each clause/sentence pair in sequence

● …identify discourse relation, Arg1, Arg2

● CoNLL15 Shared task Results:
● 61% overall (55% blind test)
● Explicit discourse connectives: 91% (76% blind test)
● Non-explicit discourse connectives: 34% (36% blind test)
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Basic Methodology
● Pipeline:

1. Identify discourse connectives
2. Extract arguments for connectives (Arg1, Arg2)
3. Determine presence/absence of relation in context
4. Predict sense of discourse relation
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Basic Methodology
● Pipeline:

1. Identify discourse connectives
2. Extract arguments for connectives (Arg1, Arg2)
3. Determine presence/absence of relation in context
4. Predict sense of discourse relation

● Resources: Brown clusters, lexicons, parses

● Approaches:
● 1,2: Sequence labeling techniques
● 3,4: Classification (4: multiclass)
● Some rule-based or most common class
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Relation Classification
● Basic task:
● Given pair of adjacent sentences, give coherence relation 

sense label

● Approaches:
● Employ BoW or sentence embeddings of sentence pairs
● Pass through some classifier

● Strong approach: (Nie et al, 2019)
● Represent spans with BERT contextual embeddings
● Take last layer hidden state for position of <CLS> token 
● Run through 1-layer FFN + softmax for classification

● Other steps use sequence models, heuristics
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Identifying Relations
● Key source of information:
● Cue phrases
● aka: discourse markers, cue words, clue words
● although, but, for example, however, yet, with, and…
● John hid Bill’s keys because he was drunk
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Identifying Relations: Issues
● Ambiguity: discourse vs. sentential use
● With its distant orbit, Mars exhibits frigid weather.
● We can see Mars with a telescope.
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Identifying Relations: Issues
● Ambiguity: discourse vs. sentential use
● With its distant orbit, Mars exhibits frigid weather.
● We can see Mars with a telescope.

● Ambiguity: cue multiple discourse relations
● Because: CAUSE, or EVIDENCE
● But: CONTRAST, or CONCESSION

● Sparsity:
● Only 15-25% of relations marked by cues
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Entity-Based Coherence and Centering 
Theory

67



Entity-Based Coherence
John went to his favorite music store to buy a piano.
He had frequented the store for many years.
He was excited that he could finally buy a piano.

● Versus:
John went to his favorite music store to buy a piano.
It was a store John had frequented for many years.
He was excited that he could finally buy a piano.
It was closing just as John arrived.

● Which is better? Why?
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Entity-Based Coherence
John went to his favorite music store to buy a piano.
He had frequented the store for many years.
He was excited that he could finally buy a piano.

● Versus:
John went to his favorite music store to buy a piano.
It was a store John had frequented for many years.
He was excited that he could finally buy a piano.
It was closing just as John arrived.

● Which is better? Why?
● First focuses on a single entity
● Second interleaves entities John and the music store

68



Centering Theory
● Entity-based coherence is inspiration for Centering theory (Grosz et al, 

1995)
● Explicitly encodes a discourse model
● Different entities are uniquely “centered” at different points in discourse
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Centering Theory Details
● Two adjacent utterances:
● Un 

● Un+1 

● Two ideas of “centers”
● backward-looking center  — Cb(Un) 

● forward-looking centers   — Cf(Un)
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Centering Theory Details
● backward-looking center  — Cb(Un) 

● The entity that is currently being focused (“centered”) after Un is interpreted 

● forward-looking centers   — Cf(Un) 

● A list of all entities mentioned in Un which could be focused in subsequent utterances
● Order with precedence list:
● subject > existential predicate nominal > object > indirect object or oblique > 

demarcated adverbial PP 

● Cp — shorthand for highest-ranked forward-looking candidate
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Centering Theory Hand-wavy Algorithm
● John saw a beautiful 1961 Ford Falcon at the used car dealership. (U1)

● He showed it to Bob. (U2) 

● He bought it. (U3)
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Cp(U1): John 

Cb(U1): undefined



Centering Theory Hand-wavy Algorithm
● John saw a beautiful 1961 Ford Falcon at the used car dealership. (U1)

● He showed it to Bob. (U2) 

● He bought it. (U3)
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Processing U2

Cf(U1): {John, Ford, dealership}
Cp(U1): John 

Cb(U1): undefined

he=John, it=Ford



Centering Theory Hand-wavy Algorithm
● John saw a beautiful 1961 Ford Falcon at the used car dealership. (U1)

● He showed it to Bob. (U2) 

● He bought it. (U3)
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After U2

Cf(U2): {John, Ford, Bob}
Cp(U2): John 
Cb(U2): John



Computational Discourse: 
Summary

● Cohesion
● Modeled with linking lexical terms and thematic overlap

● Coherence
● Determine relevance of discourse units to one another
● Can add structure to discourse to model relations and their importance
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Computational Discourse: 
Key Tasks

● Reference resolution
● Constraints and preferences
● Heuristic, learning and sieve models

● Discourse structure modeling
● Linear topic segmentation
● Shallow discourse parsing
● Also see: Rhetorical Structure Theory (RST)
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