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CKY Parsing: Backpointers



Current CKY Algorithm

Limitations:

Only stores non-terminals in cell
Not rules or cells corresponding to RHS

Stores SETS of non-terminals
Multiple rules with same LHS collide

Currently only acceptance/recognition
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Backpointers

e Instead of list of possible nonterminals for that node, each cell should
have:

e Nonterminal for the node

e Pointer to left and right children cells
e Either direct pointer to cell, or indices

For example:

bp 2 = BackPoilinter()
bp 2.1 child = [X2, (1,4)]
bp 2.r child = [PP, (4,6)]
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CKY Parser

e Pair each nonterminal with back-pointer to cells
from which it was derived

e |Last step:

e construct trees from back-pointersin | 0, n |
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Pronoun -----

Verb, VP, S
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wwe Toammmnn
B

bp 1 = BackPointer()
bp_l.r_chlld = [ PP, (4,6)] w-
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wne CoIRNL
B I

bp 2 = BackPointer ()
bp_2.r_chlld = [ PP, (4,6)] w-
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Resulting Parses

S S
/\ /\
NP VP NP VP
| Verb NP [ X2 PP
Prefer Det Nom Verb NP on TWA
a Nom PP Prefer Det Nom
| PN | |
fisht on TWA a Noun

|
flight



CKY Discussion

e Running time:
e O(n3) where n is the length of the input string

e |nner loop grows as square of # of non-terminals

® EXxpressiveness:

e As implemented, requires CNF
e \Weak equivalence to original grammar
e Doesn’t capture full original structure
e Back-conversion?

e (Can do binarization, terminal conversion

e Unit productions requires change in CKY
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CKY + Back-pointers Example
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cky table[0,6][S] = { Pr:'n’:;un
}
--

N

NP VP

[ brefer a flight on TWA
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= {(NB, (0,1),

NP,
VP, (1,6))} Pronoun
| ) "-
| ﬂ

cky_table[0,6]///

I brefer a flight on TWA
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cky_table[0,6][$ (0,1),0 Ll

(1,6)): Pronoun
(11[NP] = {(‘I")}

) 1

(X2, (1,4),
PP, (4,0))}

cky table ]
cky table[1l,6]]

[ brefer a flight on TWA
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cky table[0O,6][S] = {(NP, (O0,1),

NP,
VP, (1,6)): Pronoun
= {('I")} Verb, VP, S VP, X2, S
, (1,2),
@ 0 “

cky table[0,1]]
cky table[1,6][V

VP, X2, S

(X2, (1,4),
PP, (4,6))} :
cky_table[1,2][Verb] = {(’'prefer’)}

PN
NP VP
AN

| Verb NP

|
brefer

[ brefer a flight on TWA
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cky table[0,6][S] = {(NP, (0,1), PNP,
VP, (1,6)) ronoun

cky_table[0,1][NP] = {(‘I")} Verb, VP, S
cky table[l,6][VP] = rb, (1,2),
r (2,6)),

(X2, (1,4),
PP, (4,0))}

cky table[2,6][NP] =

prefer Det Nom

[ brefer a flight on TWA
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VP, (1,6)).
cky table[l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
PP, (4,6))} S

VP, X2, S

cky table[l,2][V
cky table[2,6]

(‘prefer’)}

, (2,3), T

Nom, (3,6)} NP VP

cky_table[2,3][-] = {('a’")} ‘ /\

| Verb NP

N

prefer Det Nom

da

[ brefer a flight on TWA
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VP, (1,6)).
cky table[l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
PP, (4,6))} S

VP, X2, S

cky table[l,2][V
cky table[2,6]

(‘prefer’)}

, (2,3), T

Nom, (3,6)} NP VP

cky_table[2,3][-] = {('a’")} ‘ /\

| Verb NP

N

prefer Det Nom

da

[ brefer a flight on TWA
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cky table[0,6][S] = {(NP, (0,1), r>NR
VP, (1, 6) ) ronoun

cky table[0,1][NP] = {(‘'I")}
cky table[l,6][VP] = {RYisc iy
NP, (2,6))

Verb, VP, S

) }

[ brefer a flight on TWA
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Probabilistic Context-Free Grammars



Probabilistic Context-free Grammars:
Roadmap

Motivation: Ambiguity
Approach:

Definition
Disambiguation
Parsing
Evaluation

Enhancements



Motivation

What about ambiguity?

Current algorithm can represent it

...can’t resolve It.



Probabilistic Parsing

e Provides strategy for solving disambiguation
problem

e Compute the probability of all analyses

e Select the most probable

e Employed in language modeling for speech
recognition

e N-gram grammars predict words, constrain search

e Also, constrain generation, translation
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PCFGs: Formal Definition

a set of non-terminal symbols (or variables)
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PCFGs: Formal Definition

N a set of non-terminal symbols (or variables)

D a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — pf|p|, where A is a non-terminal where

R Aisanon-terminal, f is a string of symbols from the infinite set of strings (X UN)* and p
is a number between 0 and 1 expressing P(p|A)
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PCFGs: Formal Definition

N a set of non-terminal symbols (or variables)

D a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — pf|p|, where A is a non-terminal where

R Aisanon-terminal, f is a string of symbols from the infinite set of strings (X UN)* and p
is a number between 0 and 1 expressing P(p|A)

S a designated start symbol
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PCFGs

e Augment each production with probability that LHS
will be expanded as RHS

o P(A=p)

o P(A—p|A)

o P(plA)

o P(RHS| LHS)

e NB: the first is often used; but the latter are what’s
really meant.



PCFGs

e Sum over all possible expansions is 1
) PA—p)=1
p

e APCFG is consistent if sum of probabilities of all sentences in language
IS 1

e Recursive rules often yield inconsistent grammars (Booth & Thompson, 1973)
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https://dl.acm.org/citation.cfm?id=1310632

Example PCFG: Augmented £,

S— NP VP
S — Aux NP VP
S—= VP
NP — Pronoun
NP — Proper-Noun
NP = Det Nominal
NP — Nomainal
Nominal = Noun
Nominal = Nominal Noun
Nomainal = Nominal PP
VP — Verb
VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — Verb NP NP
VP — VP PP
PP — Preposition NP

.80
15
05
35
30
20
15
75
20
05
35
20
10
15
05
15
1.0

Det = that |.10] | a [.30] | the |.60]
Noun = book |.10| | flight |.30| | meal |.15| | money [0.5]
| flights 10.40| | dinner |.10|
Verb = book |.30| | include [.30] | prefer |.40]
Pronoun — I [.40| | she |.05]| | me |.15] | you [.40]
Proper-Noun — Houston [.60| | NWA |.40|
Auz = does |.60| | can |.40|
Preposition = from |.30| | to |.30] | on |.20| | near |.15]
| through |.05]
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Example PCFG: Augmented £,

S— NP VP
S — Aux NP VP
S—= VP
NP — Pronoun
NP — Proper-Noun
NP — Det Nominal
NP — Nominal
Nominal = Noun
Nominal = Nominal Noun
Nomainal = Nominal PP
VP — Verb
VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — Verb NP NP
VP — VP PP
PP — Preposition NP

.80
15
05
35
130
20
15
75
20
05
35
20
10
15
05
15
1.0

Det = that |.10] | a [.30] | the |.60]
Noun = book |.10| | flight |.30| | meal |.15| | money [0.5]
| flights 10.40| | dinner |.10|
Verb = book |.30| | include [.30] | prefer |.40]
Pronoun — I [.40| | she |.05]| | me |.15] | you [.40]
Proper-Noun — Houston [.60| | NWA |.40|
Auz = does |.60| | can |.40|
Preposition = from |.30| | to |.30] | on |.20| | near |.15]
| through |.05]
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Disambiguation

e A PCFG assigns probability to each parse tree T for input S

e Probability of T product of all rules used to derive T
P(T,S) = | | P(RHS,| LHS))
=1

P(T.,S) = P(T)P(S|T) = P(T)
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S

/\
NP VP
| ] T
Pron Verb NP PP

| | T PN
I prefer Det Nom P NP

| | | |
a Noun on NNP

| |

flight TWA
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP PP 0. 1]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]

S
/\
NP
| _— T
Pron Verb NP
] prefer Det Nom
/\
Noun PP
N
flight P NP
| |
S = NPVP [0.8] on NNP
NP — Pron [0.35] |
Pron — | 0.4] TWA
VP =V NP 0.2]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3
Nom — Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]
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S

/\
NP VP
| ] T
Pron Verb NP PP

| | N N
I prefer Det Nom P NP

| | | |
a Noun on NNP

| |

flight TWA
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP PP 0. 1]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]
~1.452 x |06

S
/\
NP VP
| _— T
Pron Verb NP
] prefer Det Nom
/\
a Noun PP
| N
flight P NP
| |
S = NPVP [0.8] on NNP
NP — Pron [0.35] |
Pron — | 0.4] TWA
VP =V NP 0.2]
V — prefer 0.4]
NP — Det Nom 0.2]
Det = a 0.3
Nom — Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]

~1.452 x [0~/

YA/ UNIVERSITY of WASHINGTON

31



Parsing Problem for PCFGs

e Select T such that (s.t.)
1(S) = argmax P(T)
T s.t. S=yield(T)

e String of words S'is of parse tree

e Select the tree | that maximizes the probability of the parse



Application:
Language Modeling

e n-grams helpful for modeling the probability of a string
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Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

e Must use 10+-grams... too sparse
P(Wi—l’ Wi)

P(w;_y)

e Approximate using conditioning on limited context: P(w.|w._,) =

e PCFGs are able to give probability of entire string without as bad sparsity

e Model probabillity of syntactically valid sentences

e Not just probability of sequence of words



PCFGs: Parsing
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Probabilistic CKY (PCKY)

e Like regular CKY

e Assumes grammar in Chomsky Normal Form (CNF)
o A > BC(C
o A w

e Represent input with indices b/t words:
® , Book : that . flight ; through . Houston s



Probabilistic CKY (PCKY)

e For input string length n and non-terminals V
o Cell[/,j,A]lin( n+1) x ( n+1) x V matrix

e (Contains probability that A spans [i, J]
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PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j « from 1 to LENGTH(words) do

for all { A | A = words[j| € grammar }
table| -1, 5, A | « P(A = words[j/)
for : « from 32 downto 0 do
for K< 1+ 1 to -1 do
for all { A| A = B C e grammar,
and tableli, k, B| > 0 and table| k, j, C'| > 0 }
if (table| i, j, A | < P(A = BC )xtable| i, k, B |xtable| k,j,C |) then
table| 1, 3, A | &+ P(A — BC )xtable|i,k,B|xtable|k,j,C]
back| i, 5, A| < { k, B, C}
return BUILD TREE(back| 1, LENGTH(words), S |), table] 1,LENCGTH(words), S |
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PCKY Algorithm
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PCKY Grammar Segment

S— NP VP [0.80] Det = the [0.40]
NP — Det N [0.30] Det — a [0.40]
VP = V NP [0.20] V = includes [0.05]

N — meal [0.01]
N — flight [0.02]



S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det & a  |0.40]
V' = includes [0.05]
N = meal [0.01]
N = flight  [0.02]

0

PCKY Matrix

The fligh
I

t includes a meal

2

3

4

YA/ UNIVERSITY of WASHINGTON
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PCKY Matrix

S — NP VP [0.80]
NP = Det N [0.30]
VP = V NP [0.20]

Det = the |0.40]
Det & a  |0.40]
V' = includes [0.05]
N = meal [0.01]

W~ fight  |[0102]

The - includes a meal

0 | 2 3 4 5
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PCKY Matrix
S — NP VP [0.80]

Det — 0.4
- on o2
VP = V NP [0.20] e
P

Det = the |0.40] -

Det & a  |0.40]
V' = includes [0.05]
N = meal [0.01]
N = flight  [0.02]

The flight includes a meal
0 | 2 3 4 5
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PCKY Matrix
S — NP VP [0.80]

Det — 04
NP -+ Det N [0:30]
VP = V NP [0.20]
N —0.02

R T

0 | 2 3 4 5

Det = a  |0.40]
V' = includes [0.05]
N = meal [0.01]
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PCKY Matrix

Det-0.4 NP
[0, 1] [0,2]

S — NP VP [0.80]

R

VP = V NP [0.20] e

Det = a  |0.40]

V' = includes [0.05]
N - meal [0.01] P =08 040102 = 0.00024

N flight - [0.02] The flight includes a meal

0 | 2 3 4 5




PCKY Matrix
S — NP VP [0.80]

Det — 0.4 NP — 0.0024
NP ~ Det N [0.30] on o2
VP — V NP [0.20]
N —0.02
P = '
Det = the  [0.40] ---
Det & a  |0.40]
V' = includes [0.05]

N — meal [0.01] P =[0i§-04 002 = 0.00024

N flight 10021 The flight includes a meal -

0 | 2 3 4 5
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S— NP VP
NP — Det N
VP — V NP

Det — the
Det = a
IV — Includes
N — meal
N — flight

0.80]
0.30]
0.20]

10.40)
10.40)
0.05)
0.01]
0.02)

0

The flight includes a meal

PCKY Matrix

Det - 0.4 NP — 0.0024
[0, 1] [0,2] [0,3] [0,4]

2

N —0.02

[1,2] [1,3] [1,4]
V —-0.05

[2,3] [2,4]

3

4

Det—-0.4
[3,4]

5

S—2.304x%]0-3

[0,5]

VP — 1.2x]0-

[2,5]
NP —0.0012

[3,5]
NE]

[4,5]
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Inducing a PCFQG
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e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f)
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Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f)

Count(a — p)  Count(a — p)
Zy Count(a — y)  Count(@)

Pla = fla) =
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Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e [o compute probability of a rule, count:
e Number of times a nonterminal is expanded: 33, Count(a—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f)

Count(a — p)  Count(a — p)
Z}, Count(a — y)  Count(@)

Pla = fla) =

e Alternative: Learn probabilities by re-estimating
o (Later)
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Probabilistic Parser Development Paradigm

Large Small Small/Med
(eg.WS§| 2-21, (e.g. WSJ, 23,
39,830 sentences) (e.8: W3] 22) 2,416 sentences)
Estimate rule  Tuning/Verification, Held Out,

probabilities Check for Overfit  Final Evaluation

YA/ UNIVERSITY of WASHINGTON 46



Parser Evaluation
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e How can we tell how good a parse is?
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Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

e Partial credit:
e Constituents in output match those in reference

e Same start point, end point, non-terminal symbol

YA/ UNIVERSITY of WASHINGTON 48



Parseval

e How can we compute parse score from
constituents?

e Multiple Measures:

# of correct constituents in hypothetical parse

Labeled Recall (LR) =
(LR) # of total constituents in reference parse

# of correct constituents in hypothetical parse
Labeled Precision (LP) = YP p

# of total consituents in hypothetical parse
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Parseval

e F-measure:
e Combines precision and recall

R
o LetpeR, p > 0thatadjusts Pvs. Rs.t. ﬁoc;

e [Fs-measure is then: Fy=(1 + (%) -

p?-P+R
2PR

P+ R

e With F1-measure as F, =
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Evaluation: Example
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Evaluation: Example

Hypothesis
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NP VP
>(0.4) | PN
NP(O,1) A B NP
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Reference

Evaluation: Example

S(0,4)
NP(0, 1)
VP(1,4)
NP(2,3)

Hypothesis

S

N

NP

|
A

|
a

5(0,4)
NP(0, 1)
VP(1,4)
NP(2,4)
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Evaluation: Example

5(0,4)
NP(0, 1)
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NP(2,3)
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Reference

Evaluation: Example

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,3)
PP(3,4)

LP: 4/5
LR: 4/5
Fi: 4/5

Hypothesis
S

N
NP VP

|
A

|
a

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,4)
PP(3,4)



Parser Evaluation

e Crossing Brackets:

e # of constituents where produced parse has bracketings that overlap for the
siblings:

‘ ((A B) C) E— { (0,2), (2,3) } /* crossing is counted based on the brackets x*/
/* in test rather than gold file (by Mike) x/
and hyp. haS for(j=0;j<bn2;j++){
for(i=0;i<bnl; i++){
(A (B C)) - { (0,1 ), (1 ’ 3) } ngtbracl::e;[i;fresult I= 5 &&

bracket2[j]l.result != 5 &&
((bracketl[il.start < bracket2[j]l.start &&
bracketl[i]l.end > bracket2[jl.start &&

TOP TOP bracketl[il.end < bracket2[jl.end) ||

(bracketl[i].start > bracket2[j].start &&

bracketl[i].start < bracket2[jl.end &&
/\ /\ bracketl[il.end > bracket2[j].end))){
A C from evalb.c
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State-of-the-Art Parsing

e Parsers trained/tested on Wall Street Journal PTB
e LR: 94%+;
o LP: 94°/o+;

e Crossing brackets: 1%

e Standard implementation of Parseval:

® evalb



Evaluation Issues

e Only evaluating constituency

e There are other grammar formalisms:
e LFG (Constraint-based)

e Dependency Structure

e EXxtrinsic evaluation

e How well does getting the correct parse match the
semantics, etc?
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Earley Parsing

NNNNNNNNNNNNNNNNNNNNNN



Earley vs. CKY

e CKY doesn’t capture full original structure
e (Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY
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Earley vs. CKY

e CKY doesn’t capture full original structure
e (Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY

e Earley algorithm
e Supports parsing efficiently with arbitrary grammars
e [op-down search
e Dynamic programming
e [abulated partial solutions

e Some bottom-up constraints

YA/ UNIVERSITY of WASHINGTON 56



Earley Algorithm

e Another dynamic programming solution
e Partial parses stored in “chart”

e Compactly encodes ambiguity
o O(N3)

e Chart entries contain:
e Subtree for a single grammar rule
e Progress in completing subtree

e Position of subtree w.r.t. input
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Earley Algorithm

o First, left-to-right pass fills out a chart with N+17 states
e Chart entries — sit between words in the input string
e Keep track of states of the parse at those positions

e For each word position, chart contains set of states representing all partial parse
trees generated so far

® €.0. chart[ 0] contains all partial parse trees generated at the beginning of
sentence
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Chart Entries

e Three types of constituents:
e Predicted constituents
® In-progress constituents

e Completed constituents



Parse Progress

e Represented by Dotted Rules

e Position of - indicates type of constituent

e o Book 1 that 2 flight 3

o S— VP [0,0] (predicted)
e NP — Dets Nom [1,2] (in progress)
o VP—-> VNP- [0,3] (completed)

e [Xx,y] tells us what portion of the input is spanned so far by rule

e Each state si: <dotted rule>, [<back pointer>, <current position>}



o Book 1 that » flight 3

o S— - VP, [0,0]
e First 0 means S constituent begins at the start of input
e Second 0 means the dot is here too

® 50, this is a top-down prediction
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o Book 1 that » flight 3

o S— - VP, [0,0]
e First 0 means S constituent begins at the start of input
e Second 0 means the dot is here too

® 50, this is a top-down prediction

e NP — Det- Nom, [1,2]
e the NP begins at position 1
e the dot is at position 2
e s0, Det has been successfully parsed

e Nom predicted next
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o Book 1 that 2 flight 3 (continued)

e VP> VNP-[03]

e Successful VP parse of entire input

VP = V NP«

NP — Det * Nominal

S— VP /\

Book that flight

0 I 2 3



Successful Parse

e Final answer found by looking at last entry in chart
e If entry resembles S — a - [O,N] then input parsed successfully

e Chart will also contain record of all possible parses of input string, given
the grammar



Parsing Procedure for the Earley Algorithm

e Move through each set of states in order, applying one of three operations:
e predictor: add predictions to the chart
® scanner: read input and add corresponding state to chart

e completer: move dot to right when new constituent found
e Results (new states) added to current or next set of states in chart

e No backtracking and no states removed: keep complete history of parse



Earley Algorithm

function EARLEY-PARSE(words, grammar) returns chart
ENQUEUE((y— e S, [0,0]), chart|0])
for i — from 0 to LENGTH(words) do

for each state in chart|i| do
if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then
(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) is a part of speech then

(state)
else
(state)
end
end

return(chart)
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Earley Algorithm

procedure ((A—a e Bp, [i,j])
for each (B — v) in GRAMMAR-RULES-FOR(B,grammar) do

ENQUEUE((B—e y, [1.j/), chart/j])
end

procedure (A = a e Bpf/ij))
if B ¢ PARTS-OF-SPEECH(word/j/) then

ENQUEUE((B — word[j| e, [,5+1]), chart[j+1] )

procedure (B = ye, [1,k]))
for each (A & a e B B, [i,7]) in chart[j] do
ENQUEUE((A — a Be f, [i,k]), chart[k])

end
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3 Main Subroutines of Earley

e Adds predictions into the chart
e Reads the input words and enters states representing those words into the chart

e Moves the dot to the right when new constituents are found



Predictor

e Intuition:

e Create new state for top-down prediction of new phrase

e Applied when non part-of-speech non-terminals are to the right of a dot:
o S— - VPIO,0]

e Adds new states to current chart

e One new state for each expansion of the non-terminal in the grammar
VP — -V 10,0]
VP — « V NP [0,0]
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S0

S
S2
S3

o4
S5
S6

S7
S8
S9
S10
S11

y =S

S— NP VP
S — + Aux NP VP
S— - VP

NP -
NP -
NP -

VP —
VP —
VP -
VP —
VP —

* Pronoun
» Proper-Noun
 Det Nominal

 Verb

- Verb NP

- Verb NP PP
- Verb PP

* VP PP

Chart[0]

[0,0]

[0.0]
0,0]
0,0]

[0,0]
0,0]
[0,0]

[0,0]
0,0]
0,0]
[0,0]
0,0]

Dummy start state

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor
Predictor
Predictor
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S12

S13
S14
S15
S16

S17
>18
S19
S20

S21
S22

Verb = book

VP — Verb -

VP — Verb - NP
VP — Verb - NP PP
VP — Verb <« PP

S—» VP-

VP - VP - PP

NP — - Pronoun

NP — - Proper-Noun

NP — « Det Nominal
PP — * Prep NP

Chart|1]

[0,1]

[0,1]
[0,1]
[0,1]
[0,1]

[0,1]
[0,1]
[1,1]
[1,1]

[1,1]
[1,1]

Scanner

Completer
Completer
Completer
Completer

Completer
Completer
Predictor
Predictor

Predictor
Predictor
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S0: y— + S[0,0]

Book that flight

~

N
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SO0: y— - S[0,0]
S3: S— < VPJ[0,0]

Book that flight

y

S

« VP
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SO0: y— - S[0,0]
S3: S— < VPJ[0,0]
S8: VP — - Verb NP [0,0]

Book that flight

y

S
VP

°Verb NP
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SO0: y— - S[0,0]

S3: S— - VP[0,0]

S8: VP — - Verb NP [0,0]
S12: Verb — -« book [0,0]

Book that flight

Y

S
VP
Verb NP

* book



SO0: y— - S[0,0]

S3: S— - VP[0,0]

S8: VP — - Verb NP [0,0]
S12: Verb — book - [0,1]

Book that flight

Y

S
VP
Verb NP

book



SO0: y— - S[0,0]
S3: S— < VPJ[0,0]
S8: VP — Verb « NP [0,1]

Book that flight

Y

S
VP
Verbe NP

book
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SO0: y— - S[0,0]
S3: S— VP -[0,1]
S8: VP — Verb - NP [0,1]

Book that flight

Y

S
VP
Verb NP

book
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Book that flight

S0: y =+ S[0,0] A
S3: S— VP -[0,1]
S8 VP — Verb - NP [0’1] >
S21: NP — + Det Nominal [1,1]
VP
Verb NP

book ¢ Det Nominal



Book that flight

S0: y— + SJ[0,0] !
S3: S— VP -[0,1]
S8: VP — Verb - NP [0’1] >

S21: NP — + Det Nominal [1,1]

823 Det —> o “that”['l,ﬂ VP

Verb NP

book Det Nominal

e that



Book that flight

S0: y— + SJ[0,0] !
S3: S— VP -[0,1]
S8: VP — Verb - NP [0’1] >

S21: NP — + Det Nominal [1,1]

S23: Det — ‘“that”* [1,2] VP

Verb NP

book Det Nominal

that e



Book that flight

SO0: y— + S[0,0] g
S3: S— VP -[0,1]
S8: VP — Verb - NP [0,1] S
S21: NP — Det - Nominal [1,2]
VP
Verb NP

book Dete Nominal

that



Book that flight

SO0: y— -+ S[0,0] Y
S3: S— VP -[0,1]
S8: VP — Verb « NP [0,1] S

S21: NP — Det - Nominal [1,2]
S25: Nominal — + Noun [2,2]

Verb NP

book Det Nominal

that * Noun



BOOK th;zt flight

SO0: y— - S[0,0]
S3: S— VP -[0,1]
S8: VP — Verb - NP [0,1]
S21: NP — Det - Nominal [1,2]
S25: Nominal = « Noun [2,2] VP
S28: Noun — “flight” - [2,3]

Verb NP

book Det Nominal

that Noun

flight *



BOOK th;zt flight

SO0: y— - S[0,0]
S3: S— VP -[0,1]

S
S8: VP — Verb + NP[0,1]
S21: NP — Det - Nominal [1,2]
S25: Nominal = Noun - [2,3] VP
Verb NP

book Det Nominal

that Noun ¢

flight



BOOK th;zt flight

SO0: y— - S[0,0]
S3: S— VP -[0,1]
S8: VP — Verb - NP [0,1]

S21: NP — Det Nominal < [1,3]
VP

Verb NP
book Det Nominal ¢

that Noun

flight



SO0: y— - S[0,0]
S3: S— VP -[0,1]
S8: VP — Verb NP - [0,3]

BOOK th;zt flight

S
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SO0: y— « S[0,0]
S3: §S— VP - [0,3]

BOOK th;zt flight

S
VP o
Verb NP
book Det Nominal

that Noun

flight



What About Dead Ends?
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SO0: y— - S[0,0]
S1: S— - NP VP[0,0]

NP — « Pronoun
NP — « Proper-Noun
NP — « Det Nominal

Book that flight

« NP

book

y

S

VP



SO0: y— - S[0,0]
S1: S— - NP VP|[0,0]

Book that flight

y

S

NP VP

book
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What About Recursion?
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What about recursion?
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What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?



What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end
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What about recursion?

e \We now have a top-down parser in hand. Does it enter infinite loops on
rules like S -> S ‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end

EXxercise: parse ‘table and chair’ using the very simple grammar
Nom -> Nom ‘and’ Nom | ‘table’ | ‘chair’
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