
Feature-based Parsing
+ 

Computational Semantics
LING 571 — Deep Processing for NLP

Shane Steinert-Threlkeld

1

Announcements
● HW3 et al:
● Readme: TXT or PDF file extension please
● Graceful degradation / no parses

2

Announcements
● No improvements (e.g. upper/lower-case) in first 3 parts of assignment
● Parser will miss some sentences :)

● In shell script for part 5: hard code full paths to evalb and parses.gold

● Example grammars: toy.pcfg (UPDATED!) is gold induced from
toy_output.txt; example_induced.pcfg is NOT a gold reference

● Parent annotation and evaluation:
● Splitting non-terminals = introducing new ones, may not be in gold/eval data
● For this assignment, need to “de-parent” your parses at the end

● Note on underflow:

3

log∏
i

Pi = ∑
i

log Pi

Ambiguity of the Week

4http://corenlp.run/

http://corenlp.run/

Ambiguity of the Week

4http://corenlp.run/

http://corenlp.run/

Ambiguity of the Week

4http://corenlp.run/

http://corenlp.run/

Roadmap
● Feature-based parsing

● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

5

Computational Semantics

6

Dialogue System
● User: What do I have on Thursday?

7

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!

7

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

7

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

● System:
● Great, but what do I DO now?

7

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

● System:
● Great, but what do I DO now?

● Need to associate meaning w/structure

7

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Date=Thursday

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System

8

Date=Thursday

Cal=User

7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System

8

Date=Thursday

Cal=User

Action:  
 check(Cal=USER,  
 Date=Thursday) 7

5�;,�3FN

;L[H

;LEX

%Y\

HS

24

4VSR

-

:4�24

:

LEZI

24�24

�X�

44

4VIT

SR

24

2

8LYVWHE]

Dialogue System

8

Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

9

Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

● Semantics:
● Determine the meaning of natural language input

9

High-Level Overview
● Semantics = meaning

10

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

10

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

10

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

10

We Will Focus On:
● Concepts and representations that have truth-

conditions: they can be true or false in the world (or,
more generally, “executable”).

● How to connect strings and those concepts.

11

We Won’t Focus On:
1. Building knowledge bases / semantic networks

12

Street

Car

Truck

Fire
Engine

House

Fire

Red
Orange

Yellow

Green

Apples

Cherries
Pears

Sunsets

Sunrises Clouds
Violets

Roses

Flowers

Violet

Ambulance

Bus

Vehicle

Roadmap
● Computational Semantics
● Overview
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

13

Semantics: an Introduction

14

Uses for Semantics
● Semantic interpretation required for many tasks
● Answering questions
● Following instructions in a software manual
● Following a recipe

● Requires more than phonology, morphology, syntax

● Must link linguistic elements to world knowledge

15

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters

16

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters
● …etc.

16

Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic

input?
● e.g.: predicate calculus: 

17

∃x (dog (x) ∧ disappear (x))

Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic

input?
● e.g.: predicate calculus: 

● Entailment:
● What are all the conclusions that can be validly drawn from a sentence?
● Lincoln was assassinated ⊨ Lincoln is dead
● ⊨ “semantically entails”: if former is true, the latter must be too

17

∃x (dog (x) ∧ disappear (x))

Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

18

Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

● Compositionality
● How can we derive the meaning of a unit from its parts?
● How do syntactic structure and semantic composition relate?
● ‘rubber duck’ vs. ‘rubber chicken’ vs. ‘rubber-neck’
● kick the bucket

18

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

19

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

19

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

19

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

● Develop methods for reasoning about these representations
● …and performing inference

19

Tasks in Computational Semantics
● Semantic similarity (words, texts)

● Semantic role labeling

● Semantic parsing / Semantic analysis

● Recognizing textual entailment (RTE) / natural
language inference (NLI)

● Sentiment analysis

● …

20

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

21

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

21

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

● Reasoning
● Given a representation and world, what new conclusions (bits of meaning) can we

infer?

21

Complexity of Computational Semantics
● Effectively AI-complete
● Needs representation, reasoning, world model, etc.

22

Representing Meaning

23

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

24

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

24

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

24

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

● Here we focus on literal meaning (“what is said”)

24

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

25

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

25

● Can compare representation of sentence to KB model (generally: “executable”)

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

25

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

25

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

25

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

25

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

● Represent any natural language utterance

Meaning Structure of Language
● Human Languages:
● Display basic predicate-argument structure
● Employ variables
● Employ quantifiers
● Exhibit a (partially) compositional semantics

26

Predicate-Argument Structure
● Represent concepts and relationships

27

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

27

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

27

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

● Subcategorization frames indicate:
● Number, Syntactic category, order of args, possibly

other features of args

27

First-Order Logic:
Syntax

28

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

29

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

29

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

29

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

29

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

● Supports generalization through variables

29

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

30

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA)
● Refer to objects, avoid using constants

30

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA)
● Refer to objects, avoid using constants

● Variables:
● x, e
● Refer to any potential object in the world

30

First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’
● Serves(United, Chicago)

31

First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’
● Serves(United, Chicago)

● Logical Connectives
● {∧, ∨, ⇒} = {and, or, implies}
● Allow for compositionality of meaning* [* many subtleties]
● ‘Frontier serves Seattle and is cheap.’
● Serves(Frontier, Seattle) ∧ Cheap(Frontier)

31

Quantifiers
● ∃: existential quantifier: “there exists”

32

Quantifiers
● ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

32

Quantifiers
● ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

● A non-stop flight that serves Pittsburgh:
∃x Flight(x) ∧ Serves(x, Pittsburgh) ∧ Non-stop(x)

32

Quantifiers
● ∀: universal quantifier: “for all”
● All flights include beverages.

33

Quantifiers
● ∀: universal quantifier: “for all”
● All flights include beverages.

∀x Flight(x) ⇒ Includes(x, beverages)

33

FOL Syntax Summary

34

Formula → AtomicFormula Connective → ∧ | ∨ | ⇒
| Formula Connective Formula Quantifier → ∀ | ∃
| Quantifier Variable, … Formula Constant → VegetarianFood | Maharani | …
| ¬ Formula Variable → x | y | …
| (Formula) Predicate → Serves | Near | …

AtomicFormula → Predicate(Term,…) Function → LocationOf | CuisineOf | …
Term → Function(Term,…)

| Constant
| Variable

J&M p. 556 (3rd ed. 19.3)

https://web.stanford.edu/~jurafsky/slp3/19.pdf

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

35

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

● Formal languages are compositional.

35

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

● Formal languages are compositional.

● Natural language meaning is largely compositional, though arguably not
fully.*

35

Compositionality
● …how can we derive:
● loves(John, Mary)

36

Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John

● loves(x, y)

● Mary

36

Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John

● loves(x, y)

● Mary

● Lambda expressions!

36

Lambda Expressions
● Lambda (λ) notation (Church, 1940)
● Just like lambda in Python, Scheme, etc
● Allows abstraction over FOL formulae
● Supports compositionality

● Form: (λ) + variable + FOL expression
● λx.P(x) “Function taking x to P(x)”

● λx.P(x)(A) = P(A) [called beta-reduction]

37

http://www.jstor.org/stable/2266170

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

38

λx.P(x)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

38

λx.P(x)
λx.P(x)(A)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

38

λx.P(x)
λx.P(x)(A)
P(A)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

● Equivalent to function application

38

λx.P(x)
λx.P(x)(A)
P(A)

● Lambda expression as body of another

λx.λy.Near(x, y)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

39

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)
Near(Midway, Chicago)

Nested λ-Reduction

39

Nested λ-Reduction
● If it helps, think of λs as binding sites:

40

λx.λy.Near(x, y)
=Mi

dw
ay

Chicago

Nested λ-Reduction
● If it helps, think of λs as binding sites:

41

λy.Near(x, y)
Chica

go

=
Midway

Nested λ-Reduction
● If it helps, think of λs as binding sites:

42

Near(x, y)
Chica

go

Midway

Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of

parse tree

43

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133

Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of

parse tree

● …or Schönkfinkelization

43

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

44

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Complex formulae denote truth-values (more next time)

44

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Complex formulae denote truth-values (more next time)

● Atomic formulae: P(x), R(x,y), etc

44

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Complex formulae denote truth-values (more next time)

● Atomic formulae: P(x), R(x,y), etc

● Formulae based on logical operators:

44

P Q ¬P P ∧Q P ∨Q P ⇒Q
F F T F F T
F T T F T T
T F F F T F
T T F T T T

Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

45

Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

● ⇒ is the logical form
● Does not mean the same as natural language “if”, just

that if LHS=T, then RHS=T

45

Inference
1. α

46

1. ∀x α(x)

Inference
1. α
2. α ⇒ β

46

1. ∀x α(x)

Inference
1. α
2. α ⇒ β

3. ∴ β

46

1. ∀x α(x)

Inference
1. α
2. α ⇒ β

3. ∴ β

46

1. ∀x α(x)
2. ∴ α(t)

Inference
1. VegetarianRestaurant(Leaf)

47

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

47

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

3. VegetarianRestaurant(Leaf)⇒Serves(Leaf,VegFood)

47

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

3. VegetarianRestaurant(Leaf)⇒Serves(Leaf,VegFood)

4. ∴ Serves(Leaf, VegetarianFood)

47

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

48

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

● We’ll assume we have a theorem prover.

48

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

● We’ll assume we have a theorem prover.

48

https://arxiv.org/abs/2310.15164

https://arxiv.org/abs/2310.15164

Roadmap
● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

49

Events

50

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

51

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.

51

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.

● Variable number of arguments; many entailment relations here.

51

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

52

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.

52

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday)

52

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday)
● Neo-Davidsonian (Parsons 1990):

● ∃e Arrival(e) ∧ Arrived(e, Flight) ∧ Destination(e, Seattle) ∧ Origin(e, SFO)  
∧ Time(e, Saturday)

52

Why events?
● “Adverbial modification is thus seen to be logically on a par with adjectival

modification: what adverbial clauses modify is not verbs but the events that
certain verbs introduce.” —Davidson

53

Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for main predicate
● Everything else is additional predication

54

Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for main predicate
● Everything else is additional predication

● Pros
● No fixed argument structure
● Dynamically add predicates as necessary
● No unused roles
● Logical connections can be derived

54

Meaning Representation for 
Computational Semantics

● Requirements
● Verifiability
● Unambiguous representation
● Canonical Form
● Inference
● Variables
● Expressiveness

● Solution:
● First-Order Logic
● Structure
● Semantics
● Event Representation

55

Summary
● FOL can be used as a meaning representation language for natural

language

● Principle of compositionality:
● The meaning of a complex expression is a function of the meaning of its parts

● λ-expressions can be used to compute meaning representations from
syntactic trees based on the principle of compositionality

● In next classes, we will look at syntax-driven approach to semantic
analysis in more detail

56

