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Semantics in the News

— WORLD U.S. POLITICS SPORTS ENTERTAINMENT BUSINESS SCIENCE FACTCHECK ODDITIES HEALTH
Israel-Hamas war  Biden Al executive order = Halloween  Cooper Flagg

POLITICS

The Supreme Court will hear a case
with a lot of ‘buts’ & ‘ifs’ over the
meaning of ‘and’

https://apnews.com/article/supreme-court-mandatory-minimum-sentencing-drug-crimes-235b5dd23¢f70bead9f8f23d659a572d
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Semantics in the News

— WORLD US. POLITICS SPORTS ENTERTAINMENT BUSINESS SCIENCE FACTCHECK ODDITIES HEALTH

Israel-Hamas war  Biden Al executive order  Halloween  Cooper Flagg

offenders. A defendant satisfies § 3553(f)(1), as amended, if he "does not have-(A) more than 4
criminal history points, excluding any criminal history points resulting from a 1-point offense, as
determined under the sentencing guidelines; (B) a prior 3-point offense, as determined under

the sentencing guidelines; and (C) a prior 2-point violent offense, as determined under the
sentencing guidelines." 18 U.S.C. § 3553(f)(1) (emphasis added).

The question presented is whether the "and" in 18 U.S.C. § 3553(f)(1) means "and," so
that a defendant satisfies the provision so long as he does not have (A) more than 4 criminal
history points, (B) a 3-point offense, and (C) a 2-point offense (as the Ninth Circuit holds), or
whether the "and" means "or," so that a defendant satisfies the provision so long as he does
not have (A) more than 4 criminal history points, (B) a 3- point offense, or (C) a 2-point violent
offense (as the Seventh and Eighth Circuits hold).

https://apnews.com/article/supreme-court-mandatory-minimum-sentencing-drug-crimes-235b5dd23¢f70bead9f8f23d659a572d

WA UNIVERSITY of WASHINGTON

2


https://apnews.com/article/supreme-court-mandatory-minimum-sentencing-drug-crimes-235b5dd23cf70bead9f8f23d659a572d

Semantics in the News

— WORLD US. POLITICS SPORTS ENTERTAINMENT BUSINESS SCIENCE FACTCHECK ODDITIES HEALTH

43
B0 4

Israel-Hamas war  Biden Al executive order  Halloween  Cooper Flagg

offenders. A defendant satisfies § 3553(f)(1), as amended, if he "does not have-(A)
criminal history points, excluding any criminal history points resulting from a 1-point
determined under the sentencing guidelines; (B) a prior 3-point offense, as determi
the sentencing guidelines; and (C) a prior 2-point violent offense, as determined unc

sentencing guidelines." 18 U.S.C. § 3553(f)(1) (emphasis added).

Speaklng of
~1ME
The question presented is whether the "and" in 18 U.S.C. § 3553(f)(1) means Sy
that a defendant satisfies the provision so long as he does not have (A) more than 4
history points, (B) a 3- pomt offense, and (C) a 2-point offense (as the Ninth Circuit h«' |
whether the "and" means "or," so that a defendant satisfies the provision so long as
not have (A) more than 4 criminal history points, (B) a 3- point offense, or (C) a 2-po} %
offense (as the Seventh and Eighth Circuits hold). =

4+ C P AR

https://apnews.com/article/supreme-court-mandatory-minimum-sentencing-drug-crimes-235b5dd23cf7/0bead9f&

WA UNIVERSITY of WASHINGTON 2


https://apnews.com/article/supreme-court-mandatory-minimum-sentencing-drug-crimes-235b5dd23cf70bead9f8f23d659a572d

Python Nugget of the Week

e Sequential logical operators:
if (

Lhs not in chart[i]Ij]
or chart[i] [j] [lhs].logprob < current_logprob

chart[il [j] [lhs] = Backpointer(
Llhs, k, rhs[@], rhsl[1l], current_logprob

)
e An alternative here: defaultdict with default values for BP

e “or” also therefore useful for conditional assighnment (e.g. x = False or 42)
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Varieties of Entailment in the News



Presuppositions, etc

Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'
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Presuppositions, etc

e “| present to you the King of Europe, Nigel Farage” —Trump (paraphrased)

e presupposes that there is a king of Europe Behold Trump's pre-election secret
weapon: Nigel Farage, 'king of Europe'
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https://www.theguardian.com/commentisfree/2020/oct/30/trump-election-nigel-farage-campaign-us-president-britain

Presuppositions, etc

e “| present to you the King of Europe, Nigel Farage” —Trump (paraphrased)

® presupposes that there is a king of Europe Behold Trump's pre-election secret

e Consider two sentences: weapon: Nigel Farage, 'king of Europe

e “The King of Europe is here today.”

n

e “The King of Europe is NOT here today.

e From both, it follows that there is a King of Europe.
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Presuppositions, etc

e “| present to you the King of Europe, Nigel Farage” —Trump (paraphrased)

® presupposes that there is a king of Europe Behold Trump's pre-election secret

e Consider two sentences: weapon: Nigel Farage, 'king of Europe

e “The King of Europe is here today.”

n

e “The King of Europe is NOT here today.

e From both, it follows that there is a King of Europe.
e Contrast:

e “We are talking on Zoom right now.”

e “We are NOT talking on Zoom right now.”

e The former, but not the latter, entails that we are talking right now.
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Presuppositions, etc

e “| present to you the King of Europe, Nigel Farage” —Trump (paraphrased)

e presupposes that there is a king of Europe Behold Trump's pre-election secret

e Consider two sentences: weapon: Nigel Farage, 'king of Europe

e “The King of Europe is here today.”

n

e “The King of Europe is NOT here today.

e From both, it follows that there is a King of Europe.
e Contrast:
e “We are talking on Zoom right now.”
e “We are NOT talking on Zoom right now.”
e The former, but not the latter, entails that we are talking right now.

e Presuppositions (that there is a king) “project out” from negation (and other operators, like questions,
conditionals, etc). Standard logical entailments do not.

e Presuppositions must be true in order for a sentence to be true or false at all.
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(Scalar) Implicatures

e “Some conferences were cancelled this year.”
e Seems to entail: “Not all conferences were cancelled this year.”

e But: can follow with “In fact, all of them were!” (In jargon: the implicature can be cancelled.)
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e In this example: speaker could have said “All conferences were cancelled.” Since they
did not, assume that it is false.
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(Scalar) Implicatures

e “Some conferences were cancelled this year.”
e Seems to entail: “Not all conferences were cancelled this year.”

e But: can follow with “In fact, all of them were!” (In jargon: the implicature can be cancelled.)

e Conversational implicature: inferences that a speaker would tend to draw assuming a
cooperative and knowledgable speaker.

e In this example: speaker could have said “All conferences were cancelled.” Since they
did not, assume that it is false.

e Common examples of scales: {some, all}, {or, and}, {may, must}, ...

e Trump’s doctor when he was at the hospital with COVID-19:
e Press: “Has he ever been on supplemental oxygen?”

e Doc: “He hasn't had supplemental oxygen today or yesterday.”
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Presupposition, Entailment, Implicature?

e “Several students were told that the exam will be postponed.”
e Thereis an exam.
e A student was told that the exam will be postponed.
e The exam will be postponed.

e Not every student was told that the exam will be postponed.
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An Interesting Example

A top baseball prospect’s Southern California scholarship
was lost to the pandemic

https://www.washingtonpost.com/road-to-recovery/2020/1 1/02/tank-espalin-usc-indiana-baseball/
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An Interesting Example

A top baseball prospect’s Southern California scholarship
was lost to the pandemic

https://www.washingtonpost.com/road-to-recovery/2020/1 1/02/tank-espalin-usc-indiana-baseball/

“A prospect’s scholarship”. presupposes there is a scholarship
Rest of headline: there is no more scholarship
Complex compositional interaction between tense and presupposition
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Roadmap

e First-order Logic: Syntax and Semantics
e Inference + Events

e Rule-to-rule Model

e More lambda calculus
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FOL Syntax + Semantics
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Example Meaning Representation

e A non-stop flight that serves Pittsburgh:
ax Flight(x) A~ Serves(x, Pittsburgh) n Non-stop(x)



FOL Syntax Summary

Formula — AtomicFormula Connective - Alvi=
|  Formula Connective Formula Quantifier - vI|3
| Quantifier Variable, ... Formula Constant — \VegetarianFood| Maharanil ...
I - Formula Variable — xlyl...
I (Formula) Predicate - Serves | Nearl ...
AtomicFormula - Predicate(Term,...) Function - LocationOf | CuisineOf | ...
Term - Function(Term,...)
I Constant
I Variable

J&M p. 556 (3rd ed. F.3)
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https://web.stanford.edu/~jurafsky/slp3/F.pdf#section.F.3

Model-Theoretic Semantics

e A“model” represents a particular state of the world

e Our language has logical and non-logical elements.
e Logical: Symbols, operators, quantifiers, etc

® Non-Logical: Names, properties, relations, etc
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Denotation

e Every non-logical element points to a fixed part of the model
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Denotation

e Every non-logical element points to a fixed part of the model

e Objects — elements in the domain, denoted by terms

e John, Farah, fire engine, dog, stop sign

® Properties — sets of elements
e red: {fire hydrant, apple,...}

e Relations — sets of tuples of elements

e CapitalCity:{(Washington, Olympia), (Yamoussokro, Cote d’lvoire),
(Ulaanbaatar, Mongolia),...}
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. via |&M, p. 554
Sample Domain D

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e, f,g
ltalian, Mexican, Eclectic h,i,j
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. via |&M, p. 554
Sample Domain D

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e f,g
Italian, Mexican, Eclectic h,i,j
Properties

Noisy Frasca, Med, and Rio are noisy Noisy={e,f,g}
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. via |&M, p. 554
Sample Domain D

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e f,g
Italian, Mexican, Eclectic h,i,j
Properties
Noisy Frasca, Med, and Rio are noisy Noisy={e,f,g}
Relations
Likes Matthew likes the Med Likes={ <(a,) , <c,p , (¢, , <be) ,
Katie likes the Med and Rio a,p, {dg }

Franco likes Frasca
Caroline likes the Med and Rio
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. via |&M, p. 554
Sample Domain D

Objects
Matthew, Franco, Katie, Caroline a,b,c,d
Frasca, Med, Rio e f,g
Italian, Mexican, Eclectic h,i,j
Properties
Noisy Frasca, Med, and Rio are noisy Noisy={e,f,g}
Relations
Likes Matthew likes the Med Likes={ <(a,) , <c,p , (¢, , <be) ,
Katie likes the Med and Rio afh , <dg }
Franco likes Frasca
Caroline likes the Med and Rio
Serves Med serves eclectic Serves={ {c,)h , (i) , <eh) }

Rio serves Mexican
Frasca serves ltalian
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Rule-to-Rule Model
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Recap

® Meaning Representation
e Can represent meaning in natural language in many ways
e We are focusing on First-Order Logic (FOL)
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e Can represent meaning in natural language in many ways
e We are focusing on First-Order Logic (FOL)

® Principle of compositionality
e The meaning of a complex expression is a function of the meaning of its parts
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Recap

® Meaning Representation
e Can represent meaning in natural language in many ways
e We are focusing on First-Order Logic (FOL)

® Principle of compositionality
e The meaning of a complex expression is a function of the meaning of its parts

e Lambda Calculus
e A\-expressions denote functions
e Can be nested
e Reduction = function application
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Semantics Reflects Syntax
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Chiasmus:

1 a A4 - -"‘._

Bowie playing lesla lesla playing Bowie
The Prestige (2006) SpaceX Falcon Heavy Test Launch (2/6/2018)
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Chiasmus:
Syntax affects Semantics!

® “Never let a fool kiss you or a kiss fool you” (Grothe, 2002)

® “Then you should say what you mean,” the March Hare went on.
“I do,” Alice hastily replied; “at least—at least | mean what | say—that’s the same thing, you know.”

“Not the same thing a bit!” said the Hatter. “Why, you might just as well say
that ‘I see what | eat’ is the same thing as ‘| eat what | see’l”

“You might just as well say,” added the March Hare,
“that I like what | get’is the same thing as ‘| get what | like’!”

“You might just as well say,” added the Dormouse, which seemed to be talking in his sleep,
“that ‘I breathe when | sleep’is the same thing as ‘| sleep when | breathe”

—Alice in Wonderland, Lewis Carrol
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Ambiguity & Models

e “Every Tesla is powered by a battery.” — Ambiguous!
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State of known Universe: 02/05/2018

Ambiguity & Model

e “Every Tesla is powered by a battery.” — Ambiguous Space

Things in

e vx.lesla(x) = (3(y).Battery(y) A Powers(y, x))
e 31(y).Battery(y) A (vx.Tesla(x) = Powers(y, X))
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Ambiguity & Model

e “Every Tesla is powered by a battery.” — Ambiguous Space

Things in

e vx.lesla(x) = (3(y).Battery(y) A Powers(y, x))

e 31(y).Battery(y) A (vx.Tesla(x) = Powers(y, X))

e Every Tesla is not hurtling toward Mars.
e Vvx.lesla(x) = —(Hurtling TowardMars(x))
e —vX.(Tesla(x) =(Hurtling TowardMars(x)))
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3(x).( Tesla(x) A Hurtling TowardsMars(x))
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State of known Universe: 02/06/2018

Ambiguity & Model

e “Every Tesla is powered by a battery.” — Ambiguous! Space

Things in

e vx.lesla(x) = (3(y).Battery(y) A Powers(y, x))

e 31(y).Battery(y) A (vx.Tesla(x) = Powers(y, X))

e Every Tesla is not hurtling toward Mars.
e Vvx.lesla(x) = —(Hurtling TowardMars(x))
e —vX.(Tesla(x) =(Hurtling TowardMars(x)))

e [3(X).(Tesla(x) A =HurtlingTowardsMars(x))]

3(x).( Tesla(x) A Hurtling TowardsMars(x))
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State of known Universe: 02/06/2018

Ambiguity & Model

e “Every Tesla is powered by a battery.” — Ambiguous! Space

Things in

e vx.lesla(x) = (3(y).Battery(y) A Powers(y, x))
e 31(y).Battery(y) A (vx.Tesla(x) = Powers(y, X))

e Every Tesla is not hurtling toward Mars.
® VX —=GHuEtingTowaralv

e -vX.(Tesla(x) =>(HurtlingTowar(x)))

e [3(X).(Tesla(x) A =HurtlingTowardsMars(x))]

3(x).( Tesla(x) A Hurtling TowardsMars(x))

WA UNIVERSITY of WASHINGTON 21



Scope Ambiguity

e Potentially O(n!) scope interpretations (“scopings”)

e \Where n=number of scope-taking operators.
e (every, a, all, no, modals, negations, conditionals, ...)

e Different interpretations correspond to different syntactic parses!
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Ambiguity of the Week

NNNNNNNNNNNNNNNNNNNNNN



Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:



Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e In the US, a woman gives birth every fifteen minutes.



Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e In the US, a woman gives birth every fifteen minutes.

e \We must find her and put a stop to it.



Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e In the US, a woman gives birth every fifteen minutes.

e \We must find her and put a stop to it.



Ambiguity of the Week

e Derivative of an alleged Groucho Marx-ism:

e In the US, a woman gives birth every fifteen minutes.

e \We must find her and put a stop to it.

e Thank you scope ambiguity! (Not the same as attachment ambiguity.)



Scope Ambiguity in the News
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Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the
city's first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-
michelle-wu-elected
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e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-
michelle-wu-elected

e What do people think this says about Wu?
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Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the
city's first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-
michelle-wu-elected

e What do people think this says about Wu?

e \What's a scope ambiguity here?
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Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the
city's first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-
michelle-wu-elected

e What do people think this says about Wu?
e \What's a scope ambiguity here?

e ‘first’ > ‘and’ vs ‘and’ > ‘first’

e Intended is actually the latter: first woman and first POC

WA UNIVERSITY of WASHINGTON 24


https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
https://www.npr.org/2021/11/02/1051720391/boston-mayor-michelle-wu-elected
http://corenlp.run/

Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the
city's first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-
michelle-wu-elected

e What do people think this says about Wu?
e \What's a scope ambiguity here?
e ‘first'>‘and’ vs ‘and’ > ‘first’
e Intended is actually the latter: first woman and first POC

e [sidebar: Stanford Parser totally botches it]
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Scope Ambiguity in the News

e “Boston voters have elected City Councilor Michelle Wu as mayor, the
city's first woman and person of color elected to the post.”

e Source: https://www.npr.org/2021/11/02/1051720391/boston-mayor-
michelle-wu-elected

e What do people think this says about Wu?

(ROOT
(S

e What's a scope ambiguity here? 5 e ) (e e

(VP (VBN elected)
(NP
(NP
(NP (NNP City) (NNP Councilor) (NNP Michelle) (NNP Wu))

e ‘first’>‘and’ vs ‘and’ > ‘first’

e Intended is actually the latter: first woman and first POC L i) e

e [sidebar: Stanford Parser totally botches it]

(VP (VBN elected)
(PP (IN to)
(NP (DT the) (NN post))))))))))

(. .)))
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Integrating Semantics into Syntax

1. Pipeline System
1. Feed parse tree and sentence to semantic analyzer

2. How do we know which pieces of the semantics link to which part of the
analysis?

3. Need detailed information about sentence, parse tree

4. Infinitely many sentences & parse trees
5. Semantic mapping function per parse tree — intractable
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Integrating Semantics into Syntax



Integrating Semantics into Syntax

2. Integrate Directly into Grammar

1. This is the “rule-to-rule” approach we've been implicitly examining and will
now make more explicit

2. Tie semantics to finite components of grammar (rules & lexicon)

3. Augment grammar rules with semantic info
1. a.k.a. "attachments” — specify how RHS elements compose to LHS

WA UNIVERSITY of WASHINGTON 26



Simple Example

e United serves Houston

NP VP
Prop-N \' NP
United serves Prop-N

Houston
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Simple Example

e United serves Houston
EIe(Serving(e) A
NP VP
Prop-N \' NP
United serves Prop-N

Houston
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Simple Example

e United serves Houston
EIe(Serving(e) A Server(e, United) N\
S

NP VP
Prop-N \' NP
N
United serves Prop-N

Houston
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Simple Example

e United serves Houston
EIe(Serving(e) A Server(e, United) N Served(e, Houston))

NP VP

Prop-N \' NP

SUnited  serves Prop-N

y

Houston
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Rule-to-rule Model

e Lambda Calculus and the Rule-to-Rule Hypothesis

® A\-expressions can be attached to grammar rules

e used to compute meaning representations from syntactic trees based on the
principle of compositionality

e Go up the tree, using reduction (function application) to compute meanings
at non-terminal nodes
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Semantic Attachments

e Basic Structure;

A—ai, ..., an{flai.sem, ... ar.sem)}

Semantic Function

e In NLTK syntax (more later):
A - a3 .. an[SEM=<f(?7a;.sem

)>]



Attachments as SQL! NLTK book. ch. 10

>>> nltk.data.show cfg('grammars/book grammars/sqgl0.fcfg')
% start S

S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=2?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=2?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city table'] -> 'cities'’
IV[SEM='"'] -> 'are'

A[SEM="'] -> 'located'

P[SEM=''] -> 'in'
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Attachments as SQL! NLTK book. ch. 10

>>> nltk.data.show cfg('grammars/book grammars/sqgl0.fcfg')
% start S

S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=2?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=2?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city table'] -> 'cities'’
IV[SEM='"'] -> 'are'

A[SEM="'] -> 'located'

P[SEM=''] -> 'in'

'"What cities are located in China’

parses[0]: SELECT City FROM city table WHERE Country="china"
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Semantic Attachments: Options

e Why not use SQL? Python?
e Arbitrary power but hard to map to logical form

e No obvious relation between syntactic, semantic elements

e \Why Lambda Calculus?

e First Order Predicate Calculus (FOPC) + function application is highly
expressive, integrates well with syntax

e Can extend our existing feature-based model, using unification

e Can ‘translate’ FOL to target / task / downstream language (e.g. SQL)
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Semantic Analysis Approach

e Semantic attachments:

e Each CFG production gets semantic attachment

e Semantics of a phrase is function of combining the children

e Complex functions need to have parameters

e \erb — ‘arrived’
e Intransitive verb, so has one argument: subject
e ..but we don't have this available at the preterminal level of the tree!
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Defining Representations

e Proper Nouns
e Intransitive Verbs
e Transitive Verbs

e Quantifiers



Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:
e NNP[SEM=<Khalil>] - ‘Khalil’




Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:
@ NNP[SEM=<Khalil>] - ‘Khalil’

e However, we will want to apply our A-closures left-to-right consistently.
S[SEM=np? (vp?)] - NP[SEM=np?] VP[SEM=vp?]
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e However, we will want to apply our A-closures left-to-right consistently.
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Proper Nouns & Intransitive Verbs

e Our instinct for names is to just use the constant:
@ NNP[SEM=<Khalil>] - ‘Khalil’

e However, we will want to apply our A-closures left-to-right consistently.
S[SEM=np? (vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
[SEM KhaIiI(Ax.runs(x))] = [FRROR: Constant “Khalil’’ is not a function!
NP VP

NNP \%
SEM  <Khalil>|  |SEM  <Ax.runs(x)>|

Khalll runs WA UNIVERSITY of WASHINGTON 34



Proper Nouns & Intransitive Verbs

e Instead, we use a dummy predicate:
e AQ.Q(Khalil)

® “Generalizing to the worst case” (cf. Montague; Partee on type-shifting)

e |.e.. this move will also be necessary for a uniform semantic treatment of
NPs, which can be individual-denoting (like names) or more complex
(quantifiers)



Proper Nouns & Intransitive Verbs

e With the dummy predicate:

® NNP[SEM=<\P.P(Khalil)>] - ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

NP VP

NNP \%
SEM  APP(Khali)|  [SEM  Ax.runs(x)]

Khalil runs
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Proper Nouns & Intransitive Verbs

e With the dummy predicate:
® NNP[SEM=<\P.P(Khalil)>] - ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM  AP.P(Khalil)(A\x.runs(x))|

NP VP

NNP \Y
SEM  APP(Khali)|  [SEM  Ax.runs(x)]

Khalil runs
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Proper Nouns & Intransitive Verbs

e With the dummy predicate:

® NNP[SEM=<\P.P(Khalil)>] - ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM  Ax.runs(x)(Khali)

NP VP

NNP \Y
SEM  APP(Khali)|  [SEM  Ax.runs(x)]

Khalil runs
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Proper Nouns & Intransitive Verbs

e With the dummy predicate:

® NNP[SEM=<\P.P(Khalil)>] - ‘Khalil’

S[SEM=np?(vp?)] - NP[SEM=np?] VP[SEM=vp?]

S
SEM  runs(Khalil)|

NP VP

NNP \Y
SEM  APP(Khali)|  [SEM  Ax.runs(x)]

Khalil runs
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Transitive Verbs

NNNNNNNNNNNNNNNNNNNNNN



Transitive Verbs

e SO, if we want to say “Alex loves Jim" we would intuitively want
Ay.Ax.loves (X,V)

e ...goingin linear order, we have one arg to the left and one to the right.
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Transitive Verbs

e SO, if we want to say “Alex loves /im" we would want
Ay.Ax.loves(xX,V)

e ..but goingin linear order, we have one arg to the left and one to the
right.
NP VP

NNP TV NP
[SEM )\P.P(Alex)] [SEM )\y.)\x.loves(x,y)]

NNP
SEM  AQ.Q(lim)

Alex loves Jim
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e [V(NP):
® A\v.Ax.loves(x,V)

Transitive Verbs

(AQ.Q(Jim))



Transitive Verbs

o [V(NP):
® A\v.Ax.loves(x,v) (AQ.Q(Jim))
@ Ax.loves(x,A0.0(Jim))
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Transitive Verbs

o [V(NP):
® A\v.Ax.loves(x,v) (AQ.Q(Jim))
@ Ax.loves(x,A0.0(Jim))

®@ > Error! We can’t reduce Jim.

e [nstead: A\Y x.¥Y(Ay.loves(x,y))



Transitive Verbs

o [V(NP):
® A\v.Ax.loves(x,v) (AQ.Q(Jim))
@ Ax.loves(x,A0.0(Jim))

®@ > Error! We can’t reduce Jim.

e [nstead: A\Y x.¥Y(Ay.loves(x,y))

e (“Continuation-passing”)



Transitive Verbs

o [V(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim))



Transitive Verbs

e [V(NP): -
® \Y x.Y(Ay.loves(x,Vy)) (XQ.Q(Jim))
@ Ax.(AQ.Q(Jim) (Ay.loves(x,Vv))

AY takes (AQ.Q(Jim))



Transitive Verbs

o TV(NP):
® AY x.Y(AyrIOwRs(%,yY)) (AQ.Q(Jim))
® Ax.(AQ.Q(Jim)(Ay.loves(x,y))
@ Ax.(Ay.loves(x,y) (Jim))

AY takes (AQ.Q(Jim))
AQ takes (Ay.loves(x,y))



Transitive Verbs

e [V(NP):

AY
Ax
Ax
Ax

x.Y(Ay.loves(x,y)) (AQ.Q(Jim))
. (AQ.Q(Jim) (Ayfe*@s(x,y))
.(Ay.loves(x,y)(Jim))

. (loves(x,JdJim))

AY takes (AQ.Q(Jim))
AQ takes (Ay.loves(x,y))
Ay takes (Jim)



Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ay.loves(x,y))
@ Ax.(Ay.loves(x,y) (Jim))

@ Ax.(loves(x,Jim))

o NP(VP):
@ A\P.P(Alex) (Ax.(loves(x,Jim)))

AY takes (AQ.Q(Jim))
AQ takes (Ay.loves(x,y))
Ay takes (Jim)



Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim)) AY takes (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ay.loves(x,y)) AQ takes (Ay.loves(x,y))
® Ax.(Ay.loves(x,v) (Jim)) Ay takes (Jim)

@ Ax.(loves(x,Jim))

e NP(VP)
@ A\P.P(Alex) (Ax.(loves(x,Jim))) AP takes (Ax.(loves(x,Jim)
@ Ax.(loves(x,Jim) (Alex) Ax takes (Alex)



Transitive Verbs

o TV(NP):
® A\Y x.Y(Ay.loves(x,y)) (AQ.Q(Jim)) AY takes (AQ.Q(Jim))
® Ax.(AQ.Q(Jim) (Ay.loves(x,y)) AQ takes (Ay.loves(x,y))
® Ax.(Ay.loves(x,v) (Jim)) Ay takes (Jim)

@ Ax.(loves(x,Jim))

e NP(VP):

® AP _B{F o#(Ax. (loves(x,JdJim))) AP takes (Ax.(loves(x,Jim)

@ Ax.(loves(x,Jim) (Alex) Ax takes (Alex)

® loves(Alex,Jim)



Converting to an Event

e “xlovesy,” Originally:
o AV x.Y(Ay.]ﬂ&(x,y))



Converting to an Event

e “xlovesy,” Originally:
® A\Y x.Y(Ay.loves(x,y))

e as a Neo-Davidsonian event:

® AY x.¥(Ay.3e love(e) A lover(e,x) A loved(e,y))




Quantifiers & Scope
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Semantic Analysis Example

e Basic model S

e Neo-Davidsonian event-style model

e s NP
e Complex quantification

Det Nom

e Example: Every flight arrived every  Noun

flight
vX Flight(x) = 3e Arrived(e) A ArrivedThing(e,x)

VP

\'

arrived



“Every flight arrived"

e First intuitive approach:
e Every flight = vx Flight(x)
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e First intuitive approach:
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e VX Flight(x) = Q(x)



“Every flight arrived"

e Firstintuitive approach:
e Everyflight = vx Flight(x)x
e “Everything is a flight”
e |nstead, we want:

e VX Flight(x) = Q(x)
e “if a thing is a flight, then it is Q"



“Every flight arrived"

e Firstintuitive approach:
e Everyflight = vx Flight(x)x
e “Everything is a flight”
e Instead, we want:
e VX Flight(x) = Q(x)
e “if a thing is a flight, then it is Q"

e Since Q isn't available yet... Dummy predicate!



“Every flight arrived"

e Firstintuitive approach:
e Everyflight = vx Flight(x)x
e “Everything is a flight”

e |[nstead, we want:
e VX Flight(x) = Q(x)
e “if athingis a flight, then it is Q"

e Since Q isn't available yet... Dummy predicate!
o \NQ.vx Flight(x) = Q(x)



E very flight arrived”
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e “Every flight" is:

E very flight arrived”
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E very flight arrived”

e “Every flight" is:
e AQ.vx Flight(x) = Q(x)
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E very flight arrived”

e “Every flight" is:
e AQ.vx Flight(x) = Q(x)

e ...s0 what s the representation for “every”?



E very flight arrived”

e “Every flight" is:
e AQ.vx Flight(x) = Q(x)

e ...s0 what s the representation for “every”?
o APAQ.vX P(x) = Q(x)



“A flight arrived”

e We just need one item for truth value

e SO, start with ax...
e AP.AQ.3X P(X)AQ(X)



Det

Noun
Verb
VP

Nom

NP

Creating Attachments

— 'Every’
— ‘flight’
— ‘arrived’
— Verb

— Noun

— NP VP
— Det Nom

“Every flight arrived”

{ A\P.ANQ.vXx P(x) = Q(x) }
{ Ax.Flight(x) }

{\y.3eArrived(e) A ArrivedThing(e, y)}

{ Verb.sem }
{ Noun.sem }
{ NPsem(VPsem) }

{ Det.sem(Nom.sem) }



S

{NP.sem(V P.sem)}

NP VP

{ Det.sem(N oun.sem)}

Det Noun \'
{AP.AOQNXxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived



NP.sem— Det.sem(Noun.sem)

S

{NP.sem(V P.sem)}

NP VP
{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived

YA UNIVERSITY of WASHINGTON 50



NP.sem— Det.sem(Noun.sem)
AP.AQ.vxP(x)= Q(x)(Ay.Flight(y)) S

{NP.sem(V P.sem)}

NP VP
{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived



NP.sem— Det.sem(Noun.sem)
AP.AQ.vxP(x)= Q(x)(Ay.Flight(y)) S

AQ.vxAy.Flight(y)(x)= Q(x) I{NP.sem(V P.sem)}

NP VP
{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived



NP.sem— Det.sem(Noun.sem)

AP.AQ.vxP(x)= Q(x)(Ay.Flight(y)) S
AQ.vxAy.Flight(y)(x)= Q(x) INP.sem(VP.sem))
AQ.v xFlight(x)= Q(x)
NP VP

{ Det.sem(N P.sem)}

Det Noun \'
{AP.AONVNxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A ArrivedT hing(e, z)}

Every flight arrived



NP.sem— Det.sem(Noun.sem)

AP.AQ.vxP(x)= Q(x)(Ay.Flight(y)) S
AQ.vxAy.Flight(y)(x)= Q(x) INP.sem(VP.sem))
AQ.v xFlight(x)= Q(x)
NP VP

{AONXxFlight(x) = 0(x)}

Det Noun \'
{AP.AONxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A\ ArrivedT hing(e, z)}

Every flight arrived



S

{NP.sem(V P.sem)}

NP VP
{AONXxFlight(x) = 0(x)} {Az.deArrived(e) A\ ArrivedT hing(e, z)}
Det Noun \Y

{AP.AONXxP(x) = O(x)} {Ay.Flight(y)} {Az.deArrived(e) A\ ArrivedT hing(e, z)}

Every flight arrived



S

{NP.sem(V P.sem)}

NP
{AONXxFlight(x) = 0O(x)}

Det Noun
{AP.AONXxP(x) = O(x)} {Ay. Flight(y)}

Every flight

VP
{Az.deArrived(e) A ArrivedT hing(e, z)}

\Y
{Az.deArrived(e) A ArrivedT hing(e, z)}

arrived



S

{NP.sem(V P.sem)}

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}
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S

{NP.sem(V P.sem)}

~ N

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VvxFlight(x)= Q(x)(Az.3eArrived(e) A ArrivedThing(e, 2))



S

{NP.sem(V P.sem)}

~ N

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VvxFlight(x)= Q(x)(Az.3eArrived(e) A ArrivedThing(e, 2))
vXxFlight(x)= Az.3eArrived(e) A ArrivedThing(e, z)(x)



S

{NP.sem(V P.sem)}

~ N

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VvxFlight(x)= Q(x)(Az.3eArrived(e) A ArrivedThing(e, 2))
vXxFlight(x)= Az.3eArrived(e) A ArrivedThing(e, z)(x)
vxFlight(x)=3eArrived(e) A ArrivedThing(e, X)



S

{IVxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP VP
{AONXxFlight(x) = 0O(x)} {Az.deArrived(e) A ArrivedT hing(e, z)}

AQ.VvxFlight(x)= Q(x)(Az.3eArrived(e) A ArrivedThing(e, 2))
vxFlight(x)= Az.3eArrived(e) n ArrivedThing(e, z)(x)
vxFlight(x)=3eArrived(e) A ArrivedThing(e, X)



S

{VxFlight(x) = deArrived(e) A\ ArrivedT hing(e, x)}

NP VP
{AONxFlight(x) = O(x)} {Ay.deArrived(e) A ArrivedT hing(e, y)}
Det Noun \Y

{AP.AONXxP(x) = O(x)} {Ax.Flight(x)} {Ay.deArrived(e) A ArrivedT hing(e, y)}

Every flight arrived
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Det = 0’

Det — ‘every’
NN — ‘flight’
NNP — ‘lohn’
NP — NNP

S — NP VP

VP — Verb NP
Verb — ‘booked’

John booked a flight’

{ APAQ.3x P(x) A Q(X) }
{ APAQ.vx P(X) = Q(x) }
{\x.Flight(x)}
{A\NXX(John)}

{NNP.sem}
{NPsem(VP.sem)}
{Verb.sem(NP.sem)}

{A\W.Az.W(3eBooked(e) n Booker(e,z) A BookedThing(e,y))}

...we’'ll step through this next time.
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e General approach:

e Create complex lambda expressions with lexical items



Strategy for Semantic Attachments

e General approach:
e Create complex lambda expressions with lexical items

e Introduce quantifiers, predicates, terms



Strategy for Semantic Attachments

e General approach:
e Create complex lambda expressions with lexical items
e Introduce quantifiers, predicates, terms

e Percolate up semantics from child if non-branching
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e General approach:
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Apply semantics of one child to other through lambda
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Strategy for Semantic Attachments

e General approach:

Create complex lambda expressions with lexical items
Introduce quantifiers, predicates, terms
Percolate up semantics from child if non-branching

Apply semantics of one child to other through lambda
e Function application
e Combine elements, don't introduce new ones




Parsing with Semantics

e Implement semantic analysis in parallel with syntactic parsing

e Enabled by this rule-to-rule compositional approach
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Parsing with Semantics

e Implement semantic analysis in parallel with syntactic parsing

e Enabled by this rule-to-rule compositional approach

e Required modifications
e Augment grammar rules with semantics field
e Augment chart states with meaning expression

e Incrementally compute semantics
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Sidenote: Idioms

e Not purely compositional
® KiCK the bucket — die
® tip of the iceberg — small part of the entirety

e Handling
e Mix lexical items with constituents
e (Create idiom-specific construct for productivity

e Allow non-compositional semantic attachments

e Extremely complex, e.g. metaphor
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