Overflow + Case Study

LING 571 — Deep Processing Methods in NLP Shane Steinert-Threlkeld

Announcements

- HW9:
 - Coarse-grained sense labels (e.g. "Comparison", not "Comparison.Contrast")
 - Pre-processing: not required, but lower-casing and removing punctuation are good ones
 - Unknown words (even after processing); ~two options when lookup fails
 - All zeros vector
 - Average of all GloVe vectors
 - For these last two points (and any other choices): no "wrong" answers, but tell us what you did in your readme!
- AMA for Wednesday discussion: https://forms.gle/qgM8V5Pp1mQL6gCg8

Coreference Resolution Humor

Coreference Resolution Humor

Coreference Resolution Humor pt. 2

A young artist exhibits his work for the first time and a well known art critic is in attendance.

The critic says to the young artist, "would you like my opinion on your work?"

"Yes, " says the artist.

"It's worthless," says the critic

The artist replies, "I know, but tell me anyway."

Coreference Resolution Humor pt. 2

A young artist exhibits his work for the first time and a well known art critic is in attendance.

The critic says to the young artist, "would you like **my opinion** on **your work**?"

"Yes, " says the artist.

"It's worthless," says the critic

The artist replies, "I know, but tell me anyway."

Roadmap

- Overflow: coherence and cohesion
- Case study
 - deep vs. shallow processing in question answering
 - A bit on then vs now

Question-Answering: A Case Study in Shallow vs. Deep Methods

Question Answering: The Problem

Grew out of information retrieval community

Question Answering: The Problem

- Grew out of information retrieval community
- Document retrieval is great, but...
 - Sometimes you don't just want a ranked list of documents.
 - Sometimes you want an answer to a question
 - Short answer, possibly with supporting context

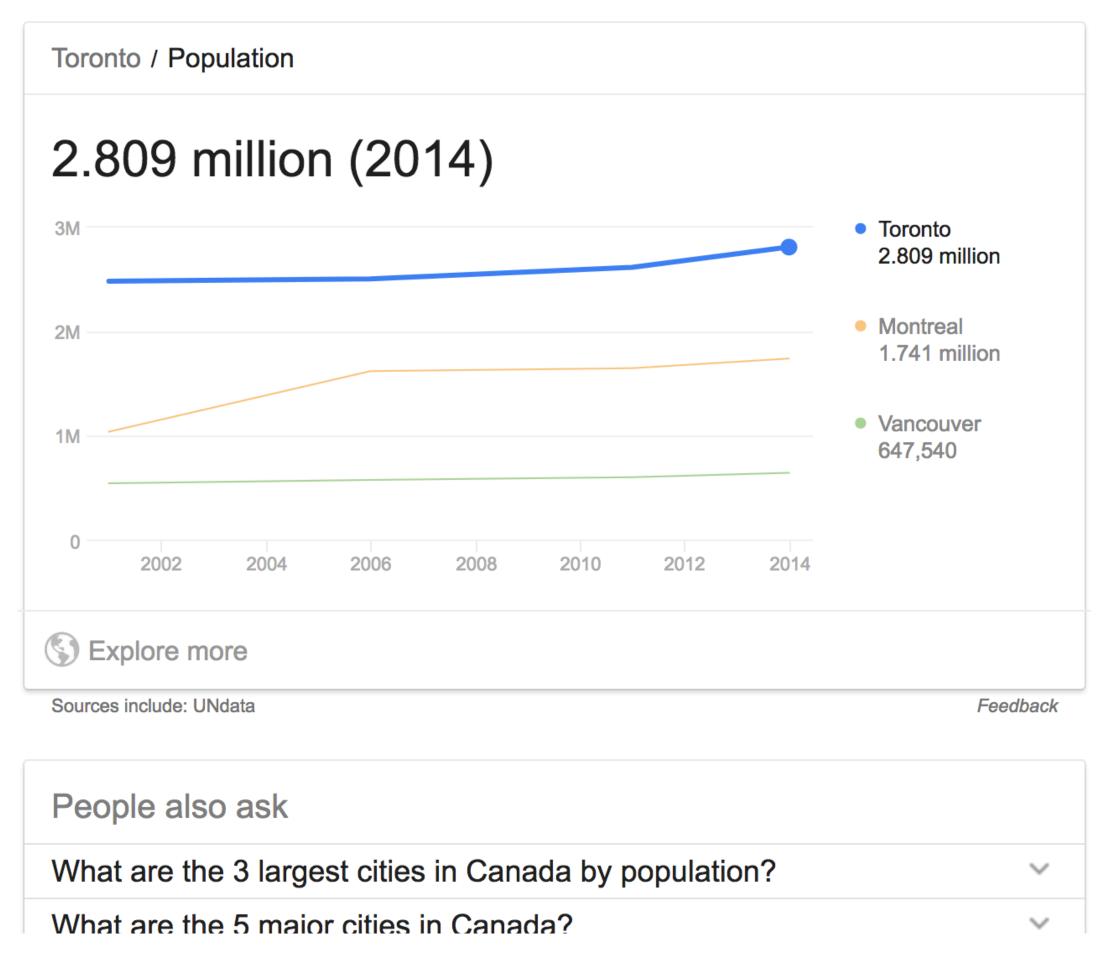
Question Answering: The Problem

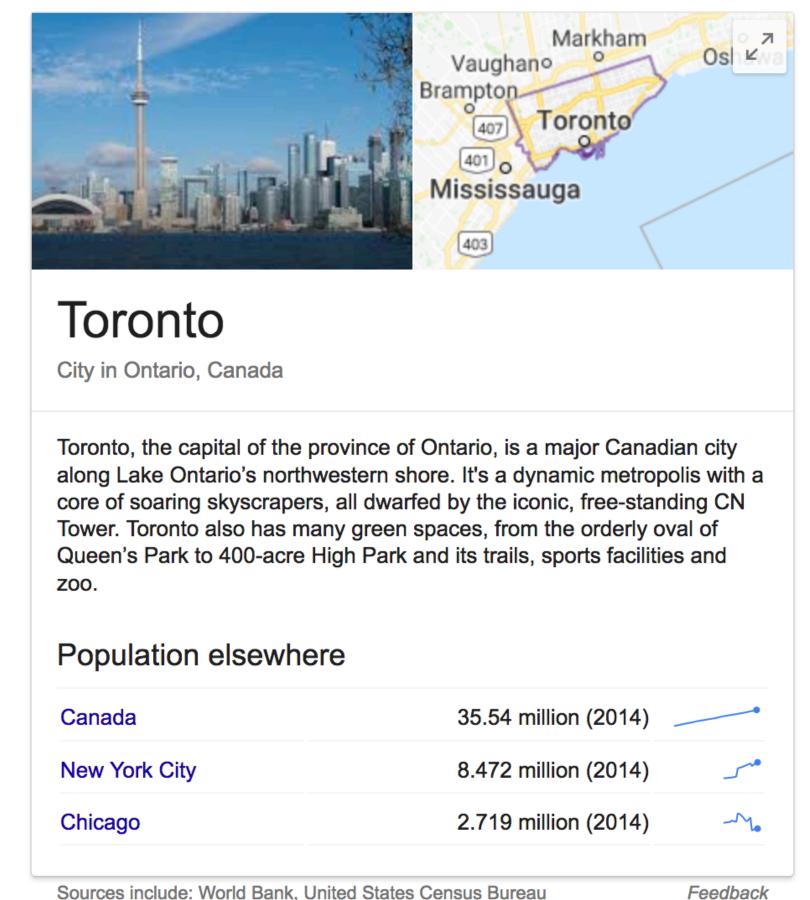
- Grew out of information retrieval community
- Document retrieval is great, but...
 - Sometimes you don't just want a ranked list of documents.
 - Sometimes you want an answer to a question
 - Short answer, possibly with supporting context
- People ask questions on the web
 - Which English translation of the Bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?
 - These account for 12–15% of web log queries

Search Engines and Questions

- What do search engines do with questions?
 - Increasingly, try to answer questions
 - Especially for Wikipedia infobox types of info
 - Backoff to keyword search
- How well does this work?

What Canadian city has the largest population?





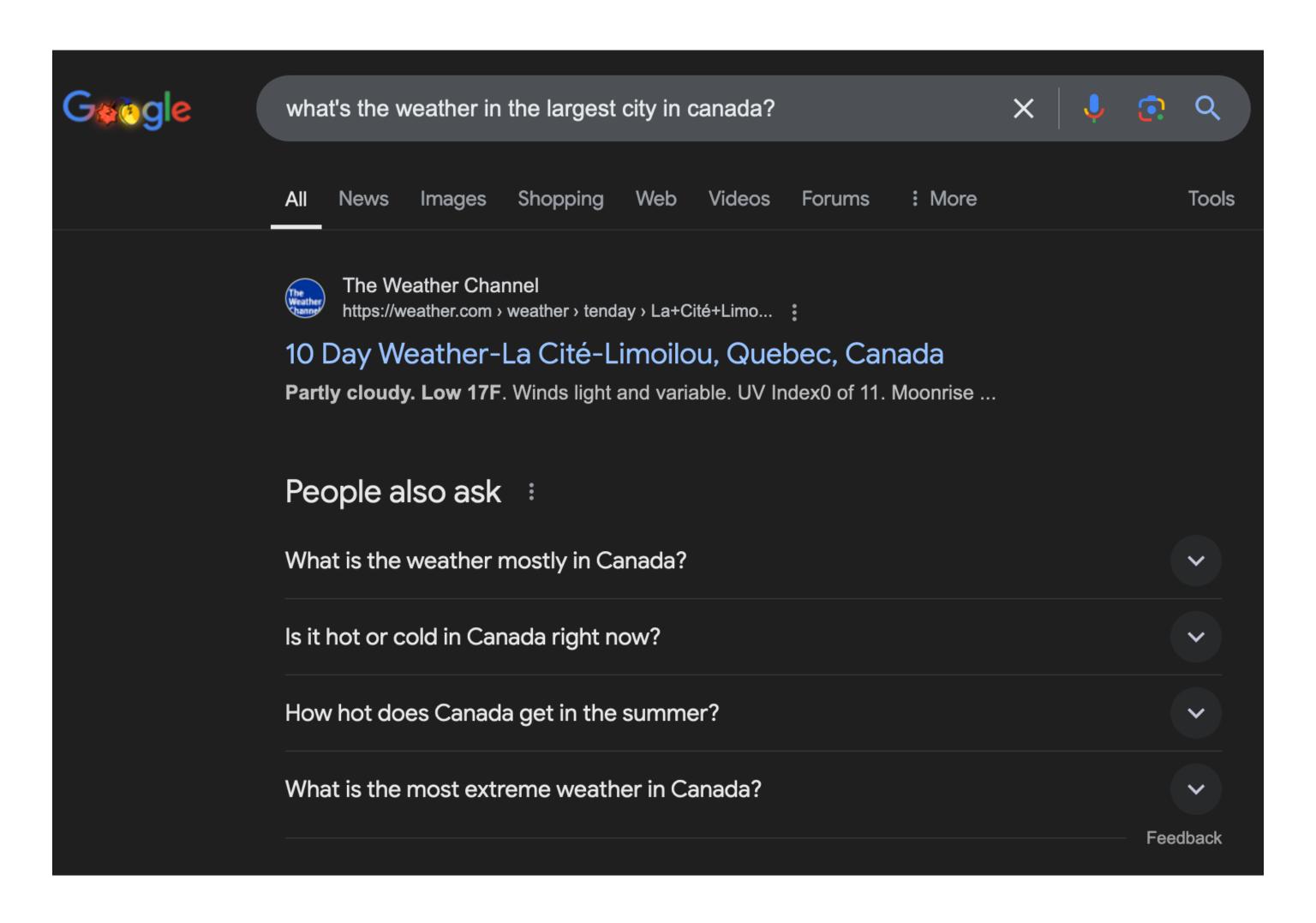
* Answer from late 2022; more on this later

What's the weather in Toronto?



12/02/24

What's the weather in the largest city in Canada?

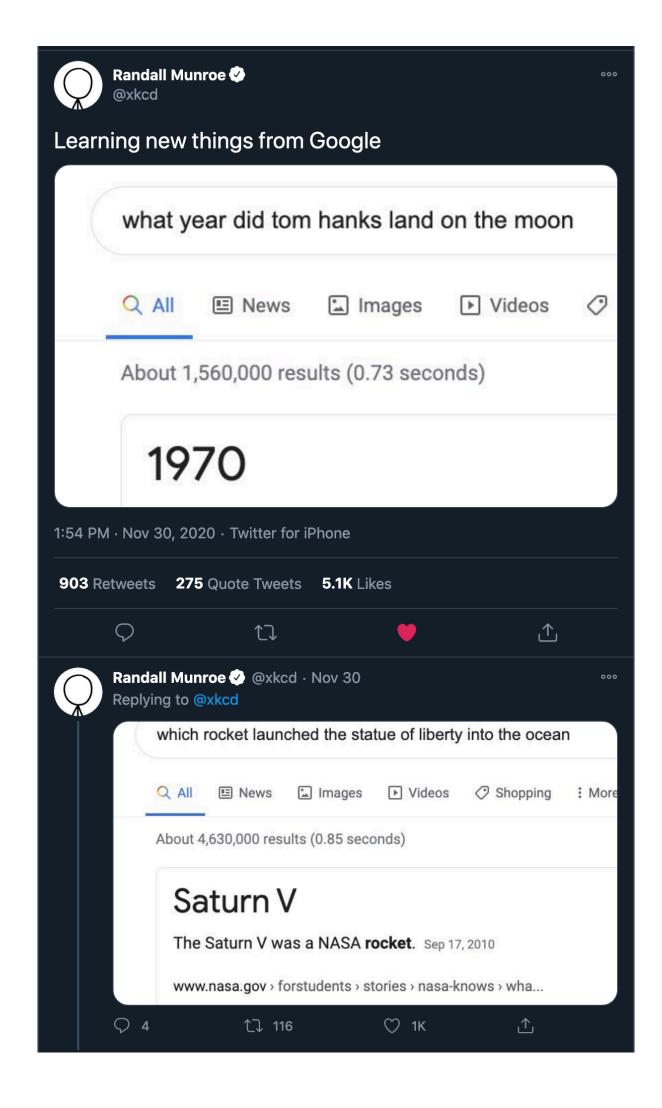


12/02/24

What is the total population of the ten largest capitals in the US?

- Rank 1 snippet:
 - As of 2013, 61,669,629 citizens lived in America's 100 largest cities, which was 19.48 percent of the nation's total population.
 - See the top 50 *U.S. cities by population* and rank. ... The table below lists the largest 50 cities in the
 - The table below lists the *largest* 10 *cities in the United States...*

Breaking QA Systems



https://twitter.com/xkcd/status/1333529967079120896

Breaking QA Systems

CREPE: Open-Domain Question Answering with False Presuppositions

Xinyan Velocity Yu[†] Sewon Min[†] Luke Zettlemoyer[†] Hannaneh Hajishirzi^{†,‡} [†]University of Washington [‡]Allen Institute for Artificial Intelligence {xyu530, sewon, lsz, hannaneh}@cs.washington.edu

Saturn V

116

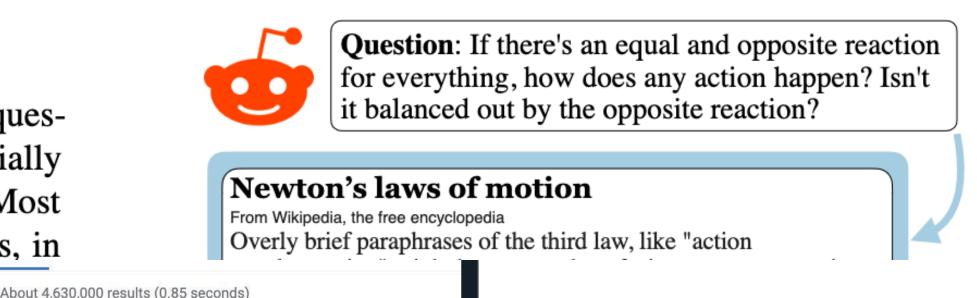
The Saturn V was a NASA rocket. Sep 17, 2010

www.nasa.gov > forstudents > stories > nasa-knows > wha...

333529967079120896

Abstract

Information seeking users often pose questions with false presuppositions, especially when asking about unfamiliar topics. Most existing question answering (QA) datasets, in



https://doi.org/10.18653/v1/2023.acl-long.583

Search Engines and QA

- Search for exact question string
 - "Do I need a visa to go to Japan?"
 - Result: Exact match on Yahoo! Answers
 - Find "Best Answer" and return following chunk

Search Engines and QA

- Search for exact question string
 - "Do I need a visa to go to Japan?"
 - Result: Exact match on Yahoo! Answers
 - Find "Best Answer" and return following chunk
- Works great... if the question matches exactly
 - Many websites are building archives
 - What happens if it doesn't match?
 - "Question mining" tries to learn paraphrases of questions to get answers.

Perspectives on QA

- TREC QA track (~2000—)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response

Perspectives on QA

- TREC QA track (~2000—)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response
- Reading comprehension (<u>Hirschman et al, 1999</u>—)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, "Machine Reading"

Perspectives on QA

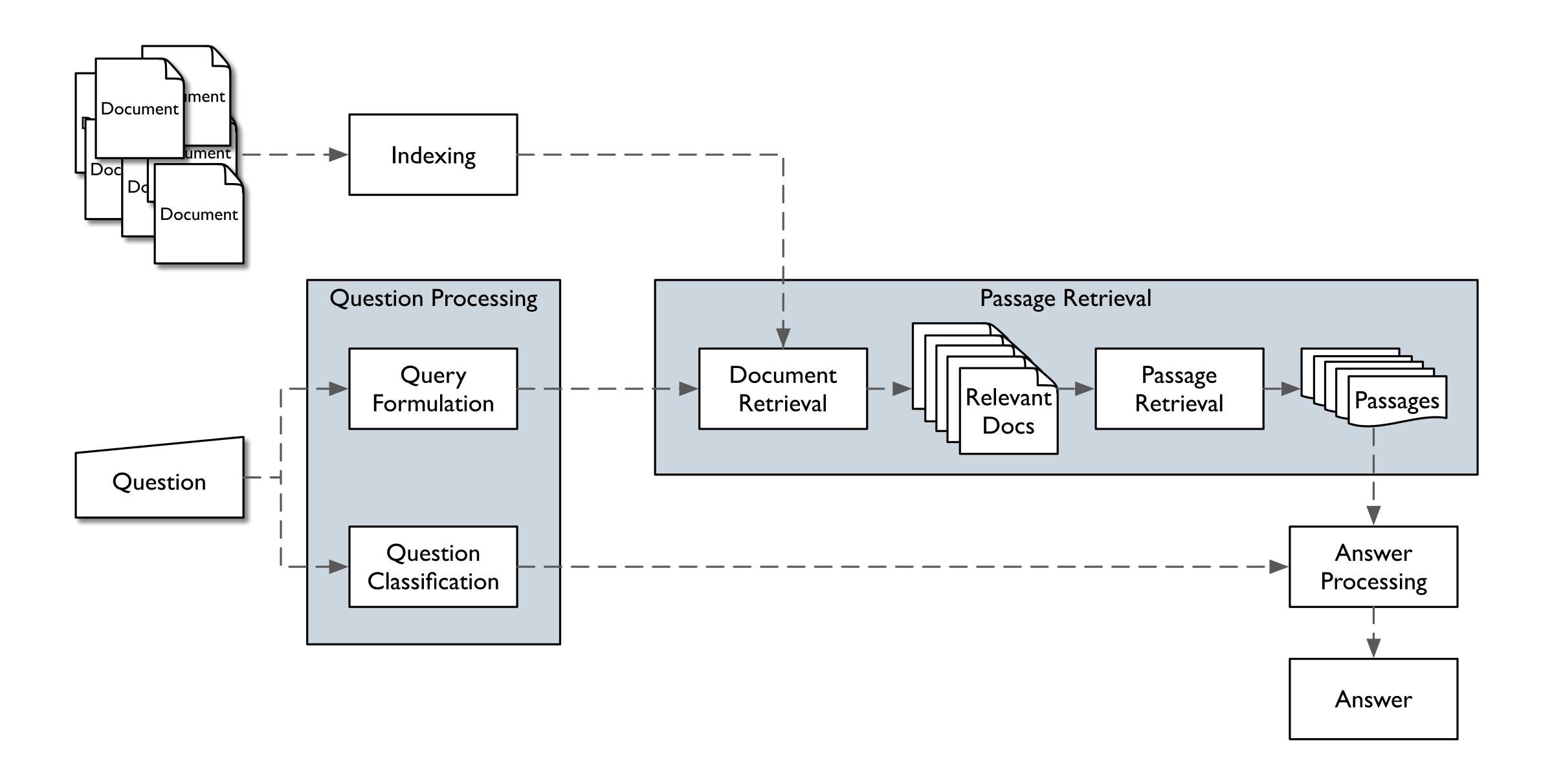
- TREC QA track (~2000—)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response
- Reading comprehension (<u>Hirschman et al, 1999</u>—)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, "Machine Reading"
 - SQuAD
- And, of course, <u>Jeopardy! and Watson</u>

Question Answering (a la TREC)

Question	Answer
Where is the Louvre Museum located?	in Paris, France
What's the abbreviation for limited partnership?	L.P.
What are the names of Odin's ravens?	Huginn and Muninn
What currency is used in China?	the yuan
What kind of nuts are used in marzipan?	almonds
What instrument does Max Roach play?	drums
What's the official language of Algeria?	Arabic
What is the telephone number for the University of Colorado, Boulder?	(303) 492-1411
How many pounds are there in a stone?	14

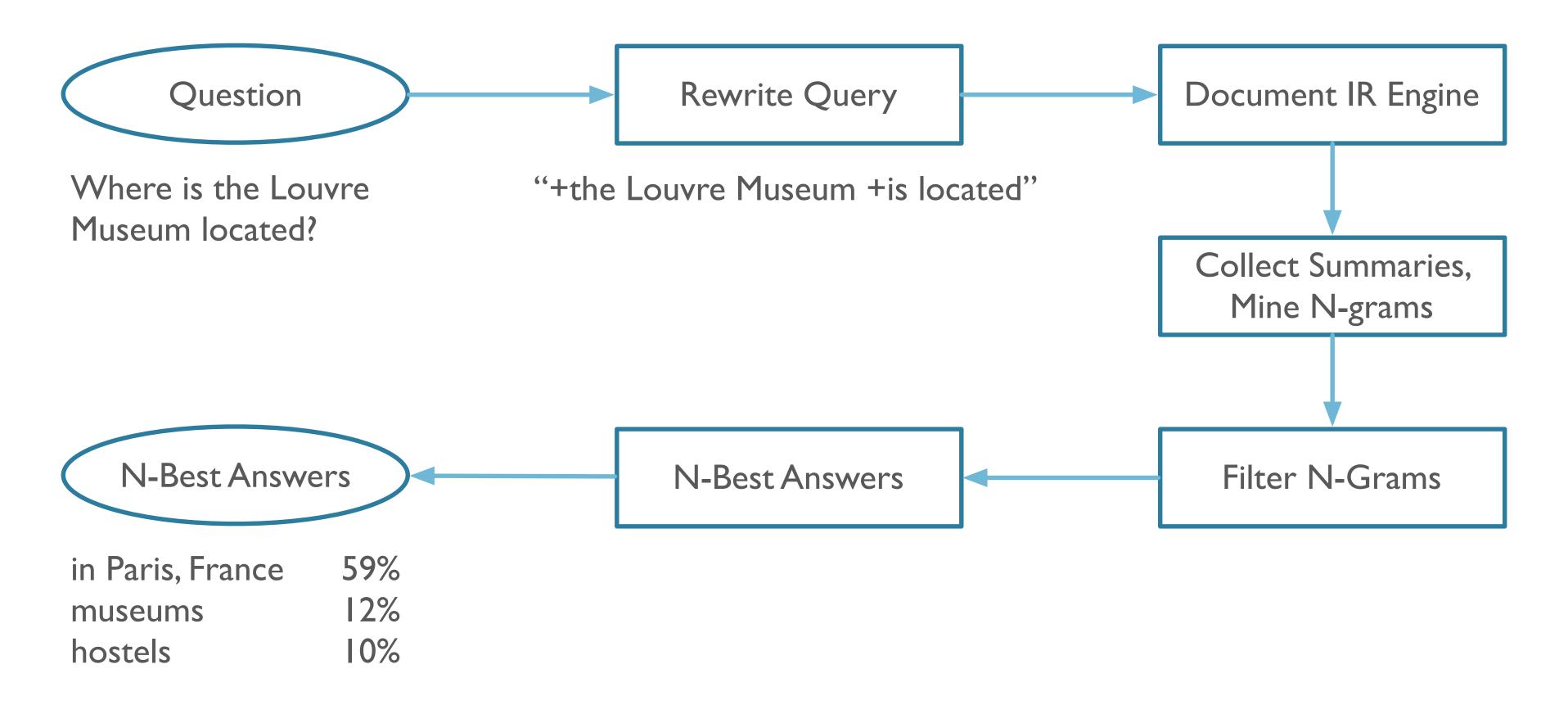
Basic Strategy

- Given an indexed document collection...
- ...and a question...
- ...execute the following steps:
 - Query Formulation
 - Question Classification
 - Passage Retrieval
 - Answer Processing
 - Evaluation



AskMSR/Aranea (Lin, Brill)

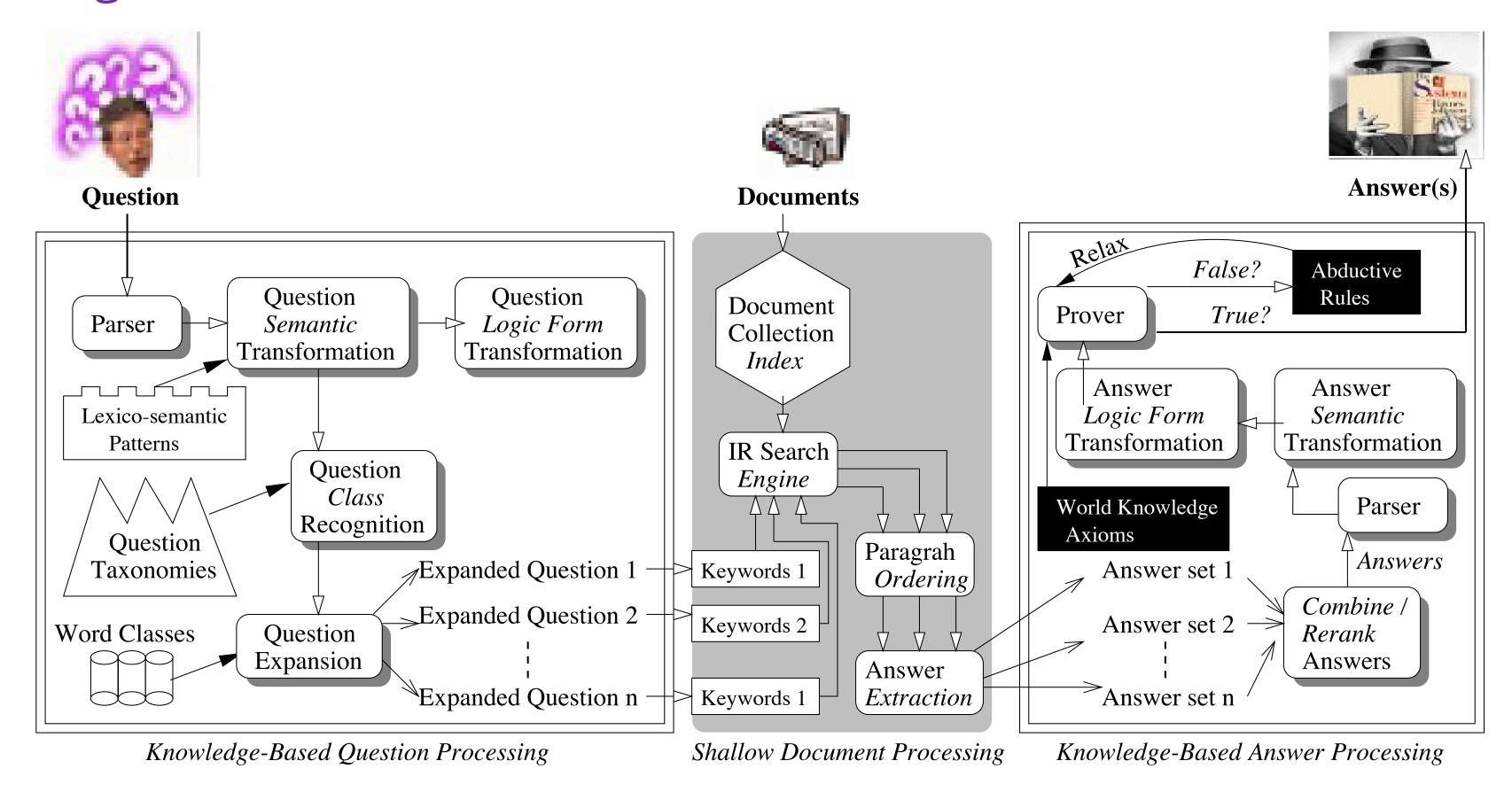
Shallow Processing for QA



Deep Processing Technique for QA:

LCC PowerAnswer

 Experiments with open-domain textual Question Answering, <u>Moldovan</u>, <u>Harabagiu, et al, 2000</u>



A Victory for Deep Processing: TREC 2002 QA Track

	Confidence	Correct Answers		Correct Answers			NIL Accuracy	
Run Tag	weighted Score	#	%	Number Inexact	Prec	Recall		
LCCmain2002	0.856	415	83.0	8	0.578	0.804		
exactanswer	0.691	271	54.2	12	0.222	0.848		
pris2002	0.610	290	58.0	17	0.241	0.891		
IRST02DI	0.589	192	38.4	17	0.167	0.217		
IBMPQSQACYC	0.588	179	35.8	9	0.196	0.630		
uwmtB3	0.512	184	36.8	20	0.000	0.000		
BBN2002C	0.499	142	28.4	18	0.182	0.087		
isi02	0.498	149	29.8	15	0.385	0.109		
limsiQalir2	0.497	133	26.6	11	0.188	0.196		
ali2002b	0.496	181	36.2	15	0.156	0.848		
ibmsqa02c	0.455	145	29.0	44	0.224	0.239		
FDUTIIQAI	0.434	124	24.8	6	0.139	0.957		
aranea02a	0.433	152	30.4	36	0.235	0.174		
nuslamp2002	0.396	105	21.0	17	0.000	0.000		
pqas22	0.358	133	26.6	11	0.145	0.674		

Example of Deep Processing in LLM era

© LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Language Models with First-Order Logic Provers

Theo X. Olausson*1 Alex Gu*1 Benjamin Lipkin*2 Cedegao E. Zhang*2 Armando Solar-Lezama1 Joshua B. Tenenbaum^{1,2} Roger Levy² {theoxo, gua, lipkinb, cedzhang}@mit.edu

1MIT CSAIL 2MIT BCS

*Equal contribution.

Abstract

Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On

1 Introduction

Widespread adoption of large language models (LLMs) such as GPT-3 (Brown et al., 2020), GPT-4 (OpenAI, 2023), and PaLM (Chowdhery et al., 2022) have led to a series of remarkable successes in tasks ranging from text summarization to program synthesis. Some of these successes have encouraged the hypothesis that such models are able to flexibly and systematically reason (Huang and Chang, 2022), especially when using prompting strategies that explicitly encourage verbalizing intermediate reasoning steps before generating the final answer (Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023b). However, this reasoning ability appears to be unreliable for tasks that require reasoning out of domain (Liang et al., 2022; Saparov et al., 2023), understanding negation (Anil et al., 2022), and following long reasoning chains (Dziri et al., 2023). Furthermore, while the standard approach of "scaling up" seems to improve performance across some reasoning domains, other domains, e.g., reasoning involving use of Modus Tollens, show no such improvements

Example of Deep Processing in LLM era

© LINC: A Neurosymbolic Approach for Logical Reasoning by Language Models with First-Order Logic Provers

Theo X. Olausson*1 Alex Gu*1 Benjamin Lipkin*2 Cedegao E. Armando Solar-Lezama¹ Joshua B. Tenenbaum¹,2 Roger Loger Loger

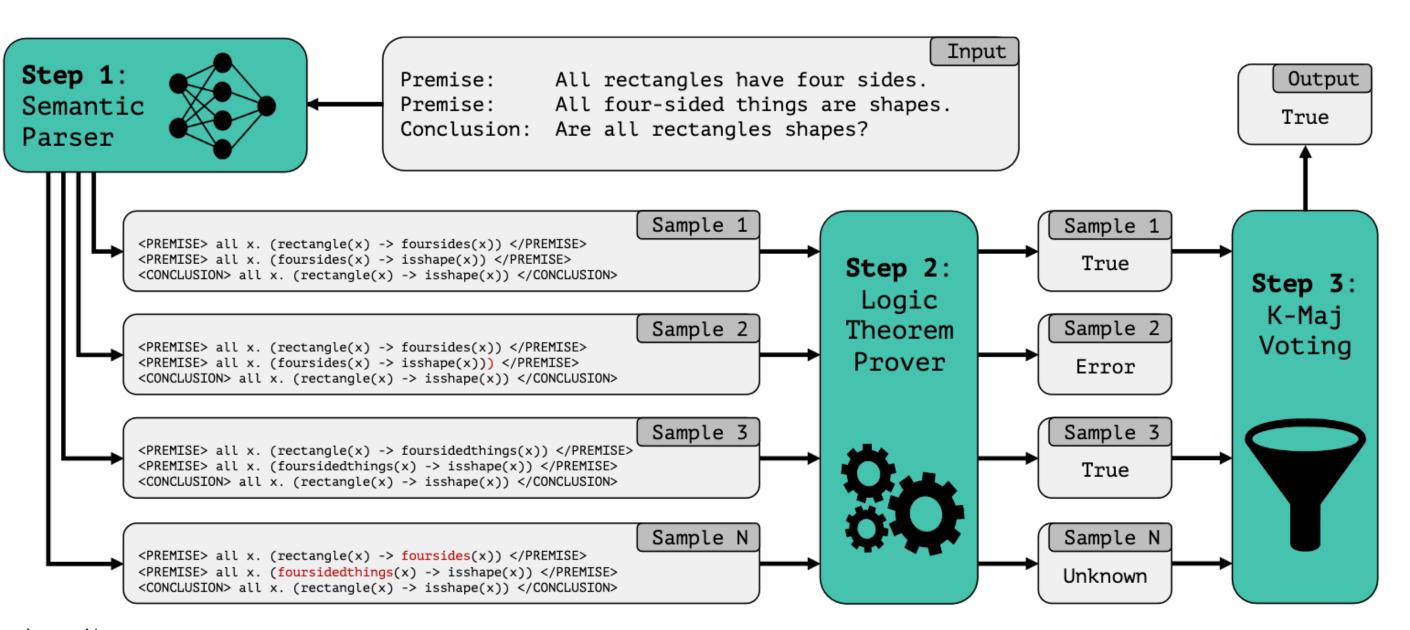
Abstract

Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On

Introduction

Widespread adoption of large la (LLMs) such as GPT-3 (Brown et 4 (OpenAI, 2023), and PaLM (C 2022) have led to a series of rema in tasks ranging from text summ gram synthesis. Some of these su couraged the hypothesis that such to flexibly and systematically rea

Chang, 2022), especially when using prompting strategies that explicitly encourage verbalizing intermediate reasoning steps before generating the final answer (Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023b). However, this reasoning ability appears to be unreliable for tasks that require reasoning out of domain (Liang et al., 2022; Saparov et al., 2023), understanding negation (Anil et al., 2022), and following long reasoning chains (Dziri et al., 2023). Furthermore, while the standard approach of "scaling up" seems to improve performance across some reasoning domains, other domains, e.g., reasoning involving use of Modus Tollens, show no such improvements



Example of Deep Processing in LLM era

© LINC: A Neurosymbolic Approach for Logical Reasoning by Language Models with First-Order Logic Provers

Theo X. Olausson*1 Alex Gu*1 Benjamin Lipkin*2 Cedegao E. Armando Solar-Lezama¹ Joshua B. Tenenbaum¹,2 Roger Loger Loger (theoxo, gua, lipkinb, cedzhang)@mit.edu

1MIT CSAIL 2MIT BCS

*Equal contribution.

Abstract

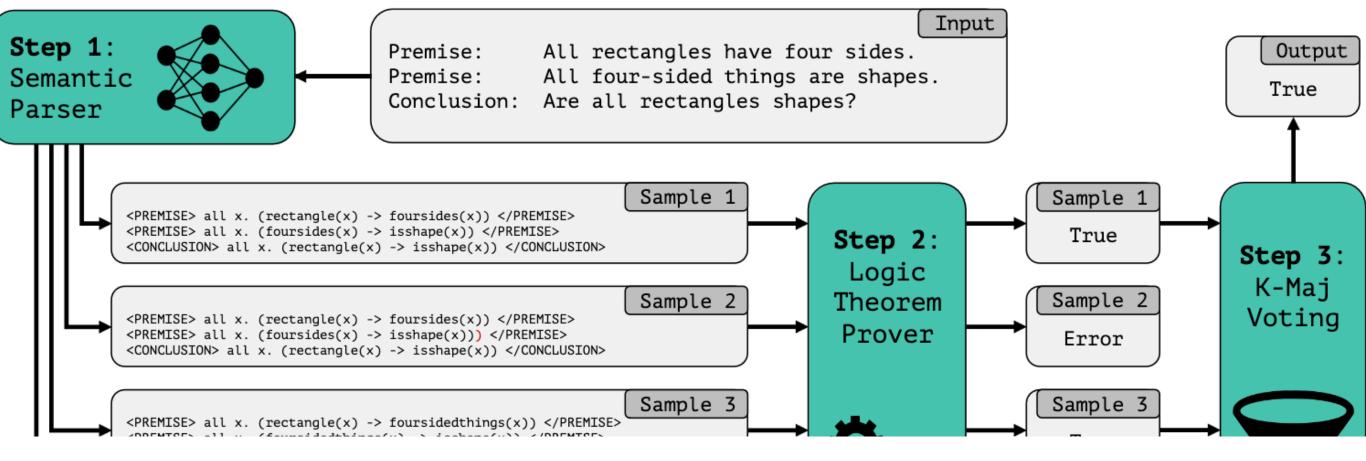
Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On

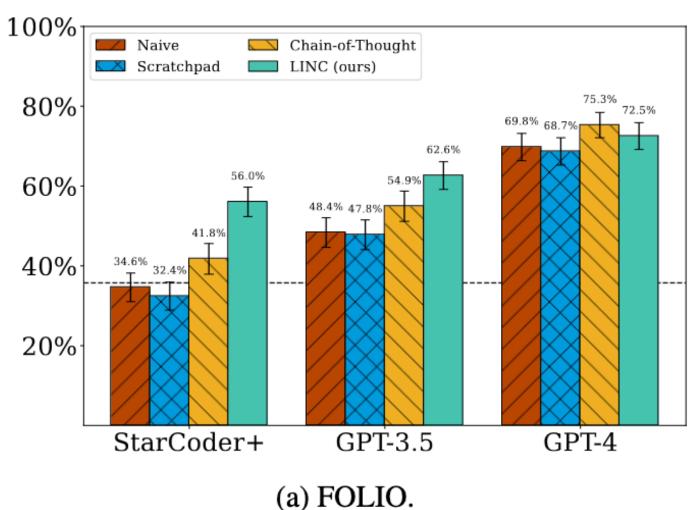
Introduction

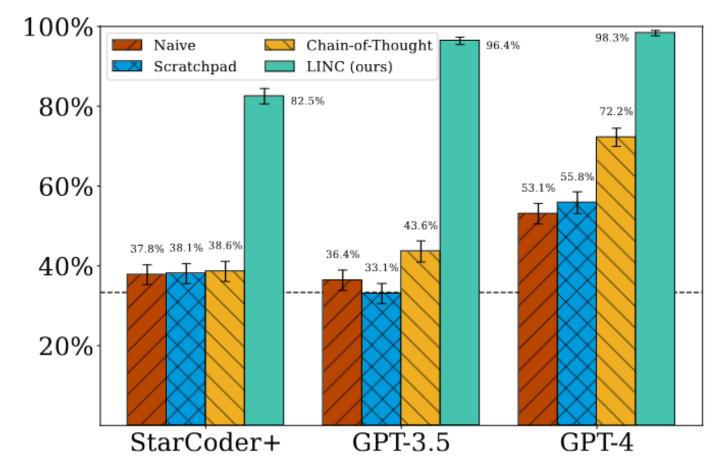
Widespread adoption of large la (LLMs) such as GPT-3 (Brown et 4 (OpenAI, 2023), and 2022) have lad to a seri

2022) have led to a seri in tasks ranging from gram synthesis. Some couraged the hypothesi to flexibly and systema Chang, 2022), especia strategies that explicitly termediate reasoning s final answer (Nye et a Kojima et al., 2022; Wa this reasoning ability a tasks that require reasc et al., 2022; Saparov e negation (Anil et al., 2 reasoning chains (Dziri while the standard appr to improve performance mains, other domains, e

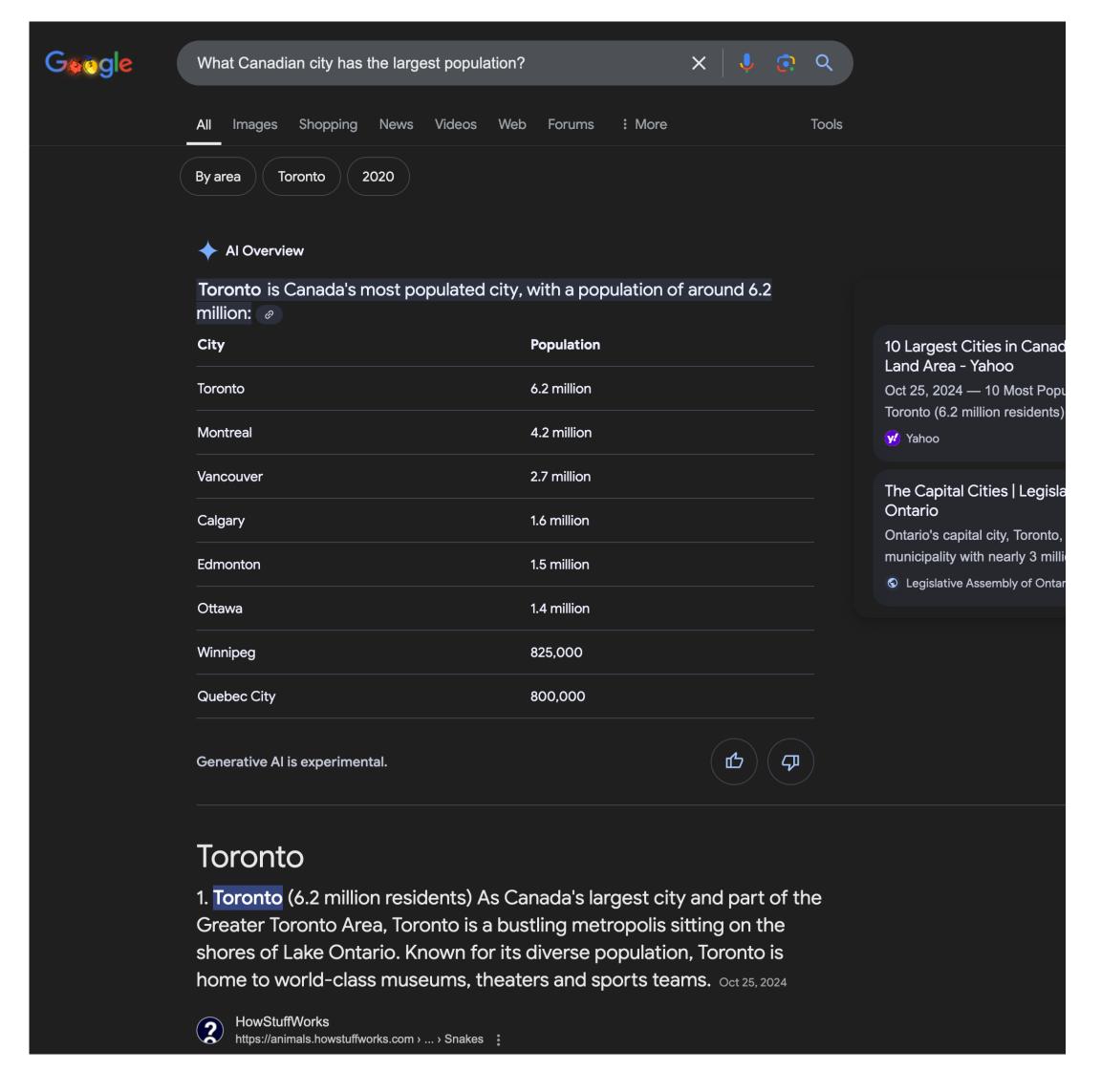
of Modus Tollens, show no such improvements

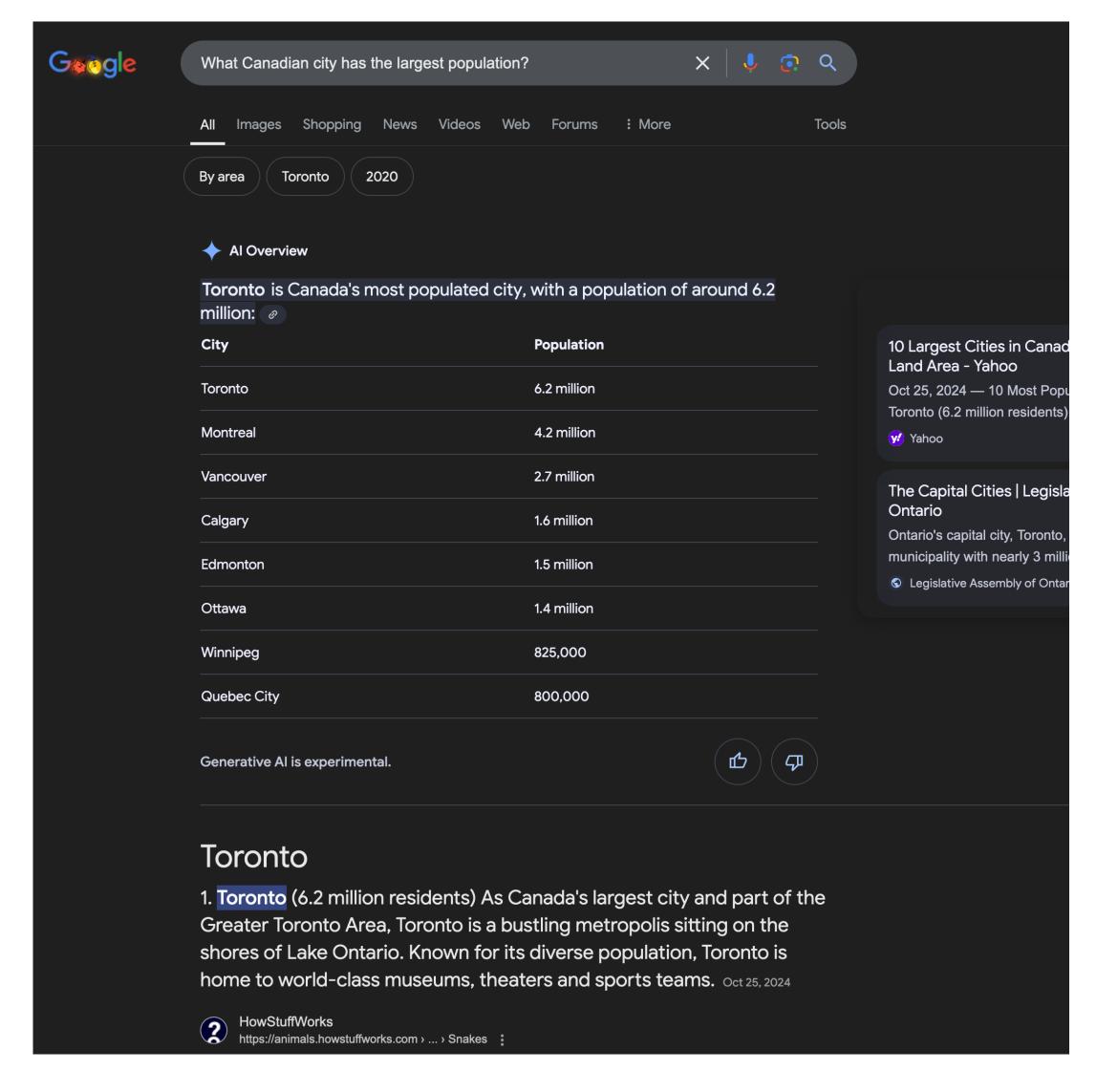






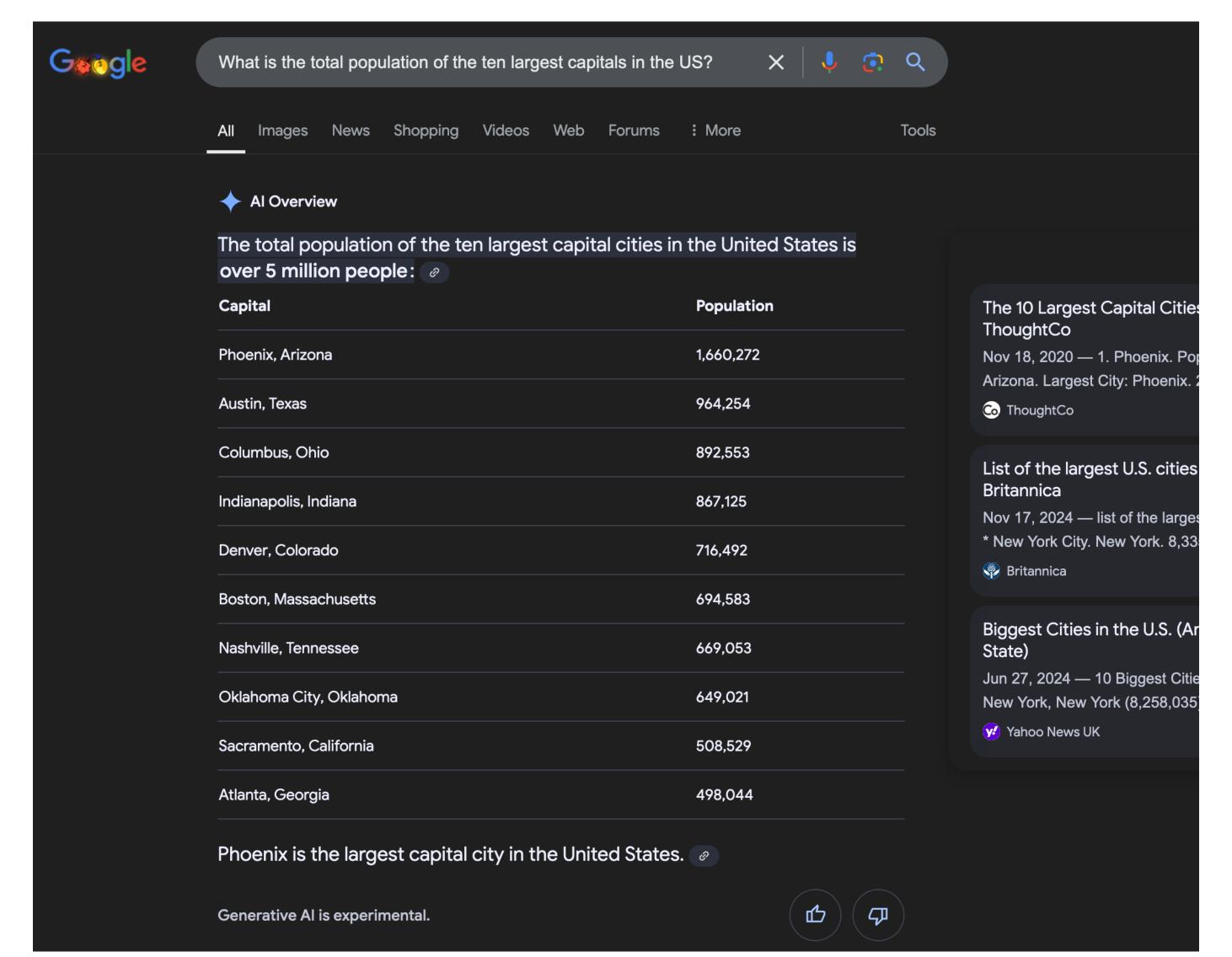
(b) ProofWriter.





Notes:

- Metro area population, not city
- Because of a document it found
- Not connected to structured data source

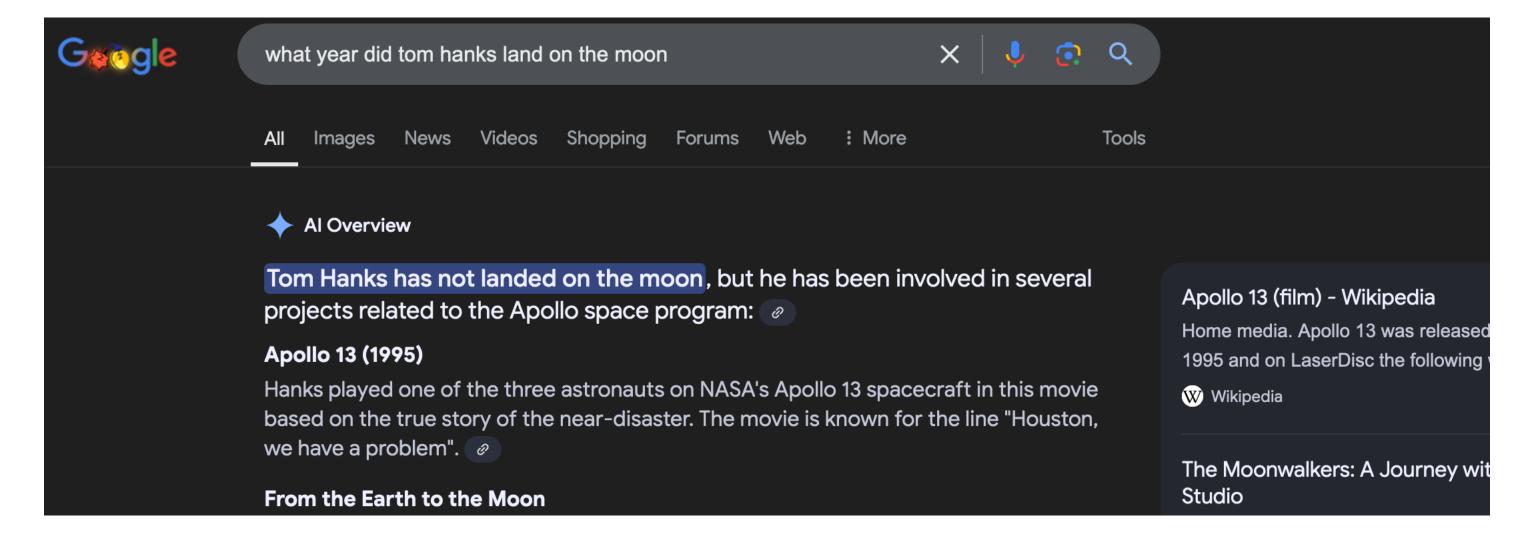


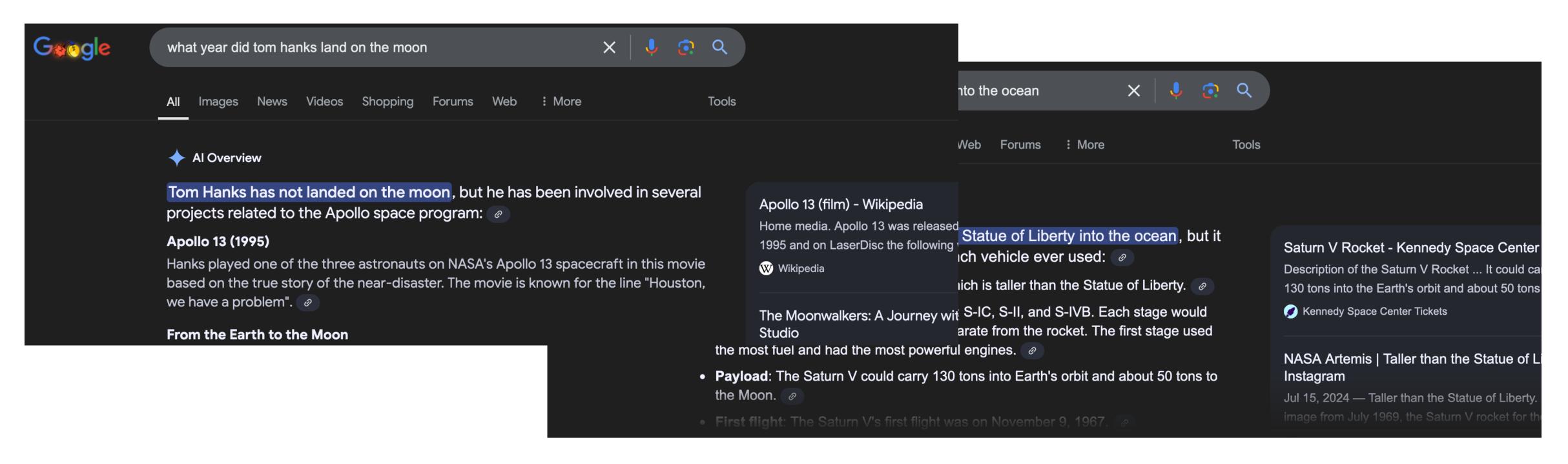


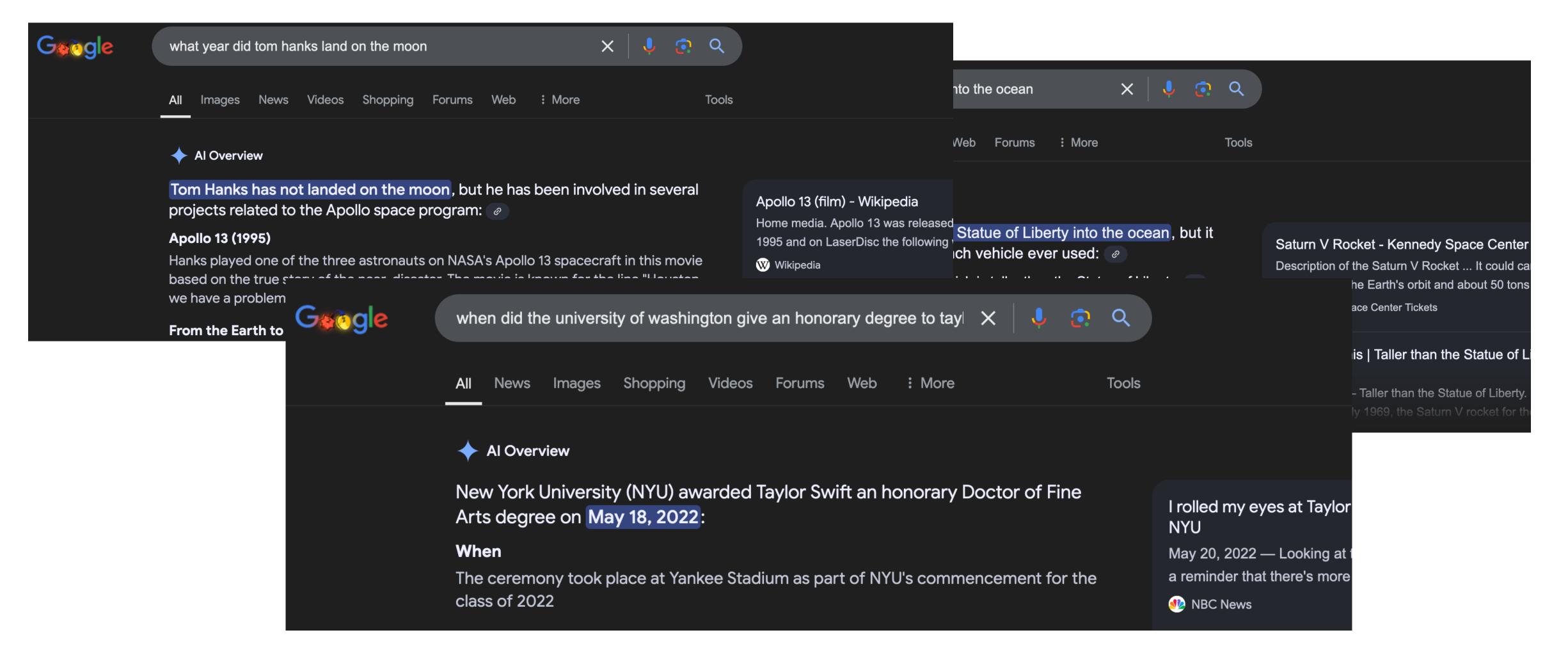
凸

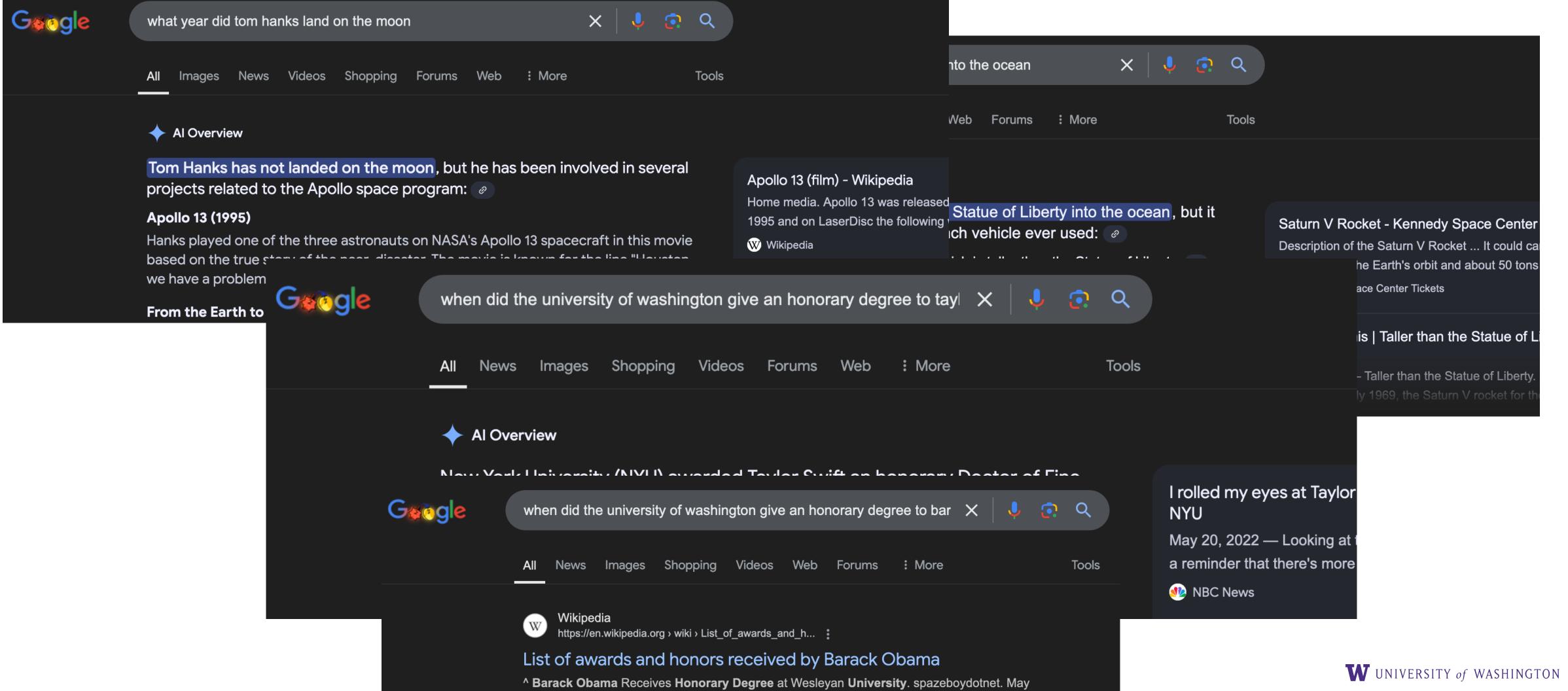
Generative AI is experimental.

 \Box









26, 2008. Archived from the original on October 18, 2020. Retrieved ...

Conclusions

- Deep processing for QA
 - Exploits parsing, semantics, anaphora, reasoning
 - Computationally expensive
 - More tractable when applied only to questions and passages
- Systems trending toward greater use of:
 - Web resources: Wikipedia, answer repositories
 - Machine learning! Possible over-reliance on LLMs vs structured data (see also Shah and Bender 2022)
- But still: real use of deep representations and processing thereof, even in the LLM era

More on current directions (e.g. unsupervised learning)

- More on current directions (e.g. unsupervised learning)
- Summary / wrap-up

- More on current directions (e.g. unsupervised learning)
- Summary / wrap-up
- AMA / general discussion

- More on current directions (e.g. unsupervised learning)
- Summary / wrap-up
- AMA / general discussion
 - Submit questions here!

- More on current directions (e.g. unsupervised learning)
- Summary / wrap-up
- AMA / general discussion
 - Submit questions here!
 - https://forms.gle/qiZ22sedhWXtyoGS9

- More on current directions (e.g. unsupervised learning)
- Summary / wrap-up
- AMA / general discussion
 - Submit questions here!
 - https://forms.gle/qiZ22sedhWXtyoGS9
- Course evaluation!

Bonus Slides: Neural Approaches to Coreference and WSD

Lee e. al, 2017

Lee et al. 2017

Begin with dataset with gold mention clusters (aka chains)

"General Electric said the Postal Service contacted the company."

Lee et al, 2017

Begin with dataset with gold mention clusters (aka chains)

Lee et al, 2017

 Can think of the coref problem as finding the maximally likely distribution:

$$P(y_1, ..., y_N | D) = \prod_{i=1}^{N} \frac{\exp\left(s\left(i, y_i\right)\right)}{\sum_{y' \in y(i)} \exp\left(s\left(i, y'\right)\right)}$$

Lee et al, 2017

 Can think of the coref problem as finding the maximally likely distribution:

$$P(y_1, ..., y_N | D) = \prod_{i=1}^{N} \frac{\exp\left(s\left(i, y_i\right)\right)}{\sum_{y' \in y(i)} \exp\left(s\left(i, y'\right)\right)}$$

Where

$$s(i,j) = \left\{ \begin{array}{ll} 0 & j = \epsilon \\ s_m(i) + s_m(j) + s_a(i,j) & j \neq \epsilon \end{array} \right.$$

Lee et al. 2017

 Can think of the coref problem as finding the maximally likely distribution:

$$P(y_1, ..., y_N | D) = \prod_{i=1}^{N} \frac{\exp\left(\mathbf{s}(i, y_i)\right)}{\sum_{y' \in y(i)} \exp\left(\mathbf{s}(i, y')\right)}$$

Where

Coref Score

Lee et al. 2017

 Can think of the coref problem as finding the maximally likely distribution:

$$P(y_1, ..., y_N | D) = \prod_{i=1}^{N} \frac{\exp\left(\mathbf{s}(i, y_i)\right)}{\sum_{y' \in y(i)} \exp\left(\mathbf{s}(i, y')\right)}$$

Where

Coref Score Mention Score

Lee et al, 2017

 Can think of the coref problem as finding the maximally likely distribution:

$$P(y_1, ..., y_N | D) = \prod_{i=1}^{N} \frac{\exp\left(\mathbf{s}(i, y_i)\right)}{\sum_{y' \in y(i)} \exp\left(\mathbf{s}(i, y')\right)}$$

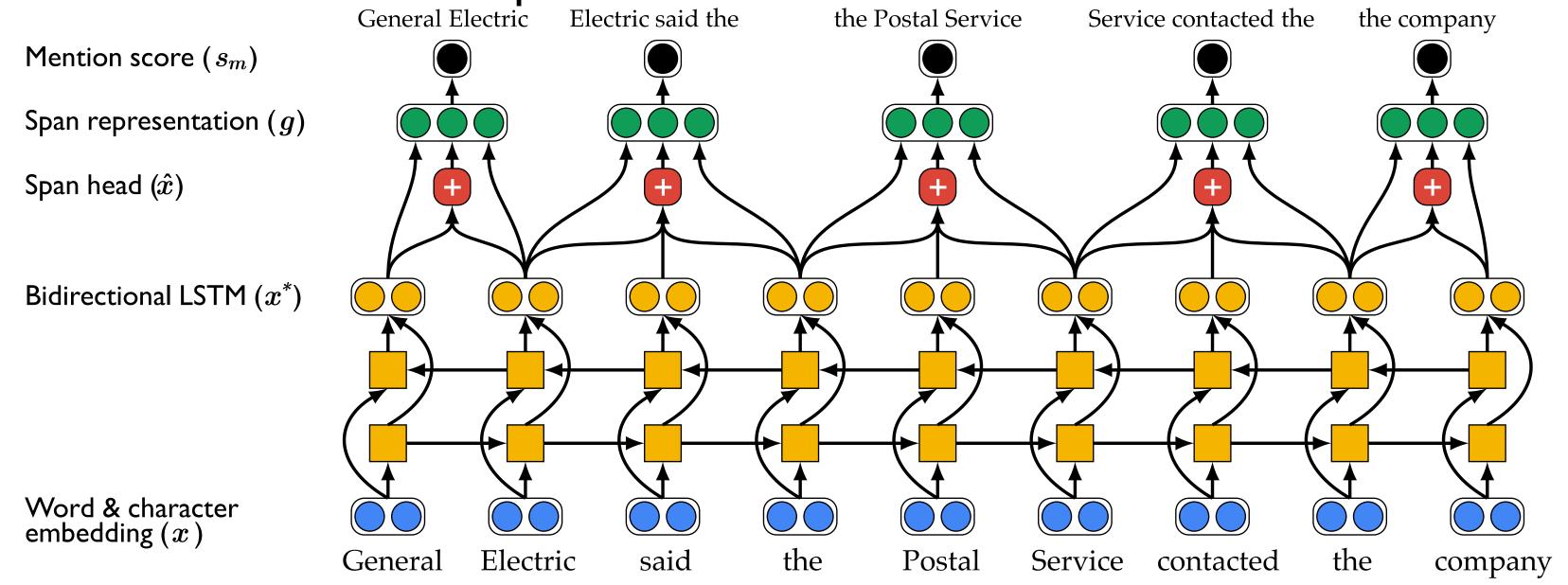
Where

Coref Score Mention Score Antecedent Score

Lee et al, 2017

- Step 1 Train model to identify spans based on gold span labels
 - Use bi-LSTMs to model sequential information preceding/following/within spans

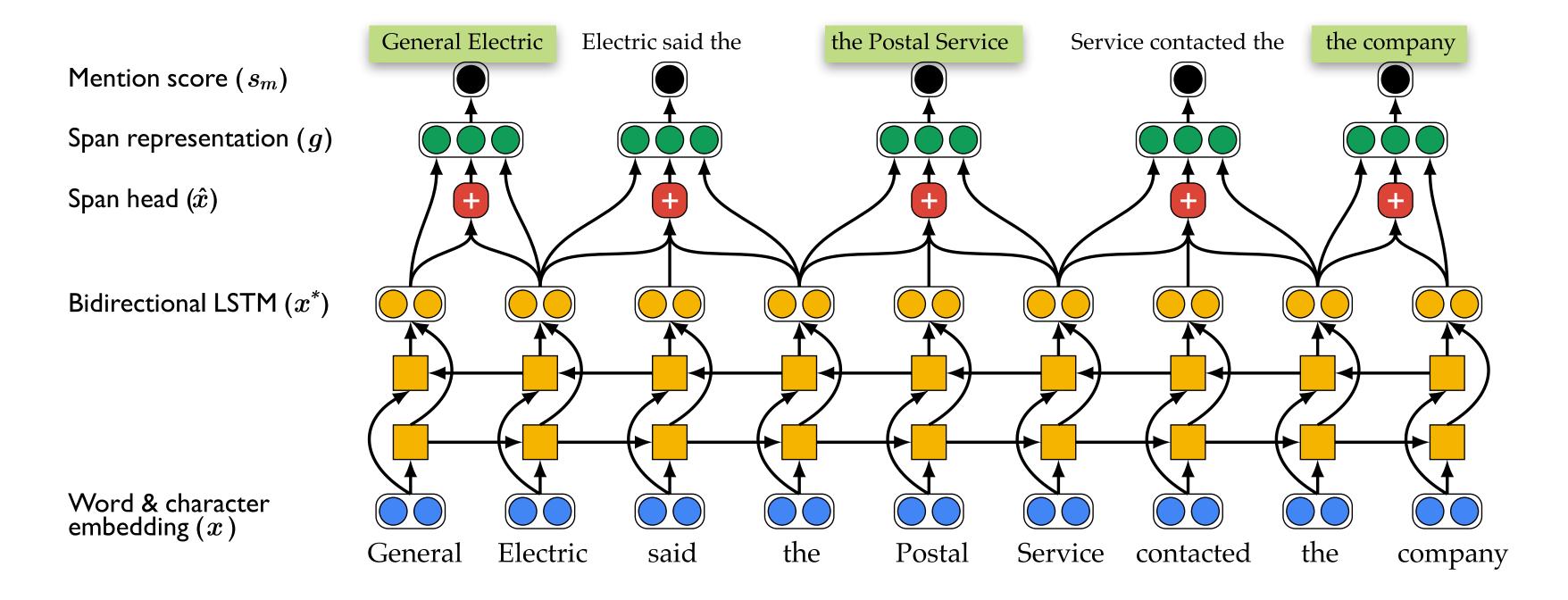
• Include "headedness" of span with a learned attention mechanism



- Attention can be visualized by heatmap over spans:
 - (The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots') union and ground crew did so yesterday.
 - (Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United States making (their) first stop today in New York. It's Charles' first opportunity to showcase his new wife, but few Americans seem to care. Here's Jeanie Mowth. What a difference two decades make. (Charles and Diana) visited a JC Penney's on the prince's last official US tour. Twenty years later, here's the prince with his new wife.

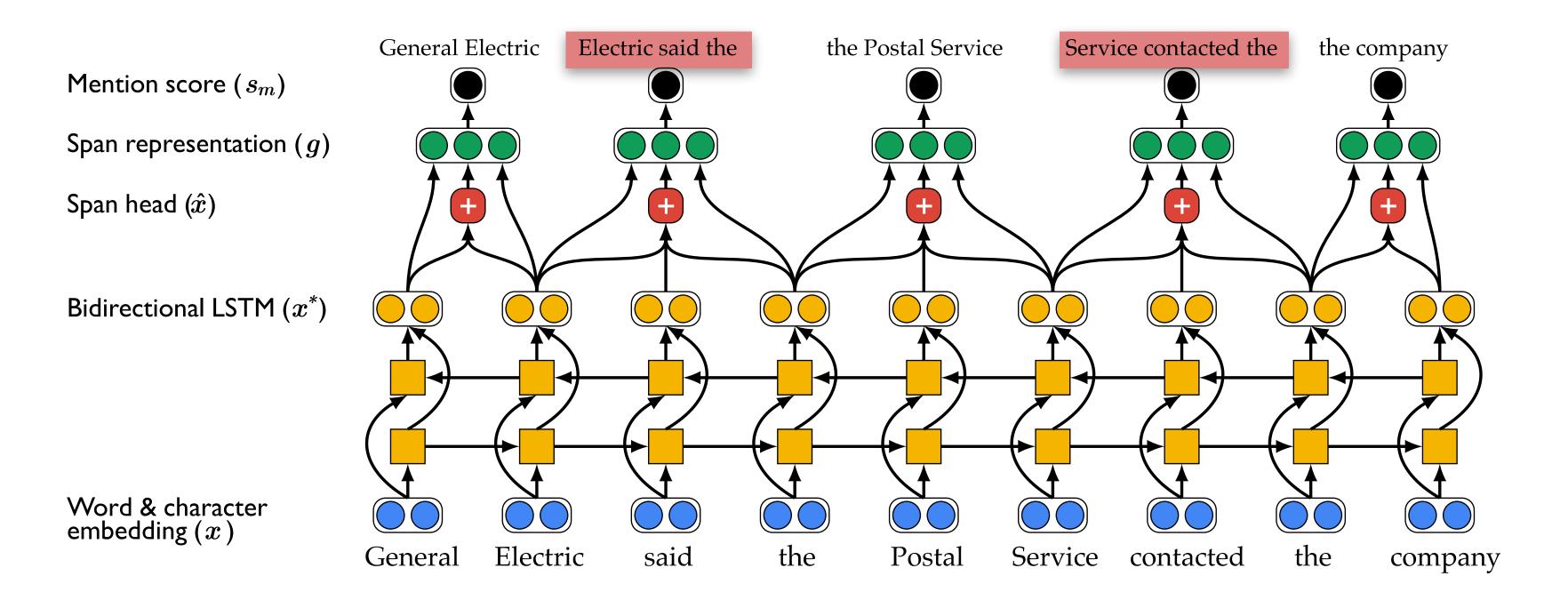
Lee et al, 2017

 These are valid gold mentions (network gets "reward" for getting these right)

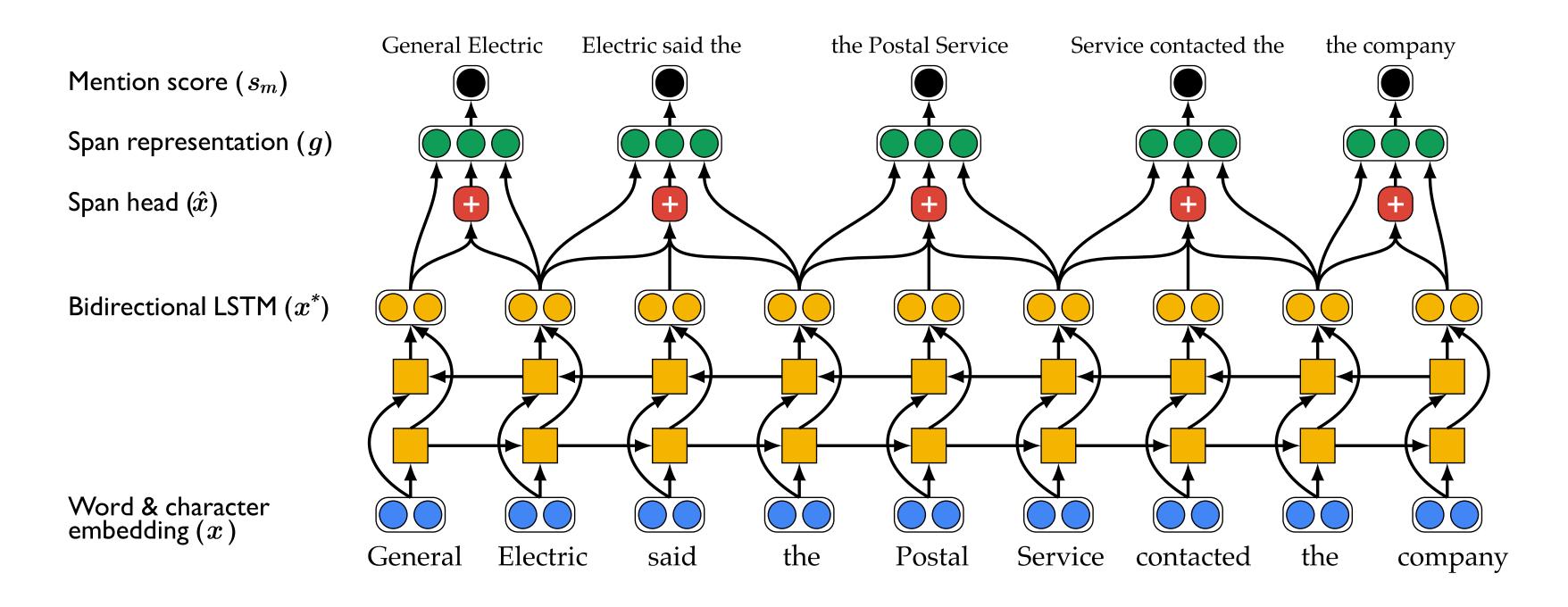


Lee et al, 2017

 These are invalid mentions (network accumulates error if these are selected)

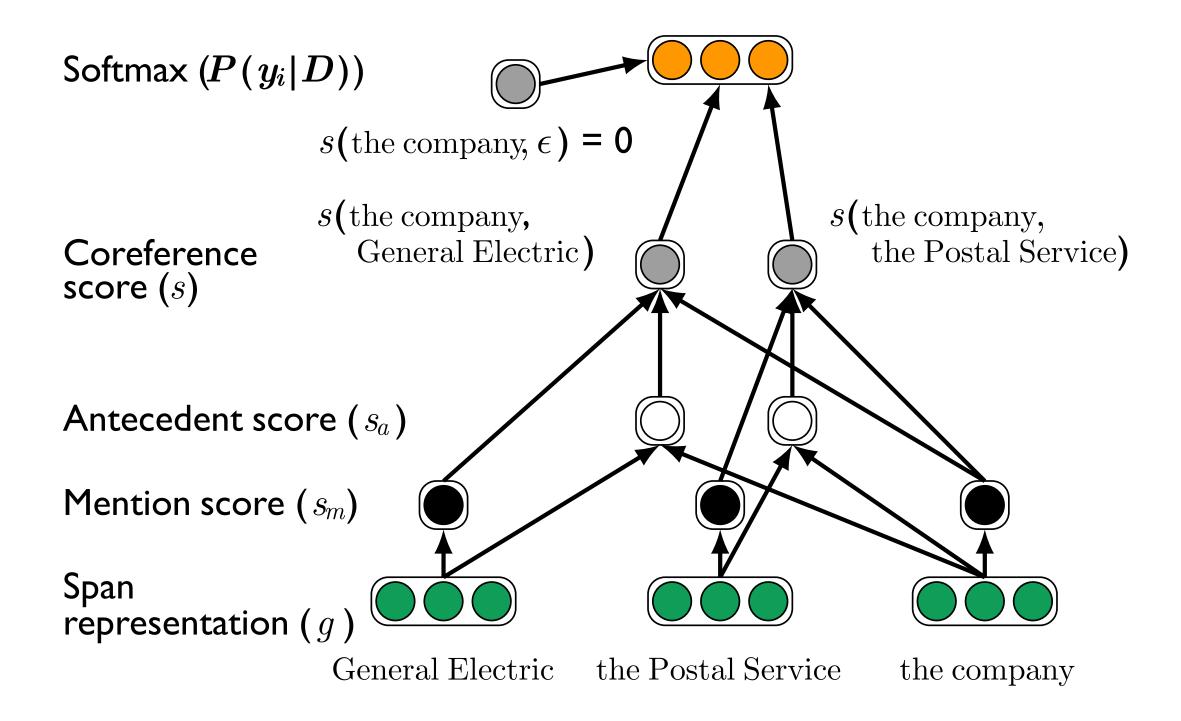


- Network thus learns to identify features from (embeddings → sequence) + head
 - As more or less likely to identify a span of words as a mention

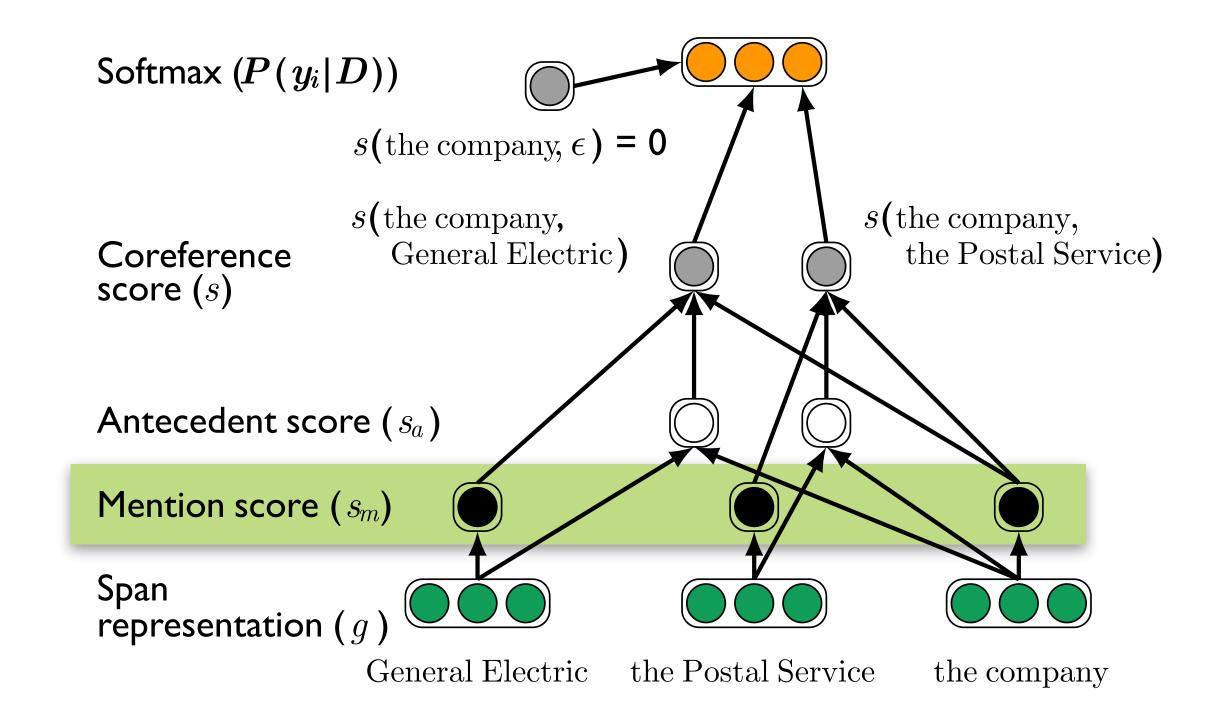


Lee et al, 2017

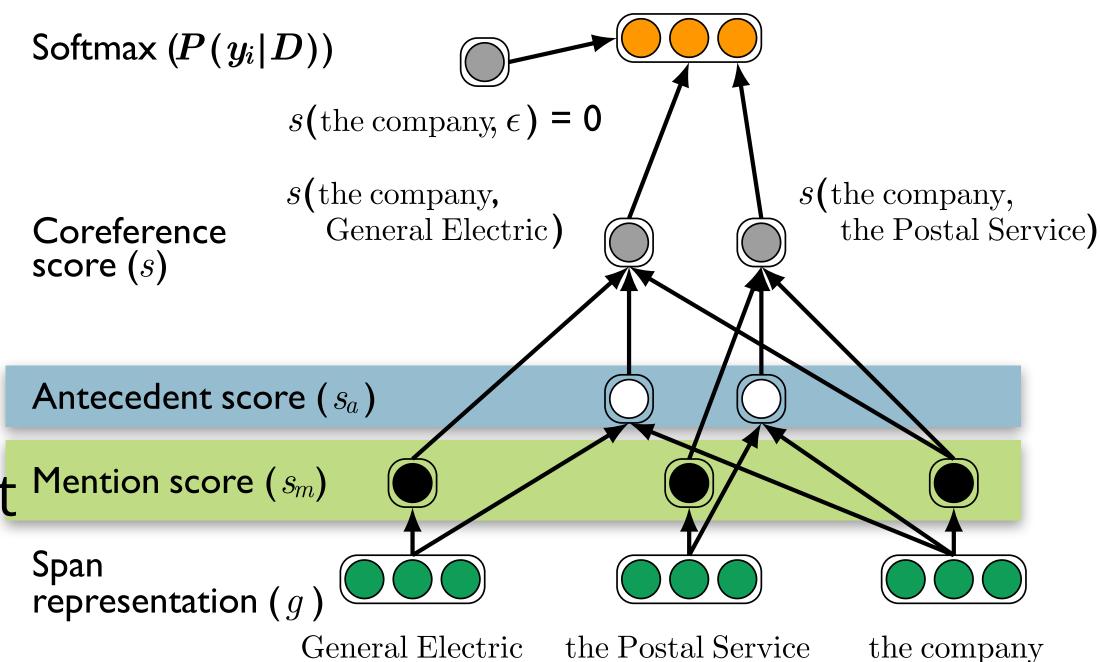
Step 2 — Learn Coref Clusters



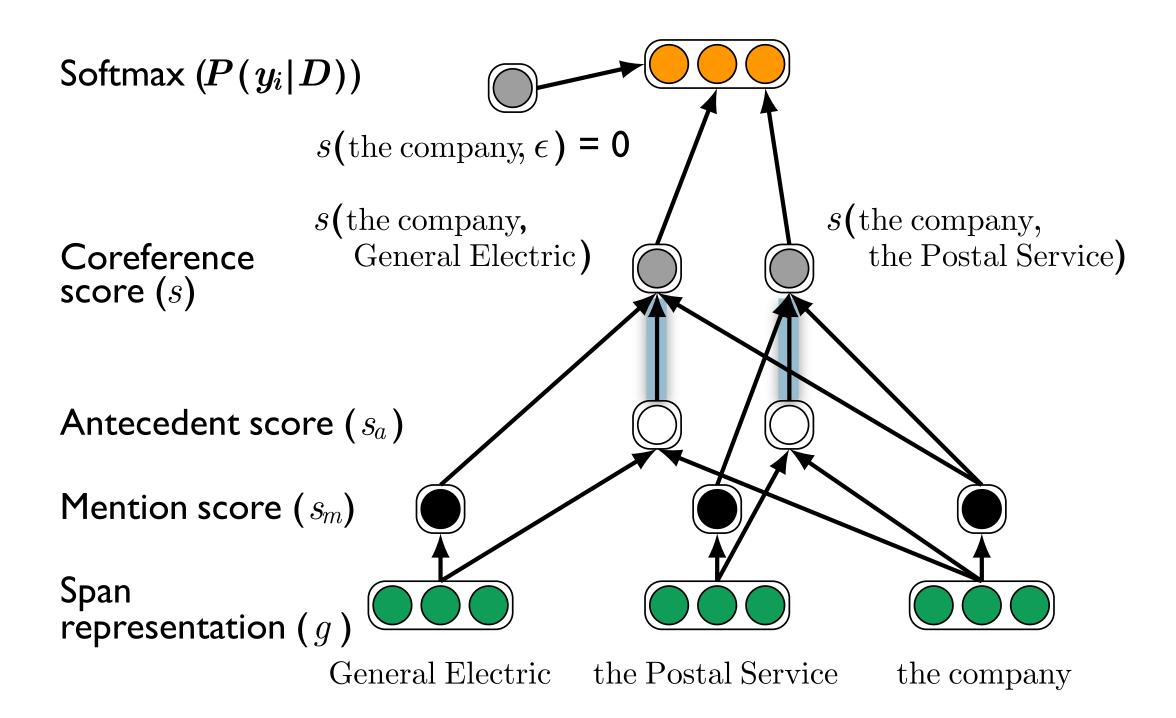
- Step 2 Learn Coref Clusters
- Mention Scores
 - Likelihood a given span is a mention
 - Unary over spans



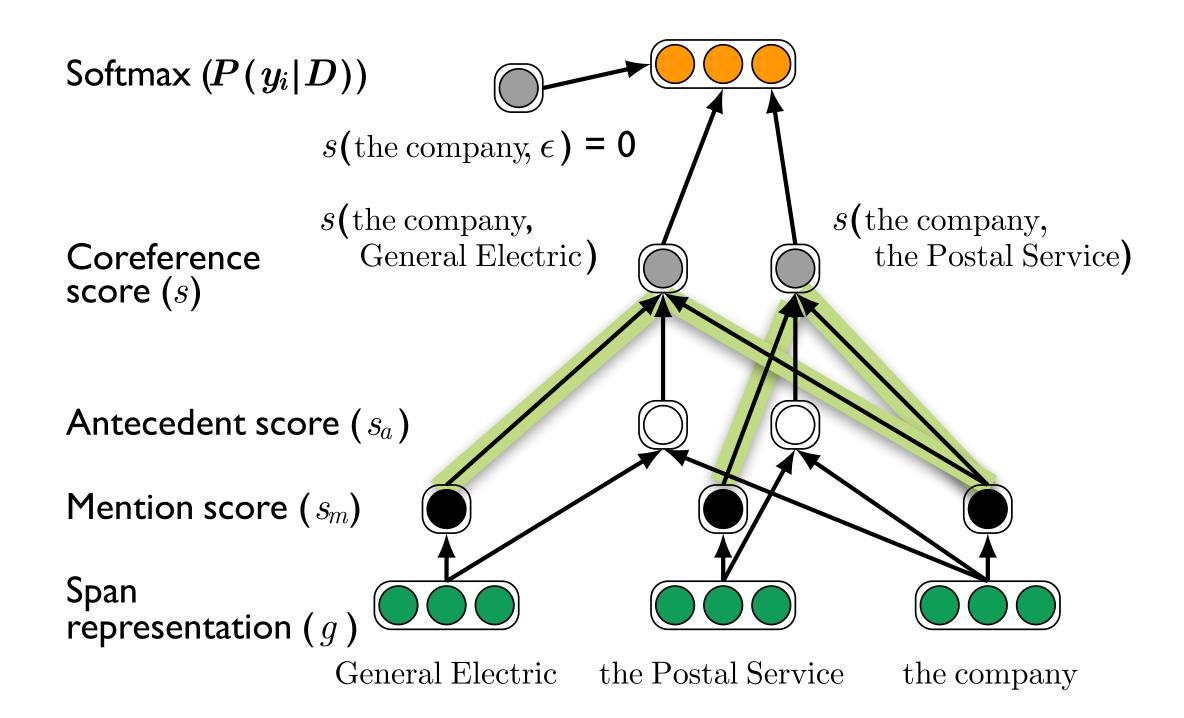
- Step 2 Learn Coref Clusters
- Mention Scores
 - Likelihood a given span is a mention
 - Unary over spans
- Antecedent scores
 - Likelihood another mention is antecedent Mention score (Sm)
 - Pairwise between spans



- The coref score is a combination of:
 - antecedent scores



- The coref score is a combination of:
 - antecedent scores
 - mention scores



- Other info:
 - Also implement pruning to avoid dealing with all spans
 - Also encode metadata, such as speaker and genre in mention representation

- Data:
 - CoNLL-2012 Shared Task (Coref on OntoNotes)
 - 2802 training docs
 - 343 development docs
 - 348 test docs
 - 454 words/doc average

- Positive:
 - State-of-the-art on CoNLL-2012 Test Data
- Errors:
 - Word embeddings tend to conflate paraphrasing with relatedness
 - e.g. (The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots') union and ground crew did so yesterday.
 - (Prince Charles and his new wife Camilla) have jumped across the pond ... What a difference two decades make. (Charles and Diana) visited a JC Penney's on the Prince's last official US tour. ...

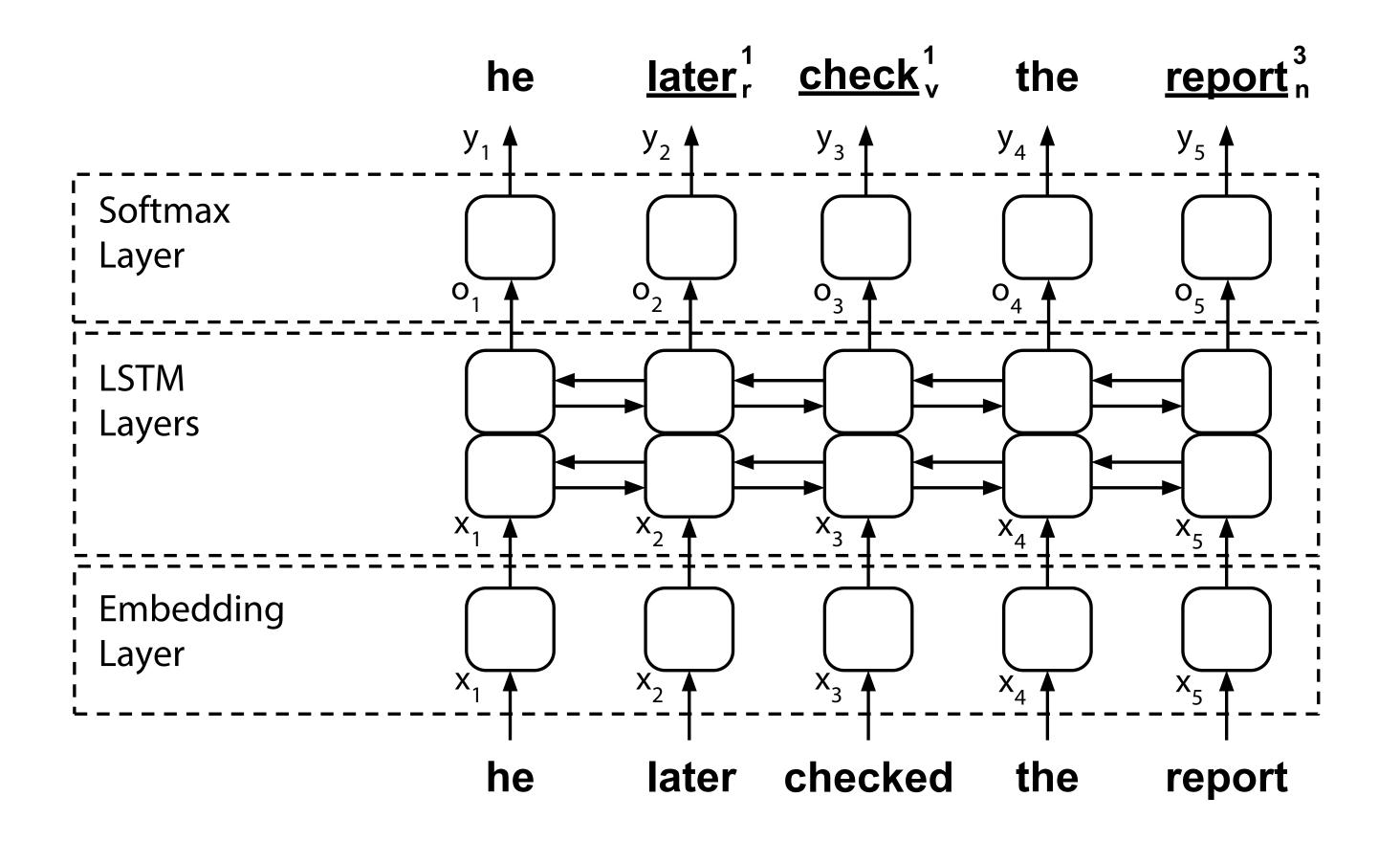
Neural Sequence Learning Models for Word Sense Disambiguation

- Authors propose several models for encoding words and senses
 - bi-LSTM
 - bi-LSTM + Attention
 - Sequence to Sequence
- All approaches are encoding sequential information
- All approaches use sense-tagged corpus

Raganato et. al (2017b)

bi-LSTM

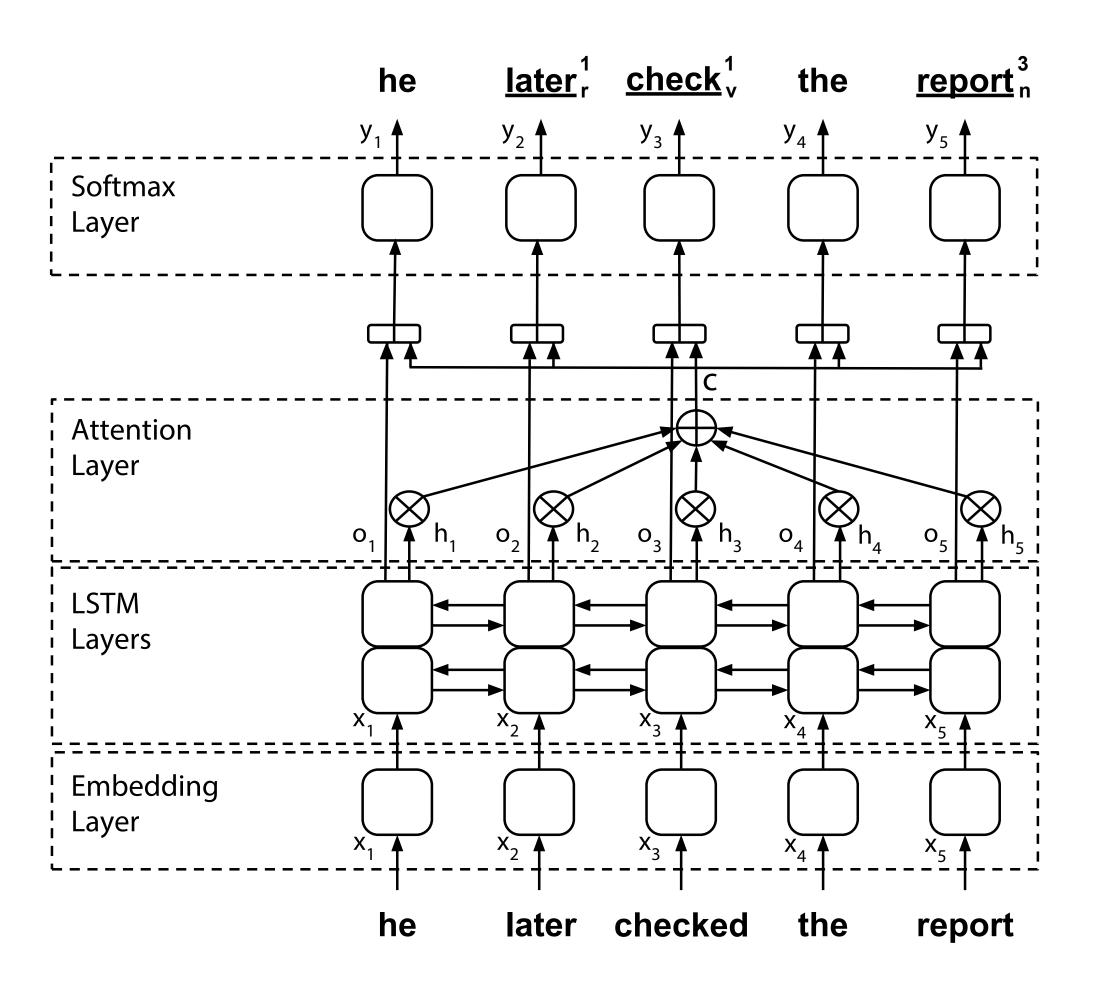
 Learn to label proper sense given word embedding and context (LSTM)



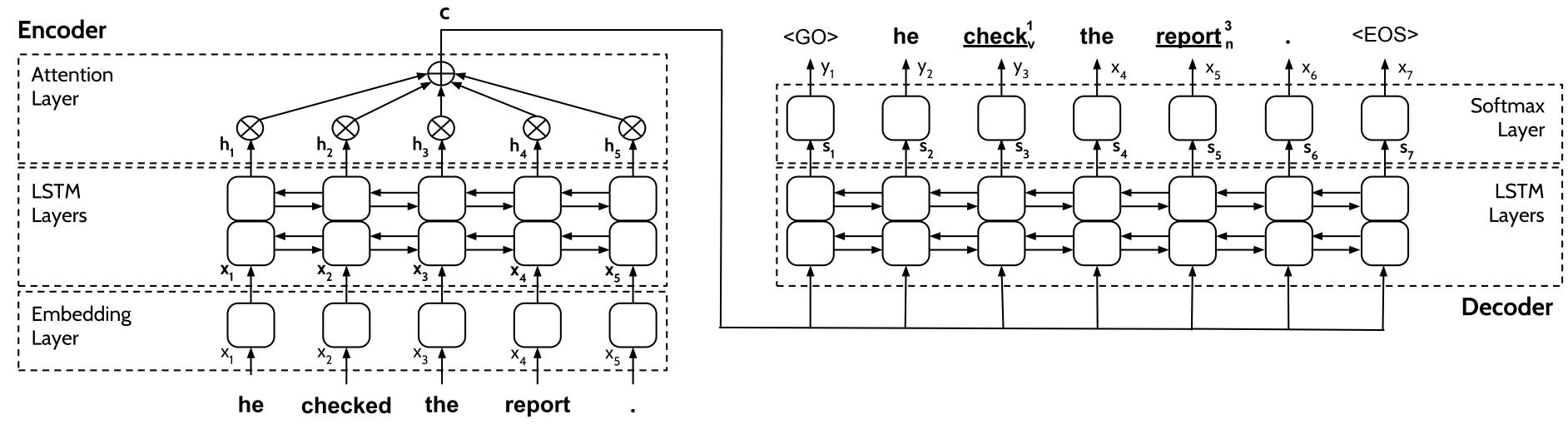
Raganato et. al (2017b)

bi-LSTM + Attention

- Attention layer adds sentence-level representation c to guide the labels generate at each sequence time step by focusing on what part of the sentence may be relevant
 - (e.g. with *wicket* in focus, *match* might be influenced toward the game sense, rather than firestarter)



- seq2seq
 - Two-step task:
 - Memorization Model is trained to replicate input token-by-token
 - Disambiguation Model learns to replace surface forms with appropriate senses



- Also try models that jointly learn WSD and:
 - coarse semantic labels
 - e.g. noun.location, verb.motion
 - POS tags
 - Both

- Data:
 - Use SemCor 3.0 for training/evaluating word senses

Raganato et. al (2017b)

Results:

5.	Dev	Test Datasets				Concatenation of All Test Datasets				
	SE07	SE2	SE3	SE13	SE15	Nouns	Verbs	Adj.	Adv.	All
BLSTM	61.8	71.4	68.8	65.6	69.2	70.2	56.3	75.2	84.4	68.9
BLSTM + att.	\mid 62.4 \mid	71.4 $ $	70.2	66.4	70.8	71.0	58.4	75.2	83.5	69.7
$BLSTM + att. \pm EX$	63.7	72.0	69.4	66.4	72.4	71.6	57.1	75.6	83.2	69.9
$BLSTM + att. \pm EX + POS$	64.8	72.0	69.1	66.9	71.5	71.5	57.5	75.0	83.8	69.9
Seq2Seq	60.9	68.5	67.9	65.3	67.0	68.7	54.5	74.0	81.2	67.3
Seq2Seq + att.	62.9	69.9	69.6	65.6	67.7	69.5	57.2	74.5	81.8	68.4
Seq2Seq + att. ±EX	\mid 64.6 \mid	70.6	67.8	66.5	68.7	70.4	55.7	73.3	82.9	68.5
Seq2Seq + att. ±EX+POS	63.1	70.1	68.5	66.5	69.2	70.1	55.2	75.1	84.4	68.6
IMS	61.3	70.9	69.3	65.3	69.5	70.5	55.8	75.6	82.9	68.9
IMS+emb	62.6	72.2	70.4	65.9	71.5	71.9	56.6	75.9	84.7	70.1
Context2Vec	61.3	71.8	69.1	65.6	71.9	71.2	57.4	75.2	82.7	69.6
$\operatorname{Lesk}_{\operatorname{ext}} + \operatorname{emb}$	56.7	63.0	63.7	66.2	64.6	70.0	51.1	51.7	80.6	64.2
$ m UKB_{gloss} \ w2w$	42.9	63.5	55.4	62.9	63.3	64.9	41.4	69.5	69.7	61.1
Babelfy	51.6	67.0	63.5	66.4	70.3	68.9	50.7	73.2	79.8	66.4
MFS	54.5	65.6	66.0	63.8	67.1	67.7	49.8	73.1	80.5	65.5

- Analysis:
 - Comparable to other supervised systems
 - Adding coarse-grained lexical tags appears to help
 - POS did not seem to help
- None of these systems substantially better than using the Most Frequent Sense