PCFGs:
Parsing & Evaluation

LING 571 — Deep Processing Techniques for NLP
Shane Steinert-Threlkeld



Announcements

e HW2 due tonight at 11:59pm

e readme.{txt|pdf}
e Separate upload to Canvas
e NOT inhw2.tar.gz

® Run check hw2.sh before submitting! (Also: tar -tf hw2.tar.gz to preview.)
e Flat structure; just files, no directories, inside tar-ball (base) [shanest@patas refl$ tar —tf hwil.tar.gz
e Include only the files we ask for, not more hwl.py

hwl_parse.out
run_hwl.sh

e Start symbol: either “%start S” or first nonterminal

e NB: needs to be readable by nltk's grammar loading methods

e Use nltk.data.load: best to use “file:path/to/grammar.cfg” as argument
e Docs: https://www.nltk.org/api/nltk.data.html#nltk.data.load

e See hw2 slides as well on website for above points
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Roadmap

CKY + back-pointers example
PCFGs

PCFG Parsing (PCKY)
Inducing a PCFG

Evaluation

[Earley parsing]

HW?3 + collaboration



CKY + Back-pointers Example



cky table[0,6][S] = { Pr:'n’:;un
}
--

N

NP VP

[ brefer a flight on TWA
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= {(NB, (0,1),

NP,
VP, (1,6))} Pronoun
| ) "-
| ﬂ

cky_table[0,6]///

I brefer a flight on TWA
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cky_table[0,6][§ (0,1), Ll

(1,6)): Pronoun
(11[NP] = {(‘I")}

) 1

(X2, (1,4),
PP, (4,0))}

cky_table%k
cky table[1l,6]]

[ brefer a flight on TWA
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cky table[0,6][S] = {(NP, (O0,1), Pr:'n'zun
VP, (1,6)).
cky_table[0,1]] = {('I")} Verb, VP, S VP, X2, S
r (1,2),
NP, (2,6)), “

VP, X2, S

cky table[1,6][V
(X2, (1,4),

PP, (4,6))} :
cky_table[1,2][Verb] = {(’'prefer’)}

PN
NP VP
AN

| Verb NP

|
brefer

[ brefer a flight on TWA
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cky table[0,6][S] = {(NP, (0,1), PNP,
VP, (1,6)) ronoun

cky_table[0,1][NP] = {(‘I")} Verb, VP, S
cky table[l,6][VP] = rb, (1,2),
r (2,6)),

(X2, (1,4),
PP, (4,0))}

cky table[2,6][NP] =

prefer Det Nom

[ brefer a flight on TWA

WA UNIVERSITY of WASHINGTON 9



VP, (1,6)).
cky table[l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
PP, (4,6))} S

VP, X2, S

cky table[l,2][V
cky table[2,6]

(‘prefer’)}

, (2,3), T

Nom, (3,6)} NP VP

cky_table[2,3][-] = {('a’")} ‘ /\

| Verb NP

N

prefer Det Nom

da

[ brefer a flight on TWA
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VP, (1,6)).
cky table[l,6][VP] = {(Verb, (1,2),
NP, (2,6)),
PP, (4,6))} S

VP, X2, S

cky table[l,2][V
cky table[2,6]

(‘prefer’)}

, (2,3), T

Nom, (3,6)} NP VP

cky_table[2,3][-] = {('a’")} ‘ /\

| Verb NP

N

prefer Det Nom

da

[ brefer a flight on TWA
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cky table[0,6][S] = {(NP, (0,1), r>NR
VP, (1, 6) ) ronoun

cky table[0,1][NP] = {(‘'I")}
cky table[l,6][VP] = {RYisc iy
NP, (2,6))

Verb, VP, S

) }

[ brefer a flight on TWA

YA UNIVERSITY of WASHINGTON 12



Probabilistic Context-Free Grammars



Probabilistic Context-free Grammars:
Roadmap

Motivation: Ambiguity
Approach:

Definition
Disambiguation
Parsing
Evaluation

Enhancements



Motivation

What about ambiguity?

Current algorithm can represent it

...can't resolve it.
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Probabilistic Parsing

e Provides strategy for solving disambiguation problem
e Compute the probability of all analyses

e Select the most probable

e Employed in language modeling for speech recognition
e N-gram grammars predict words, constrain search

e Also, constrain generation, translation
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PCFGs: Formal Definition

a set of non=-terminal symbols (or variables)

M

a set of terminal symbols (disjoint from N)
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PCFGs: Formal Definition

N a set of non-terminal symbols (or variables)

2 a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — S[p], where A is a non-terminal where
[H  Aisanon-terminal, 8 is a string of symbols from the infinite set of strings (ZUN)+ and p is
a number between 0 and 1 expressing P(SlA)
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PCFGs: Formal Definition

N a set of non-terminal symbols (or variables)

2 a set of terminal symbols (disjoint from N)

a set of rules of productions, each of the form A — S[p], where A is a non-terminal where
[H  Aisanon-terminal, 8 is a string of symbols from the infinite set of strings (ZUN)+ and p is
a number between 0 and 1 expressing P(Sl A)

S a designated start symbol

WA UNIVERSITY of WASHINGTON 17



PCFGs

e Augment each production with probability that LHS will be expanded
as RHS

o P(BIA)
o P(RHSI| LHS)

e NB: the first is often used; but the latter are what's really meant.



PCFGs

e Sum over all possible expansions is 1
) PA—p)=1
p

e A PCFG is consistent if sum of probabilities of all sentences in language
IS 1

e Recursive rules often yield inconsistent grammars (gooth & Thompson, 1973)
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https://dl.acm.org/citation.cfm?id=1310632

Example PCFG: Augmented £+

S— NP VP
S = Aux NP VP
S— VP
NP — Pronoun
NP — Proper-Noun
NP — Det Nominal
NP — Nominal
Nominal = Noun

Nominal & Nominal Noun

Nominal =& Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP
VP — Verb PP

VP — Verb NP NP

VP — VP PP
PP — Preposition NP

.80
15
05
35
30
20
15
75

20
05
'35
20
10
15
05
15

1.0]

Det — that [.10] | a[.30] | the [.60]

Noun — book [.10] | flight [.30] | meal [.15] | money [0.5]
| flights [0.40] | dinner[.10]

Verb — book [.30] | include [.30] | prefer [.40]
Pronoun — 1[.40] | she [.05] | me [.15] | you [.40]
Proper-Noun — Houston [.60] | NWA [.40]

Aux — does [.60] | can [.40]

Preposition = from [.30] | to [.30] | on[.20] | near[.15]

| through [.05]
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Example PCFG: Augmented £+

S— NP VP
S = Aux NP VP
S— VP
NP — Pronoun
NP — Proper-Noun
NP — Det Nominal
NP — Nominal
Nominal = Noun

Nominal & Nominal Noun

Nominal = Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP
VP — Verb PP

VP — Verb NP NP

VP — VP PP
PP — Preposition NP

80
15
05
35
30
20
15
75
20
05
'35
20
10
15
05
15

1.0]

Det — that [.10] | a[.30] | the [.60]
Noun — book [.10] | flight [.30] | meal [.15] | money [0.5]
| flights [0.40] | dinner[.10]

Verb — book [.30] | include [.30] | prefer [.40]
Pronoun — 1[.40] | she [.05] | me [.15] | you [.40]
Proper-Noun — Houston [.60] | NWA [.40]

Aux — does [.60] | can [.40]

Preposition = from [.30] | to [.30] | on[.20] | near[.15]

| through [.05]
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Disambiguation

e A PCFG assigns probability to each parse tree Tfor input S

e Probability of T: product of all rules used to derive T
P(T,S) = | | P(RHS,| LHS))
i=1

P(T.,S) = P(T)P(S|T) = P(T)

NNNNNNNNNNNNNNNNNNNNNN



S

/\
NP VP
| ] T
Pron Verb NP PP

| | TN PN
I prefer Det Nom P NP

| | | |
a Noun on NNP

| |

flight TWA
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP PP 0. 1]
V — prefer 0.4]
NP — Det Nom 0.2]
Det — a 0.3]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]

S
/\
NP
| /\
Pron Verb NP
| prefer Det Nom
/\
Noun PP
N
flight P NP
| |
S — NPVP [0.8] on NNP
NP — Pron [0.35] |
Pron — | 0.4] TWA
VP =V NP 0.2
V — prefer 0.4]
NP — Det Nom 0.2]
Det — a 0.3
Nom — Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3
PP — P NP .07
P — on 0.2
NP — NNP 0.3
NNP — NWA 0.4
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S

/\
NP VP
| ] T
Pron Verb NP PP

| | N N
I prefer Det Nom P NP

| | | |
a Noun on NNP

| |

flight TWA
S = NPVP [0.8]
NP — Pron [0.35]
Pron — | 0.4]
VP =V NP PP 0. 1]
V — prefer 0.4]
NP — Det Nom 0.2]
Det — a 0.3]
Nom — N [0.75]
N — flight 0.3]
PP — P NP 1.0]
P — on 0.2]
NP — NNP 0.3]
NNP — NWA 0.4]
~|.452 x |06

S
/\
NP VP
| _— T
Pron Verb NP
I prefer Det Nom
/\
a Noun PP
| N
flight P NP
| |
S — NPVP [0.8] on NNP
NP — Pron [0.35] |
Pron — | 0.4] TWA
VP =V NP 0.2
V — prefer 0.4]
NP — Det Nom 0.2]
Det — a 0.3
Nom — Nom PP [0.05]
Nom — N [0.75]
N — flight 0.3
PP — P NP .07
P — on 0.2
NP — NNP 0.3
NNP — NWA 0.4

~1.452 x [0~/
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Parsing Problem for PCFGs

e Select T such that (s.t.)

e String of words

e Select the tree

1(S) = argmax P(T)
T s.t. S=yield(T)

IS of parse tree

that maximizes the probability of the parse



Application:
Language Modeling

e n-grams helpful for modeling the probability of a string
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Application:
Language Modeling

e n-grams helpful for modeling the probability of a string

e To model a whole sentence with n-grams either:

e Must use 10+-grams... too sparse
P(w,_,w,)

P(w;_y)

e Approximate using conditioning on limited context: P(w.|w._ ;) =
e PCFGs are able to give probability of entire string without as bad
sparsity

e Model probability of syntactically valid sentences

e Not just probability of sequence of words



PCFGs: Parsing
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Probabilistic CKY (PCKY)

o Like regular CKY

e Assumes grammar in Chomsky Normal Form (CNF)
o A BC
o A—-Ww

e Represent input with indices b/t words:
® ,Book, that,flight;through.,Houstons



Probabilistic CKY (PCKY)

e For input string length nand non-terminals V
o Cell[i,j,Alin(n+1) x ( n+1) x V matrix

e (Contains probability that A spans [i, j]



PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for | <« from 1 to LENGTH(words) do

forall { Al A = words[|] e grammar }
tablel 1, j, Al « P(A — words[j))
for i — from 2 downto O do
fork<—i+1to~1do
forall{ Al A— B Ce grammar,
and tableli, k, Bl >0 and table| k, j, C]>0}
if (table[ i, j, A] < P(A = BC )xtablel i, k, B |xtable| k,j,C ]) then
table[ i, j, A] « P(A = BC )xtableli,k,B]xtable[k,j,C]
back I, j, Al <~ {k, B, C}
return BUILD_TREE(back| 1, LENGTH(words), S), table[ 1,LENGTH(words), S]
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PCKY Algorithm
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return BUILD_TREE(back| 1, LENGTH(words), S), table[ 1,LENGTH(words), S]
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PCKY Algorithm

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for | <« from 1 to LENGTH(words) do

forall { Al A = words[|] e grammar }
tablel 1, j, Al « P(A — words[j))
for i — from 2 downto O do
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PCKY Grammar Segment

S— NP VP [0.80] Det = the [0.40]
NP — Det N [0.30] Det — a [0.40]
VP = V NP [0.20] V = includes [0.05]

N — meal [0.01]
N — flight [0.02]
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PCKY Matrix

S— NP VP [0.80]
NP — Det N [0.30]
VP = VNP [0.20]

Det — a [0.40]

V — includes [0.05]
N — meal [0.01]
N — flight [0.02]

- flight includes a meal
0 | 2 3 4 5
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PCKY Matrix

S— NP VP [0.80]
NP — Det N [0.30]
VP = VNP [0.20]

Det — the [0.40]
Det — a [0.40]

V — includes [0.05]
N — meal [0.01]

NN ..

The - includes a meal

0 | 2 3 4 5
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PCKY Matrix

S— NP VP [0.80] Det - 0.4
-
5 | [0, 1] [0,2]
N — 0.02
[1,2]

Det — the [0.40] -

Det — a [0.40]
V — includes [0.05]
N — meal [0.01]
N — flight [0.02]

The flight includes a meal
0 | 2 3 4 5
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S— NP VP [0.80]

_}
q ]

Det — a [0.40]
V — includes [0.05]
N — meal [0.01]

Pz.. -

The flight includes a meal

PCKY Matrix

2

Det-0.4 NP
[0, 1] [0,2]

N - 0.02
[1,2]

3

4

5
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PCKY Matrix
Det — 0.4
[0, 1] [0,2]
N — 0.02
[1,2]
g
~ Det—the  [0.40] -

S— NP VP [0.80]

_}
q ]

Det — a [0.40]
V — includes [0.05]

N — meal [0.01] p:....-=0.00024
I The flight includes a meal -

0 | 2 3 4 5
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S— NP VP [0.80]

_}
q ]

Det — the [0.40]
Det — a [0.40]

V = includes [0.05]
N — meal [0.01]
N — flight [0.02]

0

Pz-. -

P =08 - 04 0102 = 0.00024

The flight includes a meal

PCKY Matrix

2

Det— 0.4 | NP - 0.0024
[0,1] [0,2]

N - 0.02
[1,2]

3

4

5
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S— NP VP
NP — Det N
VP = V NP

Det — the
Det — a

V — Includes
N — meal

N — flight

[0.80]
[0.30]
[0.20]

[0.40]
[0.40]
0.05]
0.01]
0.02]

0

The flight includes a meal

PCKY Matrix

Det - 0.4 NP — 0.0024
[0, 1] [0,2] [0,3] [0,4]

2

S—2.304x%]0-3

[0,5]

N —0.02
[1,2] [1,3] [1,4] [1,5]

3

V - 0.05

[2,3] [2,4]

Det— 0.4 |NP-0.0012
[3,4] [3,5]

4

5

VP — 1.2x]0-

[2,5]

NE]
[4,5]
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Inducing a PCFG
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e Simplest way:
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Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e To compute probability of a rule, count:
e Number of times a nonterminal is expanded: 2, Countf(aa—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f3)

Count(a — p)  Count(a — p)
2}/ Count(a — y)  Count(@)

Pla = fla) =
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Learning Probabilities

e Simplest way:
e Use treebank of parsed sentences

e To compute probability of a rule, count:
e Number of times a nonterminal is expanded: 2, Countf(aa—y)
e Number of times a nonterminal is expanded by a given rule: Count(a—f3)

Count(a — p)  Count(a — p)
2}/ Count(a — y)  Count(@)
e Alternative: Learn probabilities by re-estimating

e (Later)

Pla = fla) =
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Probabilistic Parser Development Paradigm

Large Small Small/Med
(eg.WS§| 2-21, (e.g. WSJ, 23,
39,830 sentences) (e.8: W3] 22) 2,416 sentences)
Estimate rule  Tuning/Verification, Held Out,

probabilities Check for Overfit  Final Evaluation
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Parser Evaluation
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Parser Evaluation

e Assume a ‘gold standard’ set of parses for test set
e How can we tell how good the parser is?

e How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

e Partial credit:

e Constituents in output match those in reference
e Same start point, end point, non-terminal symbol
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Parseval

e How can we compute parse score from constituents?

e Multiple Measures:

# of correct constituents in hypothetical parse

Labeled Recall (LR) =
(LR) # of total constituents in reference parse

# of correct constituents in hypothetical parse
Labeled Precision (LP) = YP p

# of total consituents in hypothetical parse
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Parseval

e F-measure:

e Combines precision and recall

R
e LetBecR, B>0thatadjusts Pvs. Rs.t. ﬁoc;
® Fz-measure is then: F.=(1+ B3%)-
p= (45
. 2PR
e With F1-measure as F,

" P+R
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Reference

Evaluation: Example

Hypothesis
S

N
NP VP

|
A

|
a
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Reference

Evaluation: Example

Hypothesis
S
/\
5(0,4) NP VP

|
A

|
a

5(0,4)
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Reference

Evaluation: Example

Hypothesis
S
/\

NP VP
>(0:4) | PN
NP(O,1) A B NP

| N

a b C PP

|
c D
|
d

0 I 2 3

4

S(0,4)
NP(0, 1)
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Reference

Evaluation: Example

Hypothesis
S
/\
NP VP
>(0:4) | N
NP(O,1) A B NP
VP(1,4) I AN
a b C PP
|
c D
|
d

0 I 2 3

4

S(0,4)
NP(0, 1)
VP(1,4)
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Reference

Evaluation: Example

Hypothesis
S
/\
NP VP
>(0:4) | N
NP(O, 1) A B NP
VP(1,4) I PN
NP(2,3) d b Ci: P‘P
c D
|
d

0 I 2 3

4

5(0,4)
NP(0, 1)
VP(1,4)
NP(2,4)
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Evaluation: Example

Reference Hypothesis
S S
/\ /\
NP VP NP VP
L~ 5(0,4) NG >(0.4)
A B NP PP NP(O, I') A B NP NP(O, I')
I N VP(I,4) I AN VP(1,4)
¢] b Cl: [l) NP(2,3) d b (i: P‘P NP(2,4)
. d PP(3,4) c D PP(3,4)
| 2 3 4 |
d
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Reference

Evaluation: Example

S(0,4)
NP(0, 1)
VP(I,4)
NP(2,3)
PP(3,4)

LP: 4/5
LR: 4/5
Fi: 4/5

Hypothesis
S

N
NP VP

|
A

|
a

5(0,4)
NP(0, 1)
VP(I,4)
NP(2,4)
PP(3,4)



Parser Evaluation

e Crossing Brackets:

siblings:

(AB)C) —1{(0,2),(2,3) }
and hyp. has
(A(BCQ)—{(0,1),(1,3)}

F of constituents where produced parse has bracketings that overlap for the

/* crossing is counted based on the brackets x/
/* in test rather than gold file (by Mike) x/
for(j=0;j<bn2;j++){
for(i=0;i<bnl;i++){
if(bracketl[i].result != 5 &&
bracket2[j].result != 5 &&
((bracketl[il.start < bracket2[j]l.start &&
bracketl[i]l.end > bracket2[jl.start &&
bracketl[i]l.end < bracket2[j]l.end) ||
(bracketl[i]l.start > bracket2[j]l.start &&
bracketl[i].start < bracket2[jl.end &&
bracketl[i]l.end > bracket2[jl.end))){

from evalb.c
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State-of-the-Art Parsing

e Parsers trained/tested on Wall Street Journal PTB
e LR: 94%+,
o |P:94%+;

e Crossing brackets: 1%

e Standard implementation of Parseval:

® evalb
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Evaluation Issues

e Only evaluating constituency

e There are other grammar formalisms:
e LFG (Constraint-based)

e Dependency Structure

e EXxtrinsic evaluation

e How well does getting the correct parse match the semantics, etc?
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Earley Parsing
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Earley vs. CKY

e CKY doesn’t capture full original structure
e Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY
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Earley vs. CKY

e CKY doesn’t capture full original structure
e Can back-convert binarization, terminal conversion

e Unit non-terminals require change in CKY

e Earley algorithm
e Supports parsing efficiently with arbitrary grammars
e Top-down search
e Dynamic programming
e Tabulated partial solutions

e Some bottom-up constraints
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Earley Algorithm

e Another dynamic programming solution
e Partial parses stored in “chart”

e Compactly encodes ambiguity
o O(N3)

e Chart entries contain:
e Subtree for a single grammar rule
e Progress in completing subtree

e Position of subtree w.r.t. input
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Earley Algorithm

e First, left-to-right pass fills out a chart with N+17 states
e Chart entries — sit between words in the input string

e Keep track of states of the parse at those positions

e For each word position, chart contains set of states representing all partial
parse trees generated so far

e e.2. chart[0] contains all partial parse trees generated at the beginning of
sentence
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Chart Entries

e Three types of constituents:
e Predicted constituents
® In-progress constituents

e Completed constituents
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Parse Progress

e Represented by Dotted Rules

e Position of * indicates type of constituent

® o Book 1 that  flight 3

o S— VP [0,0] (predicted)
e NP — Dets Nom [1,2] (in progress)
o VP> VNP- [0,3] (completed)

e [x,y] tells us what portion of the input is spanned so far by rule

e Each state s <dotted rule>, [<back pointer>, <current position>}



o Book 1 that; flight 3

o S— - VP, [0,0]
e First 0 means S constituent begins at the start of input
e Second 0 means the dot is here too

® S50, this is a top-down prediction



o Book 1 that flight 3

o S— - VP, [0,0]

First 0 means S constituent begins at the start of input
Second 0 means the dot is here too

So, this is a top-down prediction

e NP — Det- Nom, [1,2]

the NP begins at position 1
the dot is at position 2
so, Det has been successfully parsed

Nom predicted next



o Book that 2 flight 3 (continued)

o VP> VNP-[03]

e Successful VP parse of entire input

VP = VNP

NP — Det * Nominal

S— VP /\

Book that flight

0 I 2 3



Successful Parse

e Final answer found by looking at last entry in chart

e If entry resembles S — a - [0,N] then input parsed successfully

e Chart will also contain record of all possible parses of input string,
given the grammar



Parsing Procedure for the Earley Algorithm

e Move through each set of states in order, applying one of three
operations:

e predictor: add predictions to the chart
e scanner: read input and add corresponding state to chart

e completer: move dot to right when new constituent found
e Results (new states) added to current or next set of states in chart

e No backtracking and no states removed: keep complete history of
parse



Earley Algorithm

function EARLEY-PARSE(words, grammar) returns chart
ENQUEUE((y— * S, [0,0]), chart[0])
for /i — from O to LENGTH(words) do
for each state in chart[i] do
iIf INCOMPLETE?(State) and
NEXT-CAT(state) is not a part of speech then
(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) is a part of speech then

(state)
else
(state)
end
end

return(chart)
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Earley Algorithm

procedure (A—a- BB, [ij])
for each (B — y) in GRAMMAR-RULES-FOR(B,grammar) do

ENQUEUE((B—* v, [j,j]), chart]j])
end

procedure ((A—a-BpBJ[ij)
if B ¢ PARTS-OF-SPEECH(word]j]) then
ENQUEUE((B — word([j] °, [j,j+1]), chart[j+1] )

procedure (B =y~ [.kD)
for each (A = a* BB, [i,j]) in chart[j] do
ENQUEUE((A — a B+ [, [i,Kk]), chart[K])
end
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3 Main Subroutines of Earley

e Adds predictions into the chart

e Reads the input words and enters states representing those words into the
chart

e Moves the dot to the right when new constituents are found



Predictor

e Intuition:

e (Create new state for top-down prediction of new phrase

e Applied when non part-of-speech non-terminals are to the right of a
dot:

o S— - VPI0,0]

e Adds new states to current chart

e One new state for each expansion of the non-terminal in the grammar
VP — «V [0,0]
VP — « VNP [0,0]
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S0

S
S2
S3

S4
S5
S6

S7
S8
S9
S10
S11

y =S

S— NP VP
S — + Aux NP VP
S— VP

NP -
NP -
NP -

VP —
VP —
VP -
VP —
VP —

* Pronoun
* Proper-Noun
 Det Nominal

 Verb

- Verb NP

- Verb NP PP
- Verb PP

* VP PP

Chart[O]

[0,0]

[0.0]
[0,0]
[0,0]

[0,0]
[0,0]
[0,0]

[0,0]
[0,0]
0,0]
[0,0]
0,0]

Dummy start state

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor
Predictor
Predictor
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S12

S13
S14
S15
S16

S17
>18
S19
S20

S21
S22

Verb = book

VP — Verb -

VP — Verb - NP
VP — Verb - NP PP
VP — Verb - PP

S— VP-

VP —- VP - PP

NP — < Pronoun

NP — - Proper-Noun

NP — « Det Nominal
PP — * Prep NP

Chart|1]

[0,1]

[0,1]
[0,1]
[0,1]
[0,1]

[0,1]
[0,1]
[1,1]
[1,1]

[1,1]
[1,1]

Scanner

Completer
Completer
Completer
Completer

Completer
Completer
Predictor
Predictor

Predictor
Predictor
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SO: y = + S[0,0]

Book that flight

~

N
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SO: y = + S[0,0]
S3: S — « VP [0,0]

Book that flight

v

S

« VP
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SO: y— +«5[0,0]
S3: S— «VPI[0,0]
S8: VP — « Verp NP [0,0]

Book that flight

y

S
VP

°Verb NP
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SO: y — + S[0,0]

S3: S— <« VP[O,0]

S8: VP — « Verp NP [0,0]
S12: Verb — « book [0,0]

Book that flight

Y

S
VP
Verb NP

* book



SO: y — + S[0,0]

S3: S— <« VP[O,0]

S8: VP — « Verp NP [0,0]
S12: Verb — book ¢ [0,1]

Book that flight

Y

S
VP
Verb NP

book



SO: y— +«5[0,0]
S3: S— «VPI[0,0]
S8: VP — Verp « NP [0,1]

Book that flight

Y

S
VP
Verbe NP

book



SO: y— «5[0,0]
S3: S—= VP [0,1]
S8: VP — Verp « NP [0,1]

Book that flight

Y

S
VP
Verb NP

book



Book that flight

SO: y — + S[0,0] !
S3: S—= VP [0,1]

S8: VP — Verb « NP [0,1]

S21: NP = « Det Nominal [1,1]

S

VP

Verb NP

book ¢ Det Nominal



Book that flight

S0: y — « S[0,0] K
S3: S— VP +[0,1]
S8: VP — Verb « NP[0,1] >
S21: NP = « Det Nominal [1,1]
S23: Det — « “that” [1,1] VP
Verb NP

book Det Nominal

e that



Book that flight

S0: y — « S[0,0] K
S3: S— VP +[0,1]
S8: VP — Verb « NP[0,1] >
S21: NP = « Det Nominal [1,1]
S23: Det — “that” * [1,2] VP
Verb NP

book Det Nominal

that e



Book that flight

SO: y — * S[0,0] K
S3: S — VP +[0,1]
S8: VP — Verb « NP[0,1] >
S21: NP = Det *» Nominal [1,2]
VP
Verb NP

book Dete Nominal

that



Book that flight

S0: y — « S[0,0] K
S3: S— VP +[0,1]
S8: VP — Verb « NP[0,1] >
S21: NP = Det *» Nominal [1,2]
S25: Nominal = « Noun [2,2] VP
Verb NP

book Det Nominal

that * Noun



Book that flight

SO: y = + S[0,0]

S3: S—> VP [0,1] S

S8: VP — Verb « NP [0,1]

S21: NP = Det » Nominal [1,2] VP

S25: Nominal = « Noun [2,2]

S28: Noun — “flight” » [2,3] Verb NP

book Det Nominal

that Noun

flight *



Book that flight

SO: y = + S[0,0]

S3: S—= VP [0,1] S
S8: VP — Verb « NP [0,1]
S21: NP — Det « Nominal [1,2] VP

S25: Nominal = Noun ¢ [2,3]
Verb NP

book Det Nominal

that Noun e

flight



Book that flight

SO: y = + S[0,0]

S3: S—= VP [0,1] S
S8: VP — Verb « NP [0,1]
S21: NP = Det Nominal * [1,3] VP
Verb NP

book Det Nominal ¢

that Noun

flight



SO: y— +«5[0,0]
S3: S—= VP [0,1]
S8: VP — Verp NP ¢ [0,3]

Book that flight

S
VP
Verb NP ¢
book Det Nominal

that Noun

flight



SO: y = + S[0,0]
S3: S — VP« [0,3]

Book that flight

S
VP o
Verb NP
book Det Nominal

that Noun

flight



What About Dead Ends?
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SO: y = + S[0,0]
S1:S — « NP VP [0,0]

NP — « Pronoun
NP — « Proper-Noun
NP — « Det Nominal

Book that flight

« NP

book

y

S

VP



SO: y = + S[0,0]
S1: S — « NP VP [0,0]

Book that flight

y

S

NP VP

book
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What About Recursion?
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What about recursion?
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What about recursion?

e \WWe now have a top-down parser in hand. Does it enter infinite loops
on rules like S -> S‘and’ S?



What about recursion?

e We now have a top-down parser in hand. Does it enter infinite loops
on rules like S -> S ‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end
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What about recursion?

e \WWe now have a top-down parser in hand. Does it enter infinite loops
on rules like S -> S‘and’ S?

e NO!
procedure ENQUEUE(state, chart-entry)

if state is not already in chart-entry then
PUSH(state, chart-entry)
end

Exercise: parse ‘table and chair’ using the very simple grammar
Nom -> Nom ‘and’ Nom | ‘table’ | ‘chair’
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