
Dependency Grammars and Parser
LING 571 — Deep Processing for NLP

Shane Steinert-Threlkeld

1

Announcements
● HW2 ref code available

● HW3 due tonight

● HW4 now available

2

Ambiguity of the Week

3

Ambiguity of the Week 2

4

“What if my pet is not made of chicken and turkey?” —my brother

Parsing in the LLM era

5https://paperswithcode.com/sota/constituency-parsing-on-penn-treebank

https://aclanthology.org/2020.findings-emnlp.153/

Pre-trained LM

CKY!!

https://paperswithcode.com/sota/constituency-parsing-on-penn-treebank
https://aclanthology.org/2020.findings-emnlp.153/

Roadmap
● Dependency Grammars

● Definition

● Motivation:

● Limitations of Context-Free Grammars

● Dependency Parsing

● By conversion to CFG

● By Graph-based models

● By transition-based parsing

● HW4 + mid-term feedback

12

Dependency Grammar
● [P]CFGs:

● Phrase-Structure Grammars

● Focus on modeling constituent structure

● Dependency grammars:

● Syntactic structure described in terms of

● Words

● Syntactic/semantic relations between words

13

Dependency Parse
● A Dependency parse is a tree,* where:

● Nodes correspond to words in string

● Edges between nodes represent dependency relations

● Relations may or may not be labeled (aka typed)

● *: in very special cases, can argue for cycles

14

Dependency Parse Example:
They hid the letter on the shelf

15

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

Dependency Parse Example:
They hid the letter on the shelf

16

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

Dependency Parse Example:
They hid the letter on the shelf

17

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

Dependency Parse Example:
They hid the letter on the shelf

18

Argument Dependencies

Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

Alternative Representation

19

Why Dependency Grammar?
● More natural representation for many tasks

● Clear encapsulation of predicate-argument structure

● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

● Who did what to whom?

● = (Subject) did (theme) to (patient)

● Helps with parallel relations between roles in questions, and roles in answers

20

● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?

21

S → PP NP VP S → NP VP PP

● English has relatively fixed word order

● Big problem for languages with freer word order

Why Dependency Grammar?

22

S → PP NP VP S → NP VP PP

● How do dependency structures represent the difference?

● Same structure

● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?

23
I called in sick on Tuesday

● How do dependency structures represent the difference?

● Same structure

● Relationships are between words, order insensitive

= temporal modifier

Why Dependency Grammar?

24

when did I call in sick?

Natural Efficiencies
● Phrase Structures:

● Must derive full trees of many non-terminals

● Dependency Structures:

● For each word, identify

● Syntactic head, h

● Dependency label, d

● Inherently lexicalized

● Strong constraints hold between pairs of words

25

Visualization
● Web demos:

● displaCy: https://explosion.ai/demos/displacy

● Stanford CoreNLP: http://corenlp.run/

● spaCy and stanza Python packages have good built-in parsers

● LaTeX: tikz-dependency (https://ctan.org/pkg/tikz-dependency)

26

https://explosion.ai/demos/displacy
http://corenlp.run/
https://spacy.io/
https://stanfordnlp.github.io/stanza/
https://ctan.org/pkg/tikz-dependency

Resources
● Universal Dependencies:

● Consistent annotation scheme (i.e. same POS, dependency labels)

● Treebanks for >150 languages

● Sizes: German, Czech, Japanese, Russian, French, Arabic, …

27

https://universaldependencies.org/

Resources
● Universal Dependencies:

● Consistent annotation scheme (i.e. same POS, dependency labels)

● Treebanks for >150 languages

● Sizes: German, Czech, Japanese, Russian, French, Arabic, …

28

https://universaldependencies.org/

Summary
● Dependency grammars balance complexity and expressiveness

● Sufficiently expressive to capture predicate-argument structure

● Sufficiently constrained to allow efficient parsing

● Still not perfect

● “On Tuesday I called in sick” vs. “I called in sick on Tuesday”

● These feel pragmatically different (e.g. topically), might want to represent
difference syntactically.

29

Roadmap
● Dependency Grammars

● Definition

● Motivation:

● Limitations of Context-Free Grammars

● Dependency Parsing

● By conversion from CFG

● By Graph-based models

● By transition-based parsing

30

Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)

● …without the dependency labels

● Algorithm:

● Identify all head children in PS

● Make head of each non-head-child depend on head of head-child

● Use a head percolation table to determine headedness

31

Conversion: PS → DS

32

Conversion: PS → DS

33

Conversion: PS → DS

34

Conversion: PS → DS

35

Conversion: PS → DS

36

Conversion: PS → DS

37

Conversion: PS → DS

38

Conversion: PS → DS

39

Conversion: PS → DS

40

Head Percolation Table
● Finding the head of an NP:

● If the rightmost word is preterminal, return

● …else search Right→Left for first child which is NN, NNP, NNPS…

● …else search Left→Right for first child which is NP

● …else search Right→Left for first child which is $, ADJP, PRN

● …else search Right→Left for first child which is CD

● …else search Right→Left for first child which is JJ, JJS, RB or QP

● …else return rightmost word.

41

From J&M Page 411, via Collins (1999)

https://www.proquest.com/docview/304536592?parentSessionId=qzE62p2JWfcw6rwMQGKd5%2BYZfXOK5Rq758DbXzbdMzY%3D&accountid=14784&sourcetype=Dissertations%20&%20Theses

Conversion: DS → PS
● Can map any projective dependency tree to PS tree

● Projective:

● Does not contain “crossing” dependencies w.r.t. word order

42

Non-Projective DS

43

= Projection

Projective DS

44

= Projection

More Non-Projective Parses

45

He is mostly not even interested in the new things and in most cases, he has no money for it either.

From McDonald et. al, 2005

http://dl.acm.org/citation.cfm?id=1220641

Conversion: DS → PS
● For each node w with outgoing arcs…

● …convert the subtree w and its dependents t1,…,tn to a new subtree:

● Nonterminal: Xw

● Child: w

● Subtrees t1,…,tn in original sentence order

46

Conversion: DS → PS

47

Conversion: DS → PS

48

Conversion: DS → PS

49

Conversion: DS → PS

50

Conversion: DS → PS
● What about labeled dependencies?

● Can attach labels to nonterminals associated with non-heads

● e.g. Xlittle → Xlittle:nmod

● Doesn’t create typical PS trees

● Does create fully lexicalized, labeled, context-free trees

● Can be parsed with any standard CFG parser

51

52
Example from J. Moore, 2013

Roadmap
● Dependency Grammars

● Definition

● Motivation:

● Limitations of Context-Free Grammars

● Dependency Parsing

● By conversion to CFG

● By Graph-based models

● By transition-based parsing

53

Graph-based Dependency Parsing
● Goal: Find the highest scoring dependency tree T̂ for sentence S

● If S is unambiguous, T is the correct parse

● If S is ambiguous, T is the highest scoring parse

● Where do scores come from?

● Weights on dependency edges by learning algorithm

● Learned from dependency treebank

● Where are the grammar rules?

● …there aren’t any! All data-driven.

54

Graph-based Dependency Parsing
● Map dependency parsing to Maximum Spanning Tree (MST)

● Build fully connected initial graph:

● Nodes: words in sentence to parse

● Edges: directed edges between all words

● + Edges from ROOT to all words

● Identify maximum spanning tree

● Tree s.t. all nodes are connected

● Select such tree with highest weight

55

Graph-based Dependency Parsing
● Arc-factored model:

● Weights depend on end nodes & link

● Weight of tree is sum of participating arcs

56

Initial Graph: (McDonald et al, 2005b)

● John saw Mary

● All words connected: ROOT only has outgoing arcs

● Goal: Remove arcs to create a tree covering all words

● Resulting tree is parse

57

https://www.aclweb.org/anthology/H05-1066.pdf

Maximum Spanning Tree
● McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

● Sketch of algorithm:

● For each node, greedily select incoming arc with max weight

● If the resulting set of arcs forms a tree, this is the MST.

● If not, there must be a cycle.

● “Contract” the cycle: Treat it as a single vertex

● Recalculate weights into/out of the new vertex

● Recursively do MST algorithm on resulting graph

● Running time: naïve: O(n3); Tarjan: O(n2)

● Applicable to non-projective graphs

58

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?

● No, there’s a cycle.

● Collapse the cycle

● And re-examine the edges again

59

Calculating Weights for Collapsed Vertex

60

s(Mary, C) 11 + 20 = 31

Calculating Weights for Collapsed Vertex

61

s(ROOT, C) 10 + 30 = 40

Step 3

62

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?

● Yes!

● …but must recover collapsed portions.

MST Algorithm

63

Learning Weights
● Weights for arc-factored model learned from dependency treebank

● Weights learned for tuple (wi, wj, l)

● McDonald et al, 2005a employed discriminative ML

● MIRA (Crammer and Singer, 2003)

● Operates on vector of local features

64

https://www.aclweb.org/anthology/P05-1012/
http://www.jmlr.org/papers/volume3/crammer03a/crammer03a.pdf

Features for Learning Weights
● Simple categorical features for (wi, L, wj) including:

● Identity of wi (or char 5-gram prefix), POS of wi

● Identity of wj (or char 5-gram prefix), POS of wj

● Label of L, direction of L
● Number of words between wi, wj

● POS tag of wi-1, POS tag of wi+1

● POS tag of wj-1, POS tag of wj+1

● Features conjoined with direction of attachment and distance between
words

65

Neural Graph-based Parsing
● Instead of hand-engineered features, let a neural network learn which

features matter!

● Same algorithm, but scores for arcs from NN

66
https://aclanthology.org/Q16-1023/

https://aclanthology.org/Q16-1023/

Dependency Parsing
● Dependency Grammars:

● Compactly represent predicate–argument structure

● Lexicalized, localized

● Natural handling of flexible word order

● Dependency parsing:

● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)

● Next time: Transition-based parsing

67

Further Reading
● Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online Large-Margin Training of Dependency Parsers. In Proceedings

of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 91–98. May. [link]

● Ryan McDonald, Fernando Pereira, K. Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using spanning tree

algorithms. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language

Processing, pages 523–530. Association for Computational Linguistics. [link]

● Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool. [link]

● Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of the 16th

Conference on Computational Linguistics, pages 340–345. Association for Computational Linguistics. [link]

● Michael Collins. 1999. Head-Driven Statistical Models For Natural Language Parsing. [link]

● Kiperwasser and Golberg 2016, "Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations",

Transactions of the ACL.

68

https://www.aclweb.org/anthology/P05-1012/
https://www.aclweb.org/anthology/H05-1066.pdf
https://link.springer.com/chapter/10.1007/978-3-031-02131-2_2
https://dl.acm.org/citation.cfm?doid=992628.992688
https://orbiscascade-washington.primo.exlibrisgroup.com/discovery/fulldisplay?vid=01ALLIANCE_UW:UW&tab=UW_default&docid=proquest304536592&searchScope=all&context=PC&lang=en
https://aclanthology.org/Q16-1023.pdf

	Slide 1: Dependency Grammars and Parser
	Slide 2: Announcements
	Slide 3: Ambiguity of the Week
	Slide 4: Ambiguity of the Week 2
	Slide 5: Parsing in the LLM era
	Slide 12: Roadmap
	Slide 13: Dependency Grammar
	Slide 14: Dependency Parse
	Slide 15: Dependency Parse Example: They hid the letter on the shelf
	Slide 16: Dependency Parse Example: They hid the letter on the shelf
	Slide 17: Dependency Parse Example: They hid the letter on the shelf
	Slide 18: Dependency Parse Example: They hid the letter on the shelf
	Slide 19: Alternative Representation
	Slide 20: Why Dependency Grammar?
	Slide 21: Why Dependency Grammar?
	Slide 22: Why Dependency Grammar?
	Slide 23: Why Dependency Grammar?
	Slide 24: Why Dependency Grammar?
	Slide 25: Natural Efficiencies
	Slide 26: Visualization
	Slide 27: Resources
	Slide 28: Resources
	Slide 29: Summary
	Slide 30: Roadmap
	Slide 31: Conversion: PS → DS
	Slide 32: Conversion: PS → DS
	Slide 33: Conversion: PS → DS
	Slide 34: Conversion: PS → DS
	Slide 35: Conversion: PS → DS
	Slide 36: Conversion: PS → DS
	Slide 37: Conversion: PS → DS
	Slide 38: Conversion: PS → DS
	Slide 39: Conversion: PS → DS
	Slide 40: Conversion: PS → DS
	Slide 41: Head Percolation Table
	Slide 42: Conversion: DS → PS
	Slide 43: Non-Projective DS
	Slide 44: Projective DS
	Slide 45: More Non-Projective Parses
	Slide 46: Conversion: DS → PS
	Slide 47: Conversion: DS → PS
	Slide 48: Conversion: DS → PS
	Slide 49: Conversion: DS → PS
	Slide 50: Conversion: DS → PS
	Slide 51: Conversion: DS → PS
	Slide 52
	Slide 53: Roadmap
	Slide 54: Graph-based Dependency Parsing
	Slide 55: Graph-based Dependency Parsing
	Slide 56: Graph-based Dependency Parsing
	Slide 57: Initial Graph: (McDonald et al, 2005b)
	Slide 58: Maximum Spanning Tree
	Slide 59: Step 1 & 2
	Slide 60: Calculating Weights for Collapsed Vertex
	Slide 61: Calculating Weights for Collapsed Vertex
	Slide 62: Step 3
	Slide 63: MST Algorithm
	Slide 64: Learning Weights
	Slide 65: Features for Learning Weights
	Slide 66: Neural Graph-based Parsing
	Slide 67: Dependency Parsing
	Slide 68: Further Reading

