Dependency Grammars and Parser

LING 571 — Deep Processing for NLP
Shane Steinert-Threlkeld



Announcements

e HW?2 ref code avallable
e HW3 due tonight

e HW4 now available
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Ambiguity of the Week

-~ Adam Macqueen b
@adam_macqueen

Personally feel not enough hospitals are named after
sandwiches.
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All hospitals where pa-
tients have died from poi- i
soning after eating sand-
dches were identified yes-
day.
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Ambiguity of the Week 2
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“What if my pet is not made of chicken and turkey?” —my brother
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Parsing In the LLM era

Constituency Parsing on Penn Treebank
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Figure 2: The arthitecture of the chart-based constituency parser with span attention, with an example partial
input sentence and its output. The right part of the figure shows the categorical span attention, where extracted

Yea Lol

https://aclanthology.org/2020.findings-emnlp.153/

2020

2019
2020 Pre-traiHEd LM

https://paperswithcode.com/sota/constituency-parsing-on-penn-treebank W UNIVERSITY of WASHINGTON

S


https://paperswithcode.com/sota/constituency-parsing-on-penn-treebank
https://aclanthology.org/2020.findings-emnlp.153/

Roadmap

® Dependency Grammars
e Definition

e Motivation:
e Limitations of Context-Free Grammars

e Dependency Parsing
@ By conversion to CFG
e By Graph-based models

e By transition-based parsing

e HW4 + mid-term feedback

WA UNIVERSITY of WASHINGTON 12



Dependency Grammar

® [P|CFGs:
® Phrase-Structure Grammars

e Focus on modeling constituent structure

® Dependency grammars:

® Syntactic structure described Iin terms of
e \Words
® Syntactic/semantic relations between words

WA UNIVERSITY of WASHINGTON 13



Dependency Parse

e A Dependency parse Is a tree,* where:
e Nodes correspond to words In string

e Edges between nodes represent dependency relations
e Relations may or may not be labeled (aka typed)

® *:In very special cases, can argue for cycles

WA UNIVERSITY of WASHINGTON 14



Dependency Parse Example:
They hid the letter on the shelf

Argument Dependencies h | d
Abbreviation Description . .
nsubj dobj

nsubj nominal subject

csubj clausal subject

dobj direct object Th e)’ I ette I

iobj indirect object

det on
pobj object of preposition
the

Modifier Dependencies

shelf

Abbreviation Description
tmod temporal modifier det
appos appositional modifier
det determiner
the
prep prepositional modifier
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Dependency Parse Example:
They hid the letter on the shelf

Argument Dependencies h | d
Abbreviation Description . .
nsubj dobj
nsubj nominal subject
csubj clausal subject
dobj direct object Th e)’ I ette I

Modifier Dependencies

iobj indirect object
det on
pobj object of preposition
the

shelf

Abbreviation Description
tmod temporal modifier det
appos appositional modifier
det determiner
the
prep prepositional modifier

WA UNIVERSITY of WASHINGTON 16



Dependency Parse Example:
They hid the letter on the shelf

Argument Dependencies h | d
Abbreviation Description . .
nsubj dobj
nsubj nominal subject \
csubj clausal subject
dobj direct object Th e)’ I ette I

Modifier Dependencies

iobj indirect object
det on
pobj object of preposition
the

shelf

Abbreviation Description
tmod temporal modifier det
appos appositional modifier
det determiner
the
prep prepositional modifier

WA/ UNIVERSITY of WASHINGTON 17



Dependency Parse Example:
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Why Dependency Grammar?

e More natural representation for many tasks

e Clear encapsulation of predicate-argument structure
® Phrase structure may obscure, e.g. wh-movement

e Good match for question-answering, relation extraction
® did to ?
* =( ) did ( ) to ( )

e Helps with parallel relations between roles in questions, and roles in answers

WA UNIVERSITY of WASHINGTON 20



Why Dependency Grammar?

e Easier handling of flexible or free word order

® How does CFG handle variation in word order?

S S
PP NP VP NP VP PP
Prep NP Pron Verb Adv Pron  Verb Adv  Prep NP
On N | called-in  sick | called-in  sick on N
Tuesday Tuesday

S — PP NP VP S — NP VP PP

WA UNIVERSITY of WASHINGTON 21



Why Dependency Grammar?

e English has relatively fixed word order

® Big problem for languages with freer word order

S S
PP NP VP NP VP PP
Prep NP Pron Verb Adv Pron  Verb Adv  Prep NP
On N | called-in  sick | called-in  sick on N
Tuesday Tuesday

S — PP NP VP S — NP VP PP
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Why Dependency Grammar?

e How do dependency structures represent the difference?
® Same structure

® Relationships are between words, order insensitive

called-in

| sick on
= temporal modifier

Tuesday

| called in sick on Tuesday

WA UNIVERSITY of WASHINGTON 23



Why Dependency Grammar?

e How do dependency structures represent the difference?
® Same structure

® Relationships are between words, order insensitive

call-in

did | sick when =temporal modifier

when did | call in sick?

WA/ UNIVERSITY of WASHINGTON 24



Natural Efficiencies

® Phrase Structures:

e Must derive full trees of many non-terminals

e Dependency Structures:

e For each word, identify
® Syntactic head, h
e Dependency label, d

e [nherently lexicalized
e Strong constraints hold between pairs of words

WA UNIVERSITY of WASHINGTON 25



Visualization

e \Web demos:
e displaCy: https://explosion.al/demos/displacy

e Stanford CoreNLP: http://corenlp.run/

e spaCy and stanza Python packages have good built-in parsers

e LaTeX: tikz-dependency (https://ctan.org/pkag/tikz-dependency)

WA UNIVERSITY of WASHINGTON 26
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Resources

e Universal Dependencies:
e Consistent annotation scheme (I.e. same POS, dependency labels)

e Treebanks for >150 languages
® Sizes: German, Czech, Japanese, Russian, French, Arabic, ...

WA UNIVERSITY of WASHINGTON 27


https://universaldependencies.org/

Resources

® Universal Degendencies: Possible Future Extensions

- - People have expressed interest in providing annotated data for the following languages but no valid data has been provided so far.
e Consistent annotation scr

Akkadian 1 117K Vg Afro-Asiatic, Semitic
b= Amharic 2 Afro-Asiatic, Semitic
® [reebanks for >150 |angu ma  Archaic Irish 1 IE, Celtic
) Assamese 1 IE, Indic
. Bl Bengali 3 IE, Indic
o SIZGS German, CzeCh, - Lsa Bhojpuri 1 IE, Indic
4| Cappadocian 1 IE, Greek
Classical Nahuatl 1 & 70O Uto-Aztecan
Cuicatec 1 7/ Oto-Manguean
B ] Cusco Quechua 1 . Quechuan
e Czech 1 1,191K IE, Slavic
Danish 1 IE, Germanic
B Dargwa 1 O Nakh-Daghestanian, Lak-Dargwa
== English 1 IE, Germanic
B} French 1 IEE_i IE, Romance
N Frisian 1 = EEEOV IE, Germanic
S Gedeo 1 & Afro-Asiatic, Cushitic
= Georgian 1 W Kartvelian
= Greek 3 / IE, Greek
B CGwichin 1 / Na-Dene
5 Hebrew 1 - *, Afro-Asiatic, Semitic
" Hiligaynon 1 <1K r g Austronesian, Central Philippine
ae  Hindi 1 4K N IE, Indic
Huave 1 7/ Huavean
§ § ltalian 1 /7 IE, Romance
® Japanese 2 - 7O Japanese
B Kabyle 1 23K IEE 1 Afro-Asiatic, Berber


https://universaldependencies.org/

Summary

e Dependency grammars balance complexity and expressiveness
e Sufficiently expressive to capture predicate-argument structure

e Sufficiently constrained to allow efficient parsing

e Still not perfect
® “On Tuesday | called in sick” vs. “| called in sick on Tuesday”

e These feel pragmatically different (e.qg. topically), might want to represent
difference syntactically.

WA/ UNIVERSITY of WASHINGTON 29



Roadmap

® Dependency Grammars
e Definition

e Motivation:
e Limitations of Context-Free Grammars

e Dependency Parsing

® By conversion from CFG

e By Graph-based models

e By transition-based parsing

WA/ UNIVERSITY of WASHINGTON 30



Conversion: PS — DS

e Can convert Phrase Structure (PS) to Dependency Structure (DS)

e ...without the dependency labels

e Algorithm;
e |dentify all head children In PS
e Make head of each non-head-child depend on head of head-child

e Use a head percolation table to determine headedness

WA/ UNIVERSITY of WASHINGTON 31



Conversion: PS — DS

/S\
N /\

I NN  VBD

Economic news had

| NN P

- /\

ittle  impact on NS

financial markets
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Conversion: PS — DS

ff”fffjiaxa“aa had
N /\

I NN  VBD

Economic news had

1 NN P

- /\

ittle  impact on NS

financial markets
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Conversion: PS — DS

S
/\ had
NP VP
N /\ news

I NN  VBD

Economic news had

1 NN P

- /\

ittle  impact on NS

financial markets
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Conversion: PS — DS

ff”ffffhaxa“aa had
RN /\ ews

I NN  VBD

‘ ‘ ‘ffffffhﬂahxh economic
Economic news had

1 NN P

- /\

ittle  impact on NS

financial markets
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Conversion: PS — DS

/\ had
f;fﬁ“xx #Hfff”fﬂx“xahh news impact

I NN  VBD

‘ ‘ fﬁfff”h“xhhh economic
Economic news had

| NN P

- /\

ittle  impact on NS

financial markets
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Conversion: PS — DS

/\ had
/\ /\ news impact

I NN  VBD

‘ ‘ /\ economic little
Economic news had

i NN P

- /\

ittle  impact on NS

financial markets
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Conversion: PS — DS

/\ had
/\ /\ news impact

)l NN VBD

‘ ‘ /\ economic little ~ on
Economic news had

i NN P

- /\

little  impact on NS

financial markets
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Conversion: PS — DS

/\ had
/\ /\ news impact

)l NN VBD

‘ ‘ /\ economic ittle on
Economic news had
/\ /\ markets

i NN P

- /\

little  impact on NS

financial markets
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Conversion: PS — DS

/\ had
/\ /\ news impact

)l NN VBD

‘ ‘ /\ economic ittle on
Economic news had
/\ /\ markets

i NN P

‘ ‘ /\ financial

little  impact on NS

financial markets
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Head Percolation Table

e Finding the head of an NP:
e |[f the rightmost word Is preterminal, return

® ...else search Right—Left for first child which is NN, NNP, NNPS...
...else search Left—Right for first child which is NP

...else search Right—Left for first child which is $, ADJP, PRN
...else search Right—Left for first child which is CD

...else search Right—Left for first child which is JJ, JJS, RB or QP
...else return rightmost word.

From J&M Page 411, via Collins (1999)

WA UNIVERSITY of WASHINGTON 41
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Conversion: DS — PS

e Can map any projective dependency tree to PS tree

® Projective:

® Does not contain “crossing” dependencies w.r.t. word order

@ II punc || \

a
ve

g h

Issue
m vC att
\/ v | \’ v v

hearing is scheduled on the issue today
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Non-Projective DS

/\

hearing scheduled
A on\ today
cUe = Projection
the
A hearing is scheduled on the issue  today

W UNIVERSITY of WASHINGTON 43



Projective DS

had

news effect

/\

Economic little on\
.= Projection

markets

&

financial

Economic news had little effect on financial markets
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More Non-Projective Parses
(root)

~U A —/\ L

John saw a dog yesterday which was a Yorkshire Terrier

o Ot

In~ v \f/ )\ \[f / \\\/ A\

O to nove vetsinou nema ani zajem a taky na to vétsinou nema penize

He is mostly not even interested in the new things and in most cases, he has no money for it either.

From McDonald et. al, 2005
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http://dl.acm.org/citation.cfm?id=1220641

Conversion: DS — PS

e For each node w with outgoing arcs...

® ...convert the subtree w and its dependents ti,...,tn t0o @ new subtree:
e Nonterminal: Xw
e Child: w
® Subtrees ti,...,tn In original sentence order

WA UNIVERSITY of WASHINGTON 46



Conversion: DS — PS

|r00t| rﬁ
( | punc| \
e |
Economic news ha little effect on financial markets .
xeffect

effect
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Conversion: DS — PS
oo —

( | punc | \
obj 3
I |
Economic news ha little effect on financial markets .
xeffect

Xiittle  effect

little
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el

Economic

Conversion: DS — PS
(root)

news ha

Xlittle

little

-

.

obj

—

little

xeffect

effect

on

= e[

effect

Ron

| punc |

pC

on financial

:
| |

markets
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el

Economic

Conversion: DS — PS
(root)

news ha

Xlittle

little

-

.

obj

—

little

xeffect

effect

on

= o[

effect on financial

| punc |

pC

:
o |

markets

Ron

...right subtree...
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Conversion: DS — PS

e \What about labeled dependencies?
® Can attach labels to nonterminals associated with non-heads

® c.g. Xiitte — Xlittle:nmod

® Doesn't create typical PS trees
® Does create fully lexicalized, labeled, context-free trees

e Can be parsed with any standard CFG parser

WA UNIVERSITY of WASHINGTON 5§51



[I"O Ot]

A

The dog barked at the cat .

Xdog
Xthe dog
the

Example from J. Moore, 2013

ROOT

Xbarked
barked X, X,
at Xt
Xihe ~ cCat
the



Roadmap

® Dependency Grammars
e Definition

e Motivation:
e Limitations of Context-Free Grammars

e Dependency Parsing

® By conversion to CFG

® By Graph-based models

e By transition-based parsing
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Graph-based Dependency Parsing

e (Goal: Find the highest scoring dependency tree T for sentence S
e |f Sis unambiguous, T is the correct parse

e |f Sis ambiguous, T is the highest scoring parse

® \Where do scores come from?
® \Veights on dependency edges by learning algorithm

® | earned from dependency treebank

® \Where are the grammar rules?

e ...there aren't any! All data-driven.
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Graph-based Dependency Parsing

e Map dependency parsing to Maximum Spanning Tree (MST)

e Build fully connected initial graph:
e Nodes: words In sentence to parse

® Edges: directed edges between all words
e + Edges from ROOT to all words

e |dentify maximum spanning tree
® Tree s.t. all nodes are connected

® Select such tree with highest weight

WA UNIVERSITY of WASHINGTON 5§



Graph-based Dependency Parsing

e Arc-factored model:
e Weights depend on end nodes & link

e \Weight of tree Is sum of participating arcs

WA/ UNIVERSITY of WASHINGTON 56



nitial Graph: wcponaid et al. 2005b)

e John saw Mary

e All words connected: ROOT only has outgoing arcs

ROOT 9
® Goal: Remove arcs to create a tree covering all words 1o
® Resulting tree Is parse 9 saw
30
20
30 o
John Mary

WA/ UNIVERSITY of WASHINGTON  §7


https://www.aclweb.org/anthology/H05-1066.pdf

Maximum Spanning Tree

e McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

e Sketch of algorithm: R OOT
9

e For each node, greedily select incoming arc with max weight 10

e If the resulting set of arcs forms a tree, this is the MST.
9 SaAW

e |f not, there must be a cycle. 20 3Q
e "Contract” the cycle: Treat it as a single vertex 30
e Recalculate weights into/out of the new vertex John
e Recursively do MST algorithm on resulting graph 3

Mary

e Running time: naive: O(n3); Tarjan: O(n?) H

e Applicable to non-projective graphs

WA/ UNIVERSITY of WASHINGTON 58



Step 1l & 2

e Find, for each word, the highest scoring incoming edge.

® | ?
IS It a tree”: ROOT 0
e No, there's a cycle. kD
saWw
e Collapse the cycle 9 . 30
e And re-examine the edges again 30 o
john Mary

£

WA/ UNIVERSITY of WASHINGTON 59



Calculating Weights for Collapsed Vertex

s( Mary, C) 11 + 20 =31

ROOT 9
10
saw
1 ?{' 30
; 30 o
john Mary

Ny



Calculating Weights for Collapsed Vertex

s( ROOT, C) 10 + 30 = 40

ROOT 9
SaAWw
9 20 30
.
John Mary



Step 3

e \With cycle collapsed, recurse on step 1:

e Keep highest weighted incoming edge for each edge grooT

9
. 40
® [Sitatree?
SaAWw
® Yes! 30
® ...but must recover collapsed portions. 30
john Mary
31

WA UNIVERSITY of WASHINGTON B2



MST Algorithm

function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F[]
" <[]
score’ <[]
for eachv € Vdo

bestinEdge <—argmax,_, ,\c g score[e]

F<+ F U bestInEdge

for each e=(u,v) € E do

score’[e] < score[e] — score[bestInEdge]

if T=(V,F) is a spanning tree then return it
else

C<-acyclein F

G’ + CONTRACT(G, O)

T’ <+ MAXSPANNINGTREE(G’, root, score’)

T+ EXPAND(T”, C)
return 7’

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

DTG EAR] The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.
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Learning Weights

e \Weights for arc-factored model learned from dependency treebank

e \Weights learned for tuple ( wi, w;j, |)

e McDonald et al, 2005a employed discriminative ML
e MIRA (Crammer and Singer, 2003)

@ Operates on vector of local features

WA UNIVERSITY of WASHINGTON B4


https://www.aclweb.org/anthology/P05-1012/
http://www.jmlr.org/papers/volume3/crammer03a/crammer03a.pdf

Features for Learning Weights

e Simple categorical features for (wi, L, wj) including:
ldentity of wi(or char 5-gram prefix), POS of w;
ldentity of w;j(or char 5-gram prefix), POS of w;

Label of L, direction of L

Number of words between wi, w;

POS tag of wi.i, POS tag of wi+1

POS tag of wj.1, POS tag of wj+1

® [Features conjoined with direction of attachment and distance between
words

WA/ UNIVERSITY of WASHINGTON 65



Neural Graph-based Parsing

® Instead of hand-engineered features, let a neural network learn which
features matter!

e Same algorithm, but scores for arcs from NN

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Computer Science Department
Bar-Ilan University
Ramat-Gan, Israel
elikip@gmail.com

Abstract

We present a simple and effective scheme
for dependency parsing which is based on
bidirectional-LSTMs (BiLSTMs). Each sen-
tence token is associated with a BILSTM vec-

Yoav Goldberg
Computer Science Department
Bar-Ilan University
Ramat-Gan, Israel
yoav.goldberg@gmail.com

arc-factored (first order) models (McDonald, 2006),
in which the scoring function for a tree decomposes
over the individual arcs of the tree. More elaborate
models look at larger (overlapping) parts, requiring
more sophisticated inference and training algorithms

https://aclanthology.org/Q16-1023/
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Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n? arcs, and find the best scoring tree using a dynamic-programming algorithm.
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Dependency Parsing

e Dependency Grammars:
e Compactly represent predicate—argument structure
® [ exicalized, localized

e Natural handling of flexible word order

e Dependency parsing:
e Conversion to phrase structure trees
e Graph-based parsing (MST), efficient non-proj O(n?)

e Next time: Transition-based parsing

WA UNIVERSITY of WASHINGTON  B7



Further Reading

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online Large-Margin Training of Dependency Parsers. In Proceedings

of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 91-98. May. [link]

Ryan McDonald, Fernando Pereira, K. Ribarov, and Jan HajiC. 2005b. Non-projective dependency parsing using spanning tree
algorithms. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language

Processing, pages 523-530. Association for Computational Linguistics. [link]
Sandra Kubler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool. [link]

Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of the 16th

Conference on Computational Linguistics, pages 340-345. Association for Computational Linguistics. [link]
Michael Collins. 1999. Head-Driven Statistical Models For Natural Language Parsing. [link]

Kiperwasser and Golberg 2016, "Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations",

Transactions of the ACL.
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