Dependency Parsing
and
Feature-based Parsing

Ling 571 — Deep Processing Techniques for NLP
Shane Steinert-Threlkeld



Announcements

e HW2 grades out, HW3 soon

e HW3 reference code available
e Sym-linked from hw4 directory (example_cky.py)

e HWA4 slides, notes on OOV: not necessary in base implementation; can
be used as your improvement (for coverage)

e For hw4, can use:
@ nNltk.tree.Tree

@ nltk.tree.Tree.productions ()
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Python Feature of the Week

e Dataclasses! (>= 3.7)

e Auto-generates: init , repr , eqg ,etC

e Enables field-based access (e.g. bp.split point)
e Can be extended just like any class

® (frozen: not mutable, hash will be added, can be used in sets etc)

® Very useful for: Qdéféclass(frozenzl'm_!..:_-:)
class Backpointer:
o Slmp|e custom data types current_nonterminal: Nonterminal

split_point: int

o COnﬂguratiOnS! left child: Nonterminal
right_child: Nonterminal
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https://docs.python.org/3/library/dataclasses.html

Headline of the Week

% Nick Fleisher @nickfleisher.bsky.social - 53m
Look I'm no expert in journalistic sourcing standards but this

seems unorthodox

The {Uashmgton Post

r) ’ [ r\'." 'I’I [) t { {) |

The moon i1s 40 million years
older than lhnug’hl. ancient

crvstal suggests
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Today

e Dependency Parsing

e Transition-based Parsing

e Feature-based Parsing
e Motivation
® [eatures

e Unification
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Dependency Parse Example:
They hid the letter on the shelf

Argument Dependencies

hid
Abbreviation Description
nsub; nominal subject nsubj dobj
csubj clausal subject

dobj direct object Th e)l |ette I

iobj indirect object
pobj object of preposition /t \
the

Modifier Dependencies

Abbreviation Description shelf
tmod t | modifi
mo emporal modifier dor
appos appositional modifier
det determiner
prep prepositional modifier the
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Transition-Based Parsing

e Parsing defined in terms of sequence of transitions


http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772

Transition-Based Parsing

e Parsing defined in terms of sequence of transitions

e Alternative methods for learning/decoding
e Most common model: Greedy classification-based approach

e Very efficient: O(n)


http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772

Transition-Based Parsing

e Parsing defined in terms of sequence of transitions

e Alternative methods for learning/decoding
e Most common model: Greedy classification-based approach

e Very efficient: O(n)

e Best-known implementations:

e Nivre's MALTParser
e Nivre et al (2006); Nivre & Hall (2007)
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Transition-Based Parsing

e A transition-based system for dependency parsing is:

e A set of configurations C



Transition-Based Parsing

e A transition-based system for dependency parsing is:
e A set of configurations C

e A set of transitions between configurations
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Transition-Based Parsing

e A transition-based system for dependency parsing is:
e A set of configurations C
e A set of transitions between configurations

e A transition function between configurations
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Transition-Based Parsing

e A transition-based system for dependency parsing is:
e A set of configurations C
e A set of transitions between configurations
e A transition function between configurations

e An initialization function (for Co)
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Transition-Based Parsing

e A transition-based system for dependency parsing is:
e A set of configurations C
e A set of transitions between configurations
e A transition function between configurations
e An initialization function (for Co)

e A set of terminal configurations (“end states”)
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Configurations

e A configuration for a sentence xis the triple (Z, B, A):

e 2 is astack with elements corresponding to the nodes (words + ROOT)
N x

e B (aka the buffer)is a list of nodes in x

e Aisthe set of dependency arcs in the analysis so far,

o (wi; L, w)), where wxis anodein xand L is a dependency label



Transitions

e Transitions convert one configuration to another

e Ci= 1(Ci.1), where tis the transition

e Dependency graph for a sent:

e The set of arcs resulting from a sequence of transitions

e The parse of the sentence is that resulting from the initial state through the
sequence of transitions to a legal terminal state
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Dependencies — Transitions

e To parse a sentence, we need the sequence of transitions that derives
it



Dependencies — Transitions

e To parse a sentence, we need the sequence of transitions that derives
it

e How can we determine sequence of transitions, given a parse?
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Dependencies — Transitions

e To parse a sentence, we need the sequence of transitions that derives
it

e How can we determine sequence of transitions, given a parse?

e This is defining our oracle function:

e How to take a parse and translate it into a series of transitions
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Dependencies — Transitions

e Many different oracles:
e Nivre's arc-standard

e Nivre's arc-eager

e Non-projectivity with Attardi’s
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http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307

Dependencies — Transitions

e Many different oracles:
e Nivre's arc-standard

e Nivre's arc-eager

e Non-projectivity with Attardi’s

e Generally:
e Use oracle to identify gold transitions

e Train classifier to predict best transition in new config
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http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307

Nivre's Arc-Standard Oracle

e Words: wy,...,wh
® Wo=ROOT

e |nitialization:

e Stack = [wp]; Buffer = [ws,...wn]; Arcs = @

® lermination:

e Stack = o; Buffer=[];, Arcs = A
e foranyocand A
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Nivre's Arc-Standard Oracle

e Transitions are one of three:
e Shift
o Left-Arc
e Right-Arc
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Transitions: Shift

e Shift first element of buffer to top of stack.
o [l]l,k,n,...]l1 = [L)lk,n,...](]

---.
P == mmom o= oy "— ..
N

Stack Buffer



Transitions: Shift

e Shift first element of buffer to top of stack.

o [i][j.k,n,...][1 = [i,jllk,n,...][]
i
i k n
Stack Buffer



Transitions: Left-Arc

e Add arc from element at top of stack to second element on stack with
dependency label |

e Pop second element from stack.

o [i,]] [k,n,...]A—[]] [K,n,...] AU[(],],])]
Iq : k n

Stack Buffer Arcs



Transitions: Left-Arc

e Add arc from element at top of stack to second element on stack with
dependency label |

e Pop second element from stack.

o [i,j] [k,n,...] A= [j] [k,n,...] AU[(],l,I)]

J k n (i,1,1)

Stack Buffer Arcs



Transitions: Right-Arc

e Add arc from second element on stack to top element on stack with
dependency label |

e Pop top element from stack.

o [i,]] [k,n,...]A—[i] [kK,n,...] AU[(L,],))]
I( : k n

Stack Buffer Arcs



Transitions: Right-Arc

e Add arc from second element on stack to top element on stack with
dependency label |

e Pop top element from stack.

o [i,j]] [k,n,...]A = [i] [k,n,...] AU[(1,],))]
i Kk n (Ialul)

Stack Buffer Arcs



Training Process

e Each step of the algorithm is a decision point between the three states

e We want to train a model to decide between the three options at each
step

e (Reduce to a classification problem)

e \We start with:
e Atreebank
e An oracle process for guiding the transitions

e A discriminative learner to relate the transition to features of the current
configuration
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Training Process, Formally:

(2, B, A)

3
2

) €« co(S)

) while cis not terminal

) t — o(c) # Choose the (o)ptimal transition for the config ¢
)

)

W

4
5

c « f(c) # Move to the next configuration
return G
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Testing Process, Formally:

(2, B, A)

1) ¢ « co(S)

2) while cis not terminal

3) t — Ac(c) # Choose the transition given model parameters at ¢
4) c « f(c) # Move to the next configuration

5) return G¢

WA UNIVERSITY of WASHINGTON 23



Representing Configurations with Features

e Address

e Locate a given word:
e By position in stack
e By position in buffer
e By attachment to a word in buffer

e Attributes
e |dentity of word
e |lemma for word
e POS tag of word

e Dependency label for word « conditioned on previous decisions!
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Example:

Action Buffer

[ROOT] [They told him a story]

[dOij

[—(subj]—\ ﬂiobjh M

They told  him story
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Example:

Action Buffer
[ROOT] [They told him a story]
Shift [ROOT, They] [told him a story]
[dobj J

[—[subj]—\ ﬂiobjh M

They told  him story
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Example:

Action Buffer
[ROOT] [They told him a story]
Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]
[dobj J

= [, )

They told  him story
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Example:

Action Buffer
[ROOT] [They told him a story]
Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]
Left-Arc (subj) [ROOT, told] [him a story]
[dobj J

= [, )

They told  him story
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Example:

Action Buffer
[ROOT] [They told him a story]
Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]
Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]

[dobjj

= [, )

They told  him story
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Example:

Action Stack Buffer
[ROOT] [They told him a story]
Shift [ROOT, They] [told him a story]
Shift [ROOT, They, told] [him a story]
Left-Arc (subj) [ROOT, told] [him a story]
Shift [ROOT, told, him] [a story]
Right-Arc (iobj) [ROOT, told] [a story]

[dobjj

= [, )

They told  him story
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Example:

Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]

Shift [ROOT, They, told] [him a story]
Left-Arc (subj) [ROOT, told] [him a story]

Shift [ROOT, told, him] [a story]
Right-Arc (iobj) [ROOT, told] [a story]

Shift [ROOT, told, a] [story]

(dobj]

5

They told him a  story
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Example:

Action
[ROOT]

Shift [ROOT, They]

Shift [ROOT, They, told]
Left-Arc (subj) [ROOT, told]

Shift [ROOT, told, him]
Right-Arc (iobj) [ROOT, told]

Shift [ROOT, told, a]

Shift [ROOT,told, a, story]

(dobjj

Buffer

[They told him a story]
[told him a story]
[him a story]

[him a story]

[a story]

[a story]

[story]

[]

@ fe,

They told him

=

story
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Example:

Action
[ROOT]

Shift [ROOT, They]

Shift [ROOT, They, told]
Left-Arc (subj) [ROOT, told]

Shift [ROOT, told, him]
Right-Arc (iobj) [ROOT, told]

Shift [ROOT, told, a]

Shift [ROOT,told, a, story]

Left-Arc (Det) [ROOT, told, story]

(dobjj

Buffer

[They told him a story]
[told him a story]
[him a story]

[him a story]

[a story]

[a story]

[story]

[]
[]

@ fe,

They told him

=

story
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Example:

Action
[ROOT]

Shift [ROOT, They]

Shift [ROOT, They, told]
Left-Arc (subj) [ROOT, told]

Shift [ROOT, told, him]
Right-Arc (iobj) [ROOT, told]

Shift [ROOT, told, a]

Shift [ROOT,told, a, story]

Left-Arc (Det) [ROOT, told, story]

Buffer

[They told him a story]
[told him a story]
[him a story]

[him a story]

[a story]

[a story]

[story]

[]
[]
[]

Right-Arc (dobj) [ROOT, told]
(dobj J
SUbl]—\ M
They told him

=

story
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Example:

Action
[ROOT]

Shift [ROOT, They]

Shift [ROOT, They, told]
Left-Arc (subj) [ROOT, told]

Shift [ROOT, told, him]
Right-Arc (iobj) [ROOT, told]

Shift [ROOT, told, a]

Shift [ROOT,told, a, story]

Left-Arc (Det) [ROOT, told, story]

Buffer

[They told him a story]
[told him a story]
[him a story]

[him a story]

[a story]

[a story]

[story]

[]
[]
[]
[]

Right-Arc (dobj) [ROOT, told]
Right-Arc (root) [ROOT]
(dobj J
SUbl]—\ M
They told him

=

story
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Transition-Based Parsing
Summary

® Shift-Reduce [reduce = pop] paradigm, bottom-up approach

e Pros:
e Single pass, O(n) complexity

e Reduce parsing to classification problem; easy to introduce new features

e Cons:
e Only makes local decisions, may not find global optimum

e Does not handle non-projective trees without hacks

e e.g. transforming nonprojective trees to projective in training data;
reconverting after



Other Notes

e ..is this a parser?
e No, not really!

e Transforms problem into sequence labeling task, of a sort.
e 2. (SH, LA, SH, RA, SH, SH, LA, RA)
® Seguence score is sum of transition scores
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Dependency parsing

Dependency parsing is the task of extracting a dependency parse of a sentence that

represents its grammatical structure and defines the relationships between “head” words
and words, which modify those heads.
Example:

root
I
| +------- dobj--------- +
[ |
o o nsubj | | +------ det----- + | +----- nmod------ +
‘ o bt L L1 !
I I ° y [ | +-nmod-+1 | | +-case-+ |
+ | o+ | + + I+ 1 + 1

I prefer the morning flight through Denver

Relations among the words are illustrated above the sentence with directed, labeled arcs

[ ] [
. O r I g I ' l a | |y SV IVI S from heads to dependents (+ indicates the dependent).
7

Penn Treebank

Models are evaluated on the Stanford Dependency conversion (v3.3.0) of the Penn
° . Treebank with predicted POS-tags. Punctuation symbols are excluded from the
‘ u r re nt y. S S, p re _t ra I n e ra n S O rl I I e r- a S e evaluation. Evaluation metrics are unlabeled attachment score (UAS) and labeled
attachment score (LAS). UAS does not consider the semantic relation (e.g. Subj) used to

label the attachment between the head and the child, while LAS requires a semantic
correct label for each attachment.Here, we also mention the predicted POS tagging

accuracy.
[ [ J (:) ( [ (:)
‘ a e - O - e - a r 0 O Model POS UAS LAS Paper / Source Code
o [ ] [ J , [ ) [ )
HPSG Parser (Joint) | 97.3 | 97.20 | 95.72 | Head-Driven Phrase Official
+ XLNet (Zhou and Structure Grammar Parsing
° ° Zhao, 2019) on Penn Treebank
(]
e http://nlpprogress.com/english/dependency_parsing.html
] + BERT (Zhou and Structure Grammar Parsing
Zhao, 2019) on Penn Treebank
CVT + Multi-Task 97.74 | 96.61 | 95.02 | Semi-Supervised Official
(Clark et al., 2018) Sequence Modeling with

Cross-View Training

Graph-based parser | 97.3 | 95.97 | 94.31 | Graph-based Dependency

with GNNs (Ji et al., Parsing with Graph Neural
2019) Networks
Deep Biaffine 97.3 | 95.74 | 94.08 | Deep Biaffine Attention for Official
(Dozat and Neural Dependency
Manning, 2017) Parsing
jPTDP (Nguyen and | 97.97 | 94.51 | 92.87 | An improved neural Official
Verspoor, 2018) network model for joint
POS tagging and

dependency parsing

Andor et al. (2016) 97.44 | 94.61 | 92.79 | Globally Normalized
Transition-Based Neural
Networks
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Dependency parsing

Dependency parsing is the task of extracting a dependency parse of a sentence that

represents its grammatical structure and defines the relationships between “head” words
and words, which modify those heads.
Example:

root
I
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7

Penn Treebank

Models are evaluated on the Stanford Dependency conversion (v3.3.0) of the Penn
° . Treebank with predicted POS-tags. Punctuation symbols are excluded from the
‘ u r re nt y. S S, p re _t ra I n e ra n S O rl I I e r- a S e evaluation. Evaluation metrics are unlabeled attachment score (UAS) and labeled
attachment score (LAS). UAS does not consider the semantic relation (e.g. Subj) used to

label the attachment between the head and the child, while LAS requires a semantic
correct label for each attachment.Here, we also mention the predicted POS tagging

accuracy.
[ [ J (:) ( [ (:)
‘ a e - O - e - a r 0 O Model POS UAS LAS Paper / Source Code
o [ ] [ J , [ ) [ )
HPSG Parser (Joint) | 97.3 | 97.20 | 95.72 | Head-Driven Phrase Official
+ XLNet (Zhou and Structure Grammar Parsing
° ° Zhao, 2019) on Penn Treebank
(]
e http://nlpprogress.com/english/dependency_parsing.html
+ BERT (Zhou and Structure Grammar Parsing
Zhao, 2019) on Penn Treebank
CVT + Multi-Task 97.74 | 96.61 | 95.02 | Semi-Supervised Official
(Clark et al., 2018) Sequence Modeling with

Cross-View Training

Graph-based parser | 97.3 | 95.97 | 94.31 | Graph-based Dependency

with GNNs (Ji et al., Parsing with Graph Neural
2019) Networks
Deep Biaffine 97.3 | 95.74 | 94.08 | Deep Biaffine Attention for Official
(Dozat and Neural Dependency
Manning, 2017) Parsing
jPTDP (Nguyen and | 97.97 | 94.51 | 92.87 | An improved neural Official
Verspoor, 2018) network model for joint
POS tagging and

dependency parsing

Andor et al. (2016) 97.44 | 94.61 | 92.79 | Globally Normalized

Sto ry ti m e ! — LZT;?E:-Based Neural
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arsey McParseface

: Google Al Blog

The latest news from Google Al

Announcing SyntaxNet: The World’s Most Accurate Parser

Goes Open Source
Thursday, May 12, 2016

Posted by Slav Petrov, Senior Staff Research Scientist

At Google, we spend a lot of time thinking about how computer systems can read and understand
human language in order to process it in intelligent ways. Today, we are excited to share the fruits
of our research with the broader community by releasing SyntaxNet, an open-source neural network
framework implemented in TensorFlow that provides a foundation for Natural Language
Understanding (NLU) systems. Our release includes all the code needed to train new SyntaxNet
models on your own data, as well as Parsey McParseface, an English parser that we have trained
for you and that you can use to analyze English text.

Parsey McParseface is built on powerful machine learning algorithms that learn to analyze the
linguistic structure of language, and that can explain the functional role of each word in a given
sentence. Because Parsey McParseface is the most accurate such model in the world, we hope
that it will be useful to developers and researchers interested in automatic extraction of
information, translation, and other core applications of NLU.

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
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Parsey McParseface

Don't laugh: Google's Parsey

i WIBEDR Google Has Open Sourced SyntaxNet, Its Al for U

McParseface is a serious 1Q boost for BUSTIESS
computers
e — (YIS Al BUSINESS 85.12.16 B83:88 PM

Share

m a-° Google Has Open Sourced

— SyntaxNet, Its Al for

GODGLE TECH -

v Understanding Language

Google is giving away the tool it uses to

understand language, Parsey McParseface
Okay, Google. Okay. We get it.

By Dieter Bohn | @backlon | May 12, 2016, 3:00pm EDT
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Parsey McParseface

as Open Sourced SyntaxNet, Its Al for U

Has Open Sourced
\let, Its Al for
tanding Language

Google just open sourced something
cadlled ‘Parsey McParseface,’ and it

Googleisgih  could change Al forever

understand (@) b naresvannes — My 12, 2016 i s
Okay, Google. Okay. We g

By Dieter Bohn | @backlon | May 12, 2016, 3:00pm EDT
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Parsey McParseface

Globally Normalized Transition-Based Neural Networks

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn,
Alessandro Presta, Kuzman Ganchev, Slav Petrov and Michael Collins*

Google Inc

New York, NY

{andor,chrisalberti,djweiss,severyn,apresta,kuzman,slav,mjcollins}@google.com

Abstract

We introduce a globally normalized
transition-based neural network model
that achieves state-of-the-art part-of-
speech tagging, dependency parsing and
sentence compression results. Our model
is a simple feed-forward neural network
that operates on a task-specific transition
system, yet achieves comparable or better
accuracies than recurrent models. We dis-
cuss the importance of global as opposed
to local normalization: a key insight is
that the label bias problem implies that
globally normalized models can be strictly
more expressive than locally normalized
models.

Chen and Manning (2014). We do not use any re-
currence, but perform beam search for maintaining
multiple hypotheses and introduce global normal-
1zation with a conditional random field (CRF) ob-
jective (Bottou et al., 1997; |Le Cun et al., 1998;
afferty et al., 2001; [Collobert et al.,2011) to
overcome the label bias problem that locally nor-
malized models suffer from. Since we use beam
inference, we approximate the partition function
by summing over the elements in the beam,
and use early updates (Collins and Roark, 2004;
Zhou et al., 2015). We compute gradients based
on this approximate global normalization and
perform full backpropagation training of all neural
network parameters based on the CRF loss.

In Section [3] we revisit the label bias problem
and the implication that globally normalized mod-
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Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn,
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Abstract Chen and Manning (2014). We do not use any re-

currence, but perform beam search for maintaining

We introduce a globally normalized multiple hypotheses and introduce global normal-
transition-based neural network model ization with a conditional random field (CRF) ob-

that achieves state-of-the-art part-of- jective (Bottou et al., 1997; |Le Cun et al., 1998;

Lafferty et al., 2001; [Collobert et al., 2011) to
overcome the label bias problem that locally nor-

is a simple feed-forward neural network malized models suffer from. Since we use beam
that operates on a task-specific transition inference, we approximate the partition function
system, yet achieves comparable or better by summing over the elements in the beam,
accuracies than recurrent models. and use early updates (Collins and Roark, 2004;
cuss the importance of global as opposed Zhou et al., 2015). We compute gradients based
to local normalization: a key insight is on this approximate global normalization and
that the label bias problem implies that perform full backpropagation training of all neural
globally normalized models can be strictly network parameters based on the CRF loss.

more expressive than locally normalized In Section [3] we revisit the label bias problem
models. and the implication that globally normalized mod-
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jective (Bottou et al., 1997; |Le Cun et al., 1998;
Lafferty et al., 2001 |Collobert et al., 2011) to
overcome the label bias problem that locally nor-
malized models suffer from. Since we use beam
inference, we approximate the partition function
by summing over the elements in the beam,
and use early updates (Collins and Roark, 2004;
Zhou et al., 2015). We compute gradients based
on this approximate global normalization and
perform full backpropagation training of all neural
network parameters based on the CRF loss.

In Section [3] we revisit the label bias problem
and the implication that globally normalized mod-

Great paper

Many methodological
lessons on how to improve
transition-based
dependency parsing

BUT: don’t believe (or at
least beware) the hype!
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Dependency Parsing:
Summary

e Dependency Grammars:
e Compactly represent pred-arg structure
e Lexicalized, localized

e Natural handling of flexible word order
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Dependency Parsing:
Summary

e Dependency Grammars:
e Compactly represent pred-arg structure
e Lexicalized, localized

e Natural handling of flexible word order

e Dependency parsing:
e Conversion to phrase structure trees

e Graph-based parsing (MST), efficient non-proj O(n2)
e Transition-based parser

e MALTparser: very efficient O(n)
e Optimizes local decisions based on many rich features
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Roadmap

e Dependency Parsing

e Transition-based Parsing

e Feature-based Parsing
e Motivation
® [eatures

e Unification
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Feature-Based Parsing
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e S— NPVP
e They run.

® He runs.

Constraints & Compactness
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Constraints & Compactness

e S— NPVP
e They run.

® He runs.

e But...

® *They runs
® * He run

® * He disappeared the flight

e Violate agreement (number/person), subcategorization -> over-
generation
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Enforcing Constraints with CFG Rules

e Agreement
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Enforcing Constraints with CFG Rules

e Agreement
o S— NPsg+3p VPsg+3p
o S — NPp|+3p VPp|+3p

e Subcategorization:
® VP — Viansitive NP
® VP — Vintransitive

® VP — Vyitransitive NP NP

e Explosive, and loses key generalizations
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Feature Grammars

e Need compact, general constraint
e S— NPVP [iff NP and VP agree]

e How can we describe agreement & subcategory?

e Decompose into elementary features that must be consistent
e e.2. Agreement on number, person, gender, etc
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Feature Grammars

e Need compact, general constraint
e S— NPVP [iff NP and VP agree]

e How can we describe agreement & subcategory?

e Decompose into elementary features that must be consistent
e e.2. Agreement on number, person, gender, etc

e Augment CF rules with feature constraints
e Develop mechanism to enforce consistency

e Elegant, compact, rich representation
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Feature Representations

e Fundamentally Attribute-Value pairs
e Values may be symbols or feature structures
e Feature path: list of features in structure to value

e “Reentrant feature structure” — sharing a structure

e Represented as
e Attribute-Value Matrix (AVM)
e Directed Acyclic Graph (DAG)
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Attribute-Value Matrices (AVMs)

Al TRIBUTEy valueq
Al TRIBUTEs values

Al TRIBU Ik, value,



AVM Examples

_ : CAT NP
@ | o P e - NUMBER PL
PERSON 3 AGREEMENT X
: : PERSON 3
CAT S
N AGREEMENT [1 | NUMBER PL
B) |NUMBERPL | (@) |, ., - SERSON 3
PERSON 3 ] : -
) SUBJECT AGREEMENT




CAT

AGR

N T

NP
NUMB

AVM vs. DAG

RPL

"ERSON 3




—N |

' NUMB

RPL

PERSON 3




Using Feature Structures

e Feature Structures provide formalism to specify constraints
e ..but how to apply the constraints?

e Unification



Unification:

||

e Two key roles:
e Merge compatible feature structures

e Reject incompatible feature structures
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Unification:

||

e Two key roles:
e Merge compatible feature structures

e Reject incompatible feature structures

e Two structures can unify if:
® Feature structures match where both have values

® Feature structures differ only where one value is missing or underspecified
e Missing or underspecified values are filled with constraints of other
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Unification:

||

e Two key roles:
e Merge compatible feature structures

e Reject incompatible feature structures

e Two structures can unify if:
® Feature structures match where both have values

® Feature structures differ only where one value is missing or underspecified
e Missing or underspecified values are filled with constraints of other

e Result of unification incorporates constraints of both
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Subsumption

e Less specific feature structure subsumes more specific feature structure
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Subsumption

e Less specific feature structure subsumes more specific feature structure

e FS Fsubsubmes FS @G iff:

e For every feature xin F, F(x) subsumes G(x)
e for all paths pand qin F s.t. F(p)=F(q), G(p)=G(q)
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Subsumption

e Less specific feature structure subsumes more specific feature structure

e FS Fsubsubmes FS @G iff:

e For every feature xin F, F(x) subsumes G(x)

e for all paths pand qin F s.t. F(p)=F(q), G(p)=G(q)

e Examples:
® A= | NUMBER SG
- | NUMBER SG
PERSON 3

B= | PERSON 3

A subsumes C

B subsumes C
B & A don’t subsume



e |dentical

Unification Examples

' NUMB

RSG

L

' NUMB

RSG

' NUMB

RSG




e |dentical

e Underspecified

Unification Examples

' NUMB

' NUMB

RSG

RSG

L

O

' NUMB

RSG

' NUMB

' NUMBER SG

RSG




e |dentical

e Underspecified

e Different Specs

Unification Examples

' NUMB

' NUMB

' NUMB

RSG

RSG

RSG

L

O

' NUMB

' PERSON 3

RSG

' NUMB

PERSON

' NUMBER SG

' NUMBER SG

RSG

3




Unification Examples

|dentical

Underspecified

Different Specs

Conflicting Specs |

' NUMB

' NUMB

' NUMB

' NUMB

RSG

RSG

RSG

RSG

||

O

' NUMB

' NUMB

' PERSON 3

RPL

RSG

P

' NUMBER SG

' NUMBER SG

NUMBER SG

-RSON ' 3




Larger Unification Example

||

- AGREEMENT [

SUBJECT AGREEMENT [
- AGREEMENT [
SUBRJECT AGRFEMENT

SUBJECT

' PERSON 3
NUMBER SG

AGREEMENT

D

-RSON ' 3

N\

UMBER 5G
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AGREEMEN

SUBJECT

One More Unification Example

1

' NUMBER sg
 PERSON 3

[ AGREEMENT

1

||

AGREEMENT

SUBJECT

' NUMBER sg
| PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3
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AGREEMEN

One More Unification Example

1

SUBJECT

' NUMBER sg
PERSON 3

[ AGREEMENT

1

||

AGREEMENT

SUBJECT

' NUMBER sg
 PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3
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AGREEMEN

1

SUBJECT

[ AGREEMENT

One More Unification Example

' NUMBER sg

 PERSON 3

1

(NUMBER ) »(SG)

-

||

1
.CAGREEMEN{ >PERSON

AGREEMENT

SUBJECT

(C AGREEMENT )—»

NUMBER sg
PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3

(NUMBER

PERSON )
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AGREEMEN

1

SUBJECT

[ AGREEMENT

One More Unification Example

' NUMBER sg

 PERSON 3

1

(NUMBER ) »(SG)

-

||

1
.CAGREEMEN{ >PERSON

(C AGREEMENT )—»

AGREEMENT

SUBJECT

NUMBER sg
PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3

(NUMBER

v

PERSON )
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AGREEMEN

SUBJECT

- NUMBER sg |
| PERSON 3

[ AGREEMENT

1

Unification

AGREEMENT

SUBJECT

NUMBER sg
PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3
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AGREEMEN

SUBJECT

' NUMBER sg
PERSON 3

[ AGREEMENT

1

Unification

AGREEMENT

SUBJECT

' NUMBER sg
| PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3
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AGREEMEN

SUBJECT

(SUBJECT )

' NUMBER sg
PERSON 3

[ AGREEMENT

1

(NUMBER ) »(SG)

-

1
\»._(AGREEM EN%>PERSON

Unification

AGREEMENT

SUBJECT

NUMBER sg
PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3
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AGREEMEN

SUBJECT

(SUBJECT )

' NUMBER sg
PERSON 3

[ AGREEMENT

1

Unification

AGREEMENT

SUBJECT

(NUMBER ) »(SG)

-

1
\»._(AGREEM EN%>PERSON

NUMBER sg
PERSON 3

AGREEMENT

' NUMBER PL

 PERSON 3
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AGREEMENT [1

' NUMBER sg

| PERSON 3 Ll

SUBJECT [ AGRE

(SUBJECT )

EMENT 1}

yMBER

\»._(AGREEMEN

1
%>PERSON

Unification

AGREEMENT

SUBJECT

NUMBER sg
PERSON 3

AGREEMENT

' NUMBER PL
| PERSON 3

NUMBER —>(PL)

(SUBJECT )

»@—( AGREEMENT )

\(PERSON
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o [ NuMBERsg
| PERSON 3 Ll

SUBJECT [ AGRE

(SUBJECT )

EMEN 1}

QMBER

\»._(AGREEMEN

1
%>PERSON

Unification

AGREEMENT

SUBJECT

' NUMBER sg
| PERSON 3

AGREEMENT

 PERSON 3

NUMBER —>(PL)

(SUBJECT )

»e—( AGREEMENT )

\(PERSON
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AGREEMEN

SUBJECT

(SUBJECT )

| PERSON 3 LI

[AGREEMENl 1 }

QMBER

1
\»._(AGREEM EN%>PERSON

Unification

AGREEMENT

SUBJECT

' NUMBER sg
| PERSON 3

AGREEMENT

 PERSON 3

NUMBER —>(PL)

(SUBJECT )

»e—( AGREEMENT )

\(PERSON

— (/) Failurel

X
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Rule Representation

® 0 [L1... An

{set of constraints}

e PRON — ‘he’

(pifeature path) = Atomic value | {§; feature path)
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Rule Representation
® 0 [L1... An

{set of constraints} (Bifeature path) = Atomic value | {B; feature path)
e PRON — ‘he’
(PRON AGREEMENT

Pron

AGREEMENT




Rule Representation
® 0 [L1... An

{set of constraints} (Bifeature path) = Atomic value | {B; feature path)

e PRON — ‘he’
(PRON AGREEMENT PERSON)

Pron




Rule Representation
® 0 [L1... An

{set of constraints} (Bifeature path) = Atomic value | {B; feature path)

e PRON — ‘he’

(PRON AGREEMENT PERSON) = 3rd

Pron




Rule Representation
® 0 [L1... An

{set of constraints} (pifeature path) = Atomic value | {§; feature path)

e NP — PRON
(NP AGREEMENT PERSON) = (PRON AGREEMENT PERSON)

NP Pron
AGREEMENT AGREEMENT



Rule Representation
® 0 [L1... An

{set of constraints} (pifeature path) = Atomic value | {§; feature path)

e NP — PRON
(NP AGREEMENT PERSON) = (PRON AGREEMENT PERSON)

/

“unifiable”
NP Pron
AGREEMENT AGREEMENT
PERSON PERSON



Agreement with Heads and Features
® 0 [L1... An

{set of constraints} (pifeature path) = Atomic value | {§; feature path)

S— NP VP Det — this
(NP AGREEMENT) = (VP AGREEMENT) (Det AGREEMENT NUMBER) = sg
S - Aux NP VP Det — these
(Aux AGREEMENT) = (NP AGREEMENT) (Det AGREEMENT NUMBER) = p/
NP — Det Nominal Verb — serve
(Det AGREEMENT) = ({Nominal AGREEMENT) (Verb AGREEMENT NUMBER) = pl

(NP AGREEMENT) = {Nominal AGREEMENT)

Aux — does Noun — flight

(AUX AGREEMENT NUMBER) = 8@ (Noun AGREEMENT NUMBER) = sg
(AUX AGREEMENT PERSON) = 3rd
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Simple Feature Grammars in NLTK

e S— NPVP



Simple Feature Grammars

S -> NP[NUM=2?n] VP[NUM=2n]

NP[NUM=?n] -> N[NUM=2n]

NP[NUM=?n] -> PropN[NUM=?n]

NP[NUM=?n] -> Det[NUM=?n] N[NUM=2?n])

Det[NUM=sg] -> 'this' | 'every’

Det [NUM=pl] -> 'these' | 'all’

N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’
N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
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Parsing with Features

>>> cp = load parser('grammars/book grammars/
featO.fcfg’)

>>> for tree in cp.parse(tokens):

c oo print (tree)

(S[]1 (NP[NUM='sg']
(PropN[NUM='sg'] Kim))
(VP[NUM='sg', TENSE='pres']
(TV[NUM='"'sg', TENSE='pres'] likes)
(NP[NUM="pl'] (N[NUM='pl'] children))))
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Feature Applications

e Subcategorization

e \Verb-Argument constraints
e Number, type, characteristics of args

e e.g.isthe subject animate?
e Also adjectives, nouns
e Long-distance dependencies
e e.g. filler-gap relations in wh-questions

e “Which flight do you want me to have the travel agent book?"

WA UNIVERSITY of WASHINGTON 56



Morphosyntactic Features

e Grammatical feature that influences morphological or syntactic
behavior
e English:
e Number:
e Dog, dogs
e Person:
® am,; are; IS
e (ase:
e |/ me; he/him; etc.
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Semantic Features

e Grammatical features that influence semantic (meaning) behavior of
associated units

o L.g.:

e ’The rocks slept. ? Colorless green ideas sleep furiously. ? | handed the rock a book.

e Many proposed:
@ Animacy: +/-
e Human: +/-

e Adult: +/-
@ Liquid: +/-
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e The climber [hiked] [for six hours].
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Aspect (J&M 17.4.2)

e The climber [hiked] [for six hours].
® The climber [hiked] [on Saturday].
® The climber [reached the summit] [on Saturday].

® *The climber [reached the summit] [for six hours].

e (Contrast:

® Achievement (in an instant) vs activity (for a time)
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