Feature-based Parsing

-

Computational Semantics

LING 571 — Deep Processing for NLP
Shane Steinert-Threlkeld




Announcements

e No improvements (e.g. upper/lower-case) in first 3 parts of assignment

e Parser will miss some sentences :)
e In shell script for part 5: hard code full paths to evalb and parses.gold

e Example grammars: toy.pcfgis gold induced from toy output.txt;
example induced.pcfgis NOT a gold reference, just for format

e Parent annotation and evaluation:

e Splitting non-terminals = introducing new ones, may not be in gold/eval data

e For this assignment, need to “de-parent” your parses at the end

e Note on underflow: logHPl- = Z log P;
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Roadmap

e Feature-based parsing

e Computational Semantics
® Introduction
® Semantics

e Representing Meaning
e First-Order Logic
e Events
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Computational Semantics



Dialogue System

e User:. What do I have on Thursday?



Dialogue System

e User:. What do I have on Thursday?

e Parser:
e Yes!It's grammaticall
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Dialogue System
e User:. What do I have on Thursday? S

e Parser: Q-WH-Ob

e Yes!It's grammaticall
Whwd  Aux NP VP/NP

® Here's the structure!
What do Pron V NP/NP PP
|  have *t* Prep NP

on N

Thursday
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Dialogue System
e User:. What do I have on Thursday? S

e Parser: Q-WH-Ob

e Yes!It's grammaticall
, Whwd Aux NP VP/NP
e Here's the structure!

® System: What do Pron V NP/NP PP

o Great, but what do | DO now? | have **  Prep NP

on N

Thursday
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Dialogue System
e User:. What do | have on Thursday? S

e Parser: Q-WH-Ob

e Yes!It's grammaticall
, Whwd Aux NP VP/NP
e Here's the structure!

e System: What do Pron V NP/NP PP
e Great butwhatdo | DO now? | have t* Prep NP

e Need to associate meaning w/structure o N

Thursday
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Dialogue System

S
Q-WH-Obj
Whwd  Aux NP VP/NP

What do Pron V NP/NP PP
|  have *t* Prep NP

on N
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Dialogue System

S
Q-WH-Obj
Whwd Aux NP VP/NP

What do Pron V NP/NP PP
on N
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Dialogue System

Action:
check (Cal=USER, S
Date=Thursday)
Q-WH-Ob;
Whwd Aux NP VP/NP

What do Pron V NP/NP PP

on N
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Syntax vs. Semantics

e Syntax:

e Determine the structure of natural language input
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Syntax vs. Semantics

® Syntax:

e Determine the structure of natural language input

e Semantics:

e Determine the meaning of natural language input
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High-Level Overview

e Semantics = meaning



High-Level Overview

e Semantics = meaning

e ..butwhat does “meaning” mean?
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High-Level Overview

e Semantics = meaning

e ..butwhat does “meaning” mean?
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High-Level Overview

e Semantics = meaning

i1 . 144 7
e ..but what does “meaning” mean: HILARY PUTNAM

The Meaning of “Meaning”™

Language is the first broad area of human cognitive capacity for which
we are beginning to obtain a description which is not exaggeratedly over-
simplified. Thanks to the work of contemporary transformational lin-
guists,! a very subtle description of at least some human languages is
in the process of being constructed. Some features of these languages
appear to be universal. Where such features turn out to be “species-spe-
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We Will Focus On:

e Concepts and representations that have truth-conditions: they can be true or
false in the world (or, more generally, “executable”).

e How to connect strings and those concepts.
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We Won’t Focus On:

1. Building knowledge bases / semantic networks

Truck

Bus House
Car
Vehicle
Fire
Street Fire
Ambulary Engine Apples
Pears
Orange Cherries
Yellow Red

, Green
Violet \®

Flowers

Violets
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Roadmap

e Computational Semantics
e Overview
e Semantics
® Representing Meaning
e First-Order Logic
® tvents
o HW#5

e Feature grammars in NLTK

e Practice with animacy
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Semantics: an Introduction
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Uses for Semantics

e Semantic interpretation required for many tasks
e Answering questions
e Following instructions in a software manual

e Following a recipe
e Requires more than phonology, morphology, syntax

e Must link linguistic elements to world knowledge
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures

® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
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® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

e The protests became bloody.
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures

® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

e The protests became bloody.

e The protests had been peaceful.
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures

® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
e The protests became bloody.
e The protests had been peaceful.

e Crowds oppose the government.
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures

® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

e The protests became bloody.
e The protests had been peaceful.
e Crowds oppose the government.

e Some support Mubarak.
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures

® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

e The protests became bloody.

e The protests had been peaceful.
e Crowds oppose the government.
e Some support Mubarak.

e There was a confrontation between two groups.
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures
® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
e The protests became bloody.
e The protests had been peaceful.
e Crowds oppose the government.
e Some support Mubarak.
e There was a confrontation between two groups.

e Anti-government crowds are not Mubarak supporters
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Semantics is Complex

e Sentences have many entailments, presuppositions, implicatures
® /nstead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
e The protests became bloody.
e The protests had been peaceful.
e Crowds oppose the government.
e Some support Mubarak.
e There was a confrontation between two groups.
e Anti-government crowds are not Mubarak supporters

® .. .etcC.
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Challenges in Semantics

e Semantic Representation:

e What is the appropriate formal language to express propositions in linguistic
input?

e e.g.:predicate calculus: Jx (dog (x) A disappear (x))



Challenges in Semantics

e Semantic Representation:

e \What is the appropriate formal language to express propositions in linguistic
input?

e e.g.:predicate calculus: Jx (dog (x) A disappear (x))

e Entailment:

e \What are all the conclusions that can be validly drawn from a sentence?
® Lincoln was assassinated = Lincoln is dead
e = "“semantically entails”; if former is true, the latter must be too
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Challenges in Semantics

e Reference

e How do linguistic expressions link to objects/concepts in the real world?
e ‘the dog,’ ‘the evening star,’ ‘The Superbowl’
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Challenges in Semantics

e Reference

e How do linguistic expressions link to objects/concepts in the real world?
e ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

e Compositionality
e How can we derive the meaning of a unit from its parts?
e How do syntactic structure and semantic composition relate?
e ‘rubber duck’vs. ‘rubber chicken’ vs. ‘rubber-neck’
® Kick the bucket
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Tasks in Computational Semantics

e Extract, interpret, and reason about utterances.



Tasks in Computational Semantics

e Extract, interpret, and reason about utterances.

e Define a meaning representation



Tasks in Computational Semantics

e Extract, interpret, and reason about utterances.

e Define a meaning representation

e Develop techniques for semantic analysis
e ..convert strings from natural language to meaning representations
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Tasks in Computational Semantics

Extract, interpret, and reason about utterances.

Define a meaning representation

Develop techniques for semantic analysis
e ..convert strings from natural language to meaning representations

Develop methods for reasoning about these representations
e ..and performing inference
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Tasks in Computational Semantics

Semantic similarity (words, texts)

Semantic role labeling

Semantic parsing / Semantic analysis

Recognizing textual entailment (RTE) / natural language inference (NLI)

Sentiment analysis



Complexity of Computational Semantics

e Knowledge of language

e words, syntax, relationships between structure & meaning, composition
procedures



Complexity of Computational Semantics

e Knowledge of language

e words, syntax, relationships between structure & meaning, composition
procedures

e Knowledge of the world:
e what are the objects that we refer to?
e How do they relate?

e \What are their properties?
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Complexity of Computational Semantics

e Knowledge of language

e words, syntax, relationships between structure & meaning, composition
procedures

e Knowledge of the world:
e what are the objects that we refer to?
e How do they relate?

e \What are their properties?

e Reasoning

e Given a representation and world, what new conclusions (bits of meaning) can we
infer?

WA UNIVERSITY of WASHINGTON 20



Complexity of Computational Semantics

e Effectively Al-complete

e Needs representation, reasoning, world model, etc.



Representing Meaning
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Meaning Representations

e All consist of structures from set of symbols
e Representational vocabulary
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Meaning Representations

e All consist of structures from set of symbols
e Representational vocabulary

e Symbol structures correspond to:
e Objects
e Properties of objects
e Relations among objects
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Meaning Representations

e All consist of structures from set of symbols
e Representational vocabulary

e Symbol structures correspond to:
e Objects
e Properties of objects
e Relations among objects

e Can be viewed as:
e Representation of meaning of linguistic input
e Representation of state of world
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Meaning Representations

e All consist of structures from set of symbols
e Representational vocabulary

e Symbol structures correspond to:
e Objects
e Properties of objects
e Relations among objects

e Can be viewed as:
e Representation of meaning of linguistic input
e Representation of state of world

e Here we focus on literal meaning (“what is said”)
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Representational Requirements

Verifiability

Unambiguous representations
Canonical Form

Inference and Variables

Expressiveness
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Representational Requirements

Verifiability
e Can compare representation of sentence to KB model (generally: “executable”)

Unambiguous representations
e Semantic representation itself is unambiguous
Canonical Form

Inference and Variables

Expressiveness
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Representational Requirements
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Unambiguous representations
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Canonical Form
e Alternate expressions of same meaning map to same representation
Inference and Variables

Expressiveness
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Representational Requirements

Verifiability
e Can compare representation of sentence to KB model (generally: “executable”)

Unambiguous representations
e Semantic representation itself is unambiguous

Canonical Form
e Alternate expressions of same meaning map to same representation

Inference and Variables
e Way to draw valid conclusions from semantics and KB

Expressiveness
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Representational Requirements

Verifiability
e Can compare representation of sentence to KB model (generally: “executable”)

Unambiguous representations
e Semantic representation itself is unambiguous

Canonical Form
e Alternate expressions of same meaning map to same representation

Inference and Variables
e Way to draw valid conclusions from semantics and KB

Expressiveness
e Represent any natural language utterance

WA UNIVERSITY of WASHINGTON 24



Meaning Structure of Language

e Human Languages:

Display basic predicate-argument structure
Employ variables
Employ quantifiers

Exhibit a (partially) compositional semantics



Predicate-Argument Structure

e Represent concepts and relationships
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Predicate-Argument Structure

e Represent concepts and relationships

e Some words behave like predicates
e Book(John, United); Non-stop(Flight)
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e Some words behave like predicates
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Predicate-Argument Structure

e Represent concepts and relationships

e Some words behave like predicates
e Book(John, United); Non-stop(Flight)

e Some words behave like arguments
e Book(John, United); Non-stop(Flight)

e Subcategorization frames indicate:
e Number, Syntactic category, order of args, possibly other features of args



First-Order Logic:
Syntax



First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference,
expressiveness
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First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference,
expressiveness

e Supports determination of propositional truth
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First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference,
expressiveness

e Supports determination of propositional truth

e Supports compositionality of meaning®
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First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference,
expressiveness

e Supports determination of propositional truth
e Supports compositionality of meaning®

e Supports inference
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First-Order Logic

e Meaning representation:

e Provides sound computational basis for verifiability, inference,
expressiveness

e Supports determination of propositional truth
e Supports compositionality of meaning®
e Supports inference

e Supports generalization through variables

WA UNIVERSITY of WASHINGTON 28



First-Order Logic Terms

e Constants: specific objects in world;

e A B, John
e Refer to exactly one object

e Each object can have multiple constants refer to it
e WAStateGovernor and Jaylnslee
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First-Order Logic Terms

e Constants: specific objects in world;

e A B, John
e Refer to exactly one object

e Each object can have multiple constants refer to it
e WAStateGovernor and Jaylnslee

e Functions: concepts relating objects — objects

e GovernerOf(WA)
e Refer to objects, avoid using constants
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First-Order Logic Terms

e Constants: specific objects in world;

e A B, John
e Refer to exactly one object

e Each object can have multiple constants refer to it
e WAStateGovernor and Jaylnslee

e Functions: concepts relating objects — objects

e GovernerOf(WA)
e Refer to objects, avoid using constants

e Variables:

® X, €

® Refer to any potential object in the world

WA UNIVERSITY of WASHINGTON 29



First-Order Logic Language

e Predicates
e Relate objects to other objects

e ‘United serves Chicago’
e Serves(United, Chicago)
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First-Order Logic Language

e Predicates
e Relate objects to other objects

e ‘United serves Chicago’
e Serves(United, Chicago)

e Logical Connectives
e {A v,=}={and, or, implies}
e Allow for compositionality of meaning* [* many subtleties]

® ‘Frontier serves Seattle and is cheap.’
e Serves(Frontier, Seattle) A Cheap(Frontier)

WA UNIVERSITY of WASHINGTON 30



Quantifiers

e d: existential quantifier: “there exists”
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Quantifiers

e d: existential quantifier: “there exists”

e Indefinite NP

e >one such object required for truth
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Quantifiers

e d: existential quantifier: “there exists”

e Indefinite NP

e >one such object required for truth

e A non-stop flight that serves Pittsburgh:
ax Flight(x) A Serves(x, Pittsburgh) n Non-stop(x)

WA UNIVERSITY of WASHINGTON 31



Quantifiers

e V: universal quantifier: “for all”

® All flights include beverages.
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Quantifiers

e V: universal quantifier: “for all”

® All flights include beverages.
vXx Flight(x) = Includes(x, beverages)
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FOL Syntax Summary

Formula — AtomicFormula Connective - Alvi=
|  Formula Connective Formula Quantifier - vI|3
| Quantifier Variable, ... Formula Constant — \VegetarianFood| Maharanil ...
I - Formula Variable — xlyl...
I (Formula) Predicate - Serves | Nearl ...
AtomicFormula - Predicate(Term,...) Function - LocationOf | CuisineOf | ...
Term - Function(Term,...)
I Constant
I Variable

J&M p. 556 (3rd ed. F.3)
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https://web.stanford.edu/~jurafsky/slp3/F.pdf

Compositionality

e The meaning of a complex expression is a function of the meaning of
its parts, and the rules for their combination.
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Compositionality

e The meaning of a complex expression is a function of the meaning of
its parts, and the rules for their combination.

e Formal languages are compositional.
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Compositionality

e The meaning of a complex expression is a function of the meaning of
its parts, and the rules for their combination.

e Formal languages are compositional.

e Natural language meaning is largely compositional, though arguably not
fully.*
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Compositionality

® ...now can we derive:
e /oves(John, Mary)



Compositionality

e ..nhow can we derive:
e /oves(John, Mary)

e from:
e John
e /oves(x, y)

e Mary
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Compositionality
e ..how can we derive:

e /oves(John, Mary)

e from:
e John
e /oves(x, y)

e Mary

e Lambda expressions!
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| ambda Expressions

e Lambda (A) notation (Church, 1940)

e Just like lambda in Python, Scheme, etc

e Allows abstraction over FOL formulae

e Supports compositionality

e Form: (A) + variable + FOL expression

e Ax.P(x) “Function taking xto P(x)"
o AX.P(x)(A) = P(A) [called beta-reduction]


http://www.jstor.org/stable/2266170

A-Reduction

e A-reduction: Apply A-expression to logical term

e Binds formal parameter to term

AX.P(X)
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e A-reduction: Apply A-expression to logical term

e Binds formal parameter to term
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A-Reduction

e A-reduction: Apply A-expression to logical term

e Binds formal parameter to term
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PA)



A-Reduction

e A-reduction: Apply A-expression to logical term

e Binds formal parameter to term

AX.P(X)
AXx.P(x)(A)
PA)

e Equivalent to function application



Nested A-Reduction

e Lambda expression as body of another

AxX.Ay.Near(x, y)
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e Lambda expression as body of another
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e Lambda expression as body of another

Ax.Ay.Near(x, y)
Ax.Ay.Near(x, y)(Midway)
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Nested A-Reduction

e Lambda expression as body of another

Ax.Ay.Near(x, y)
Ax.Ay.Near(x, y)(Midway)
Ay.Near(Midway, y)
Ay.Near(Midway, y)(Chicago)
Near(Midway, Chicago)



Nested A-Reduction

e If it helps, think of As as binding sites:

Cx.
7/,
Qe
e
WO
Ax.Ay.Near(z, y)



Nested A-Reduction

e If it helps, think of As as binding sites:

CicagP /\

\
ky.Near(:;:, Y)

Midy, "



Nested A-Reduction

e If it helps, think of As as binding sites:



| ambda Expressions

e Currying
e Converting multi-argument predicates to sequence of single argument predicates
e Why?

e Incrementally accumulates multiple arguments spread over different parts of
parse tree

WA UNIVERSITY of WASHINGTON 42
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| ambda Expressions

e Currying
e Converting multi-argument predicates to sequence of single argument predicates
e Why?

e Incrementally accumulates multiple arguments spread over different parts of
parse tree

® ...or Schénkfinkelization
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Logical Formulae

e FOL terms (objects): denote elements in a domain
e Properties: sets of domain elements

e Relations: sets of tuples of domain elements
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Logical Formulae

e FOL terms (objects): denote elements in a domain
e Properties: sets of domain elements

e Relations: sets of tuples of domain elements

e Complex formulae denote truth-values (more next time)
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Logical Formulae

e FOL terms (objects): denote elements in a domain
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e Atomic formulae: P(x), R(x,y), etc
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Logical Formulae

e FOL terms (objects): denote elements in a domain
e Properties: sets of domain elements

e Relations: sets of tuples of domain elements
e Complex formulae denote truth-values (more next time)

e Atomic formulae: P(x), R(x,y), etc

e Formulae based on logical operators:

P Q -P PArQ PvQ P=Q

— = T
- -
mm - -
= T T M
— = - ™
- M - =
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Logical Formulae: Finer Points

e Vv is not exclusive:
® Your choice is pepperoni or squsage

@ ..usevoroe



Logical Formulae: Finer Points

e Vv is not exclusive:
® Your choice is pepperoni or squsage

® ..usevor&oe

e = isthelogical form

e Does not mean the same as natural language “it",
just that if LHS=T, then RHS=T
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Logical Formulae: Finer Points

e Vv is not exclusive:
® Your choice is pepperoni or squsage

® ..usevor&oe

e = isthelogical form

e Does not mean the same as natural language “it",
just that if LHS=T, then RHS=T
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Inference

1. vx a(x)
2. . a(t)
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Inference

1. VegetarianRestaurant(Leaf)

2. vx VegetarianRestaurant(x)=Serves(x,VegetarianFood)
3. VegetarianRestaurant(Leaf)=Serves(Leaf,VegFood)

4. .. Serves(Leaf, VegetarianFood)



Inference

e Standard Al-type logical inference procedures
e Modus Ponens
e Forward-chaining, Backward Chaining
e Abduction
e Resolution
e [Etc...
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Inference

e Standard Al-type logical inference procedures
e Modus Ponens
e Forward-chaining, Backward Chaining
e Abduction
e Resolution
e [Etc...

e We'll assume we have a theorem prover.
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Inference

e Standard Al-type logical inference procedures

e Modus Ponens

e Forward-chaining, Backward Chaining
e Abduction

e Resolution

o FEtc...

e We'll assume we have a theorem prov
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Abstract

Logical reasoning, i.e., deductively inferring
the truth value of a conclusion from a set of
premises, is an important task for artificial in-
telligence with wide potential impacts on sci-
ence, mathematics, and society. While many
prompting-based strategies have been proposed
to enable Large Language Models (LLMs) to
do such reasoning more effectively, they still
appear unsatisfactory, often failing in subtle
and unpredictable ways. In this work, we
investigate the validity of instead reformulat-
ing such tasks as modular neurosymbolic pro-
gramming, which we call LINC: Logical In-
ference via Neurosymbolic Computation. In

I TN 4lhA T T NM antn an A AnAanrnsanntin sanvnan funsan

1 Introduction

Widespread adoption of large language models
(LLMs) such as GPT-3 (Brown et al., 2020), GPT-
4 (OpenAl, 2023), and PaLM (Chowdhery et al.,
2022) have led to a series of remarkable successes
in tasks ranging from text summarization to pro-
gram synthesis. Some of these successes have en-
couraged the hypothesis that such models are able
to flexibly and systematically reason (Huang and
Chang, 2022), especially when using prompting
strategies that explicitly encourage verbalizing in-
termediate reasoning steps before generating the
final answer (Nye et al., 2021; Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2023b). However,

https://arxiv.org/abs/2310.15164
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Roadmap

e Computational Semantics
e |ntroduction
e Semantics

e Representing Meaning
e First-Order Logic
e Events
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Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame
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Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

e Example:
e The flight arrived
"he flight arrived in Seattle
e The flight arrived in Seattle on Saturday.

]

S—_

The flight arrived on Saturday.
e The flight arrived in Seattle from SFO.
The flight arrived in Seattle from SFO on Saturday.

S—_
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Representing Events

e Initially, single predicate with some arguments

e Serves(United, Houston)
e Assume # of args = # of elements in subcategorization frame

e Example:
e The flight arrived
"he flight arrived in Seattle
e The flight arrived in Seattle on Saturday.

]

]

e The flight arrived on Saturday.

e The flight arrived in Seattle from SFO.

]

'he flight arrived in Seattle from SFO on Saturday.

e Variable number of arguments; many entailment relations here.
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Representing Events

o Arity:

e How do we deal with different numbers of arguments?
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e The flight arrived in Seattle from SFO on Saturday.
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Representing Events

o Arity.

e How do we deal with different numbers of arguments?

e The flight arrived in Seattle from SFO on Saturday.

e Davidsonian (Davidson 1967):
e de Arrival(e, Flight, Seattle, SFO) A Time(e, Saturday)
e Neo-Davidsonian (Parsons 1990):

e JeArrival(e) A Arrived(e, Flight) A Destination(e, Seattle) A Origin(e, SFO)
A Time(e, Saturday)



Neo-Davidsonian Events

e Neo-Davidsonian representation:
e Distill event to single argument for main predicate

e Everything else is additional predication
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Neo-Davidsonian Events

e Neo-Davidsonian representation:
e Distill event to single argument for main predicate

e Everything else is additional predication

e Pros
e No fixed argument structure
e Dynamically add predicates as necessary
e No unused roles

e Logical connections can be derived
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Why events?

e “Adverbial modification is thus seen to be logically on a par with
adjectival modification: what adverbial clauses modity is not verbs but
the events that certain verbs introduce.” —Davidson
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Meaning Representation for
Computational Semantics

e Requirements
e Verifiability
e Unambiguous representation
e Canonical Form
e Inference
e Variables

e Expressiveness

e Solution:

e First-Order Logic
e Structure
e Semantics
e Event Representation
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Summary

e FOL can be used as a meaning representation language for natural
language

e Principle of compositionality:

e The meaning of a complex expression is a function of the meaning of its
parts

® A\-expressions can be used to compute meaning representations from
syntactic trees based on the principle of compositionality

e In next classes, we will look at syntax-driven approach to semantic
analysis in more detail
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