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Why another learning method?

e Based on some “beautifully simple” ideas (Scholkopf, 1998)
e Maximum margin decision hyperplane

e Member of class of kernel models (vs. attribute models)

e Empirically successful:
e Performs well on many practical applications
e Robust to noisy data, complex distributions
e Natural extensions to semi-supervised learning
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Kernel methods

e Family of “pattern analysis” algorithms

e Best known member is the Support Vector Machine (SVM)
e Maps instances into higher dimensional feature space efficiently

e Applicable to:
e (lassification
e Regression
e (lustering
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History of SVM

e Linear classifier: 1962
e Use a hyperplane to separate examples
e Choose the hyperplane that maximizes the minimal margin

e Non-linear SVMs:
e Kernel trick: 1992
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History of SVM (cont’d)

e Soft margin: 1995
e o deal with non-separable data or noise

e Semi-supervised variants:
e Transductive SVM: 1998
e |Laplacian SVMs: 2006



Main ideas

e Use a hyperplane to separate the examples.

e Among all the hyperplanes wx+b=0, choose the one with the maximum
margin.

e Maximizing the margin is the same as minimizing llwll subject to some
constraints.



Malin ideas (cont’d)

e For data sets that are not linearly separable, map the data to a higher
dimensional space and separate them there by a hyperplane.

e The Kernel trick allows the mapping to be “done” efficiently.

e Soft margin deals with noise and/or inseparable data sets.



Papers

e (Manning et al., 2008)
e Chapter 15

e (Collins and Duffy, 2001): tree kernel



Outline

e Linear SVM
e Maximizing the margin
e Soft margin

e Nonlinear SVM
e Kernel trick

e A case study

e Handling multi-class problems
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Inner product vs. dot product
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Dot product

The dot product of two vectors x=(x1, ..., z,) and z=(z1, ..., 2, )

is defined as ¢ -z = ) . ;2

x|l = V277 = Vo a



Inner product

e An inner product is a generalization of the dot product.

Tl =v< T, T >

e A function that satisfies the following properties:

<UTUV,WwW>=< U,W >
< cu,v >=c<uU,v >
< U,V >=<v,u >

<u,u>>0and <u,u>=0if u=20

< v,w >



Some examples

< T, 2 >=) . CiTi%

< (a,b),(c,d) >=

< f,g>=] f(z)

(a+b)(c+d)+ (a—Db)(c—

r)dx where f,g: |a,

b —

d)

— R
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Linear SVM
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The setting

e |nput:
® X IS a vector of real-valued feature values

e Qutput: yinY ,
e Training set: S = {(x4, V1), ..., (X, V;)}

e (Goal: Find a function y = f(x) that fits the data:
f: X=>R

— Warning: x; is used in two ways in this lecture.
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Notation

r; has two meanings
e 1;: It is a vector, representing the

1-th training instance.

e 1,;: It is the i-th element of a vector

r, w, and z are vectors.

b 1s a real number W o oo



LInear classifier

Consider the 2-D data
+: Class +1 - - -

-: Class -1 R

Can we draw a line that

separates the two classes?



LInear classifier

e Consider the 2-D data o

e +:(Class +1 - - -

e -: Class -1 -

e Can we draw a line that

separates the two classes?

e Yes!
e We have a linear classifier/separator; >2D-> hyperplane
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LInear classifier

e (Consider the 2-D data 4

e +:(Class +1 - - -

e -: Class -1 o

e (Can we draw a line that

separates the two classes?

e Yes!
e \We have a linear classifier/separator; >2D-> hyperplane

e |s this the only such separator?
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LInear classifier

e Consider the 2-D data below G

e +:(Class +1 - - - o
e -. Class -1

e (Can we draw a line that

separates the two classes?

o Yes!
e \We have a linear classifier/separator; >2D-> hyperplane

e |s this the only such separator?
e No
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LInear classifier

e (Consider the 2-D data I

e +:(Class +1 -+ A
e -: Class -1 1- 777

e (Can we draw a line that

separates the two classes?

o Yes!
e \We have a linear classifier/separator; >2D—> hyperplane

e |s this the only such separator?
e NO

e \Which is the best?
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Maximum Margin Classifier

e \What’s best classifier?
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Maximum Margin Classifier

e \What’s best classifier?
e Maximum margin

e Biggest distance between decision boundary
and closest examples

e Why is this better?

e |[ntuition:




Maximum Margin Classifier

e What’s best classifier?
e Maximum margin

e Biggest distance between decision boundary
and closest examples

e Why is this better?

e [ntuition:

e \Which instances are we most sure of?

e Furthest from boundary

e |east sure of?
e (Closest

e Create boundary with most ‘room’ for error in attributes
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Maximum Margin Classifier

e \What’s best classifier?
e Maximum margin

e Biggest distance between decision boundary
and closest examples

e Why is this better?

e |[ntuition:

e \Which instances are we most sure of?
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Maximum Margin Classifier

e \What’s best classifier?
e Maximum margin

e Biggest distance between decision boundary
and closest examples

e Why is this better?

e |[ntuition:

e \Which instances are we most sure of?

e Furthest from boundary

e |east sure of?
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Maximum Margin Classifier

e What’s best classifier?
e Maximum margin

e Biggest distance between decision boundary
and closest examples

e Why is this better?

e [ntuition:

e \Which instances are we most sure of?

e Furthest from boundary

e |east sure of?
e (Closest

e Create boundary with most ‘room’ for error in attributes
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Complicating Classification

e Consider the new 2-D data:

e +:Class +1; -: Class -1
e Can we draw a line that separates | 4y
the two classes? . oo 4t
o -




Complicating Classification

e Consider the new 2-D data

o +:(Class +1; -: Class -1
e Can we draw a line that separates | 4y
the two classes? . oo 4t
e No. 4 o

e \What do we do? T

e Give up and try another classifier? No.




Noisy/Nonlinear Classification

e Consider the new 2-D data

o +:Class +1; -: Class -1

e [wo basic approaches: o4

e Use a linear classifier, but allow some o
(penalized) errors - - -

e soft margin, slack variables - -

e Project data into higher dimensional space
e Do linear classification there
e Kernel functions

YA UNIVERSITY of WASHINGTON 30



Multiclass Classification

e SVMs create linear decision boundaries
e At basis binary classifiers

e How can we do multiclass classification?

One-vs-all
All-pairs
ECOC



SVM Implementations

e Many implementations of SVMs:

e SVMe-Light: Thorsten Joachims
e http://svmlight.joachims.org

e LibSVM: C-C. Chang and C-J. Lin

e http://www.csie.ntu.edu.tw/~cjlin/libsvm/

e Scikit-learn wrapper: https://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html#sklearn.svm.SVC

e \Weka’s SMO
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SVMs: More Formally

e Ahyperplane: {w,x) + b =0
e w:. normal vector (aka weight vector), which is perpendicular to the hyperplane

® D: Intercept term

o |lW]:

e FEuclidean norm of w <W, X> + b>0

b

°* liwll

= offset from origin



Inner product example

e Inner product between two vectors
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—

<T,Z>=) . Ti%

e[z Where |[z|[=

<Tr,z>
x| |*|]z|]

cosine similarity = scaled inner product
Inner product is a similarity function.

Inner product (cont’d)



Hyperplane Example

X2

o <w,x>+b=0
e How many (w,b)s?

e Infinitely many!
e Just scaling

X +2x,-2 = 0 w=(1,2) b=-2

10x,+20%,-20 =0  w=(10,20) b=-20

x1



Finding a hyperplane

e Given the training instances, we want to find a hyperplane that separates
them.

e If there is more than one hyperplane, SVM chooses the one with the
maximum margin.

mazg, mingcs |{||Z — T




Maximizing the margin

Training: to find w and b. <w,x>+b=0
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Support vectors




Margins & Support Vectors

e (losest instances to hyperplane:
e “Support Vectors”
e Both pos/neg examples

e Add Hyperplanes through
® Support vectors

o d=1/lIwll

e How do we pick support vectors? Training

e How many are there? Depends on data set
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SVM Training

e (oal: Maximum margin, consistent w/training data
e Margin=1/lwill

e How can we maximize?
e Maxd= Min lIwll

e SO Wwe are:
e Minimizing llwll2

subject to
Vi(<w,X>+b) >= 1

e Quadratic Programming (QP) problem
e (Can use standard QP solvers
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yi(< W, T; > —I—b) > ]

Let w=(wl, w2, w3, w4, wb)

12wl + 3.5w3 - w4) >= |

X1 1 fl:2 f3:3.5 f4:-1 (-1)*(-w2 + 2w3) >= |
X2 - f2:-1 £3:2 |1 *(Swl + 2w4 + 3.1w5) >= |
X3 | fl:5 f4:2 £5:3.1
—>
We are trying to choose w 2wl + 3.5w3 —w4 >= |
and b for the hyperplane wx -w2 +2w3 <= |
+b=0 Swl +2w4 + 3.1w5 >= |

With those constraints, we want to minimize
W | 2+W22+W32+W42+W52



Training (cont’d)

2

Minimize ||w

subject to the constraint
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Lagrangian™

For each training instance (27, v;), introduce «a; > 0.

Let a = (a1, ag, ...., an)

L, b, ) = gl[d|[* — 32, ci(yi(< &, 5 > +b) — 1)

l minimize L w.r.t. w and b

- N — N
w=) ,_;0;y;x; and ) . a;y; =0



The dual problem **

e Find al, ..., aN such that the following is maximized

L(CY) — Zz ; % Zi,j QX 5Y3Y < .CL‘_;;, f; >

e Subject to

a; > 0and ) . o;y; =0



e [he solution has the form

b = Y, —< w,x, >  for any x, whose weight is non-zero
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An example
W= ) . YT
X|=(|,O,3), Y= I,O(|=2
%,=(-1,2,0), y,=-1, 0,=3

X3=(O,-4, | ), Y3— | , 0(3=O



An example
W= ) . 0Y;T;
X|=(|,O,3), Y= |,0(|=2
%3=(-1,2,0), yo=-1, 0,=3
X3=(O,-4,|),)/3=| ,0(3=O
W= (11924 (- 1)¥(= 1 )¥3+0% %0,
0 + 2%(-1)¥3+0,

3% | #2+0+0)
= (5,-6,6)



For support vectors, a; > 0

For other training examples, a; = 0

Removing them will not change the model.

Finding w is equivalent to finding
support vectors and their weights.



Finding the solution

e This is a Quadratic Programming (QP) problem.
e [he function is convex and there are no local minima.

e Solvable in polynomial time.



(0,1)

Decoding with w and b

f(0)=(w.x)+b
h(x)=sign( f(x))

(2,0)
Hyperplane: w=(1,2), b=-2
f(x)=x; +2 x,— 2
x=(3,1) f(x)=3+2-2=3>0
x=(0,0) f(x) =0+0-2=-2<0
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Decoding with q,
W = Zz azyzx—;
Decoding: f(r) =< w,x > +b
f(f) —<< Zz Oéiyi.ib_;;,.f > +b
=2;<0y;x;, x> *b

= > oy < T, & > +b

<U+v,w>S=<u,w >+ < v,w >
< cu,v >=c<u,v >



KNN vs. SVM

e Majority voting:
c* = arg max. g(c)
e Weighted voting: weighting is on each neighbor
c* = arg max. >, W; 8(c, fi(x))
e \Weighted voting allows us to use more training examples:

e.g., w; = 1/dist(x, x)) f(f) — Zzyz (weighted kNN, 2-class)

- We can use all the training examples.
f(@) =) oy < 213‘_275> +b

=D i <Ti T >y +b (svM)



Summary of linear SVM

e Main ideas:
e Choose a hyperplane to separate instances:
<wx>+b=0
e Among all the allowed hyperplanes, choose the one with the max margin
e Maximizing margin is the same as minimizing liwill
e Choosing w is the same as choosing g
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The problem

Training: Choose w and b

Mimimizes ||w||* subject to the constraints
v (< W, x; > +b) > 1 for every (a3, y;)

Decoding: Calculate f(x) =< w,x > +b



The dual problem **

Training: Calculate «; for each (77, y;)

Maximize L(a) = ) . o % Z” QoYY < Ty T >

subject to a; > 0 and > . ay; =0

Decoding: f(Z) =), a;y; < o5, > +b



Remaining issues

e Linear classifier: what if the data is not separable?
e The data would be linearly separable without noise
- soft margin

e The data is not linearly separable
- map the data to a higher-dimension space
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Soft margin
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Highlights

e Problem: Some data set is not separable or there are mislabeled
examples.

e |dea: split the data as cleanly as possible, while maximizing the distance to
the nearest cleanly split examples.

e Mathematically, introduce “slack variables”
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Objective Function

For each training instance x;, introduce a slack variable &,

s llwl® +o(2; &)
yi(< W, x; > +b) > 1—=§;
where gz > 0

C is aregularization term (for controlling overfitting),

K=1o0r2



Objective Function

For each training instance x;, introduce a slack variable &,

Minimizing 5 | |w| |
such that — =

C is aregularization term (for controlling overfitting),

K=1o0r2



The dual problem™*

e Maximize

Lia) =) _; o

e Subject to

1 . >
> Zi,j Q0 Y Y5 < Ty Tj >

Z- >0and )  a;y; =0



e [he solution has the form

W = Z@ Y T

b=y (1-§,)—-(w,x )for Kk=argmax, o,

X; with non-zero «; is called a support vector

Every data point which is misclassified or within the margin
will have a non-zero «;

Decoding: Calculate f(x) =< w,x > +b



