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Why another learning method?
● Based on some “beautifully simple” ideas (Schölkopf, 1998)
● Maximum margin decision hyperplane

● Member of class of kernel models (vs. attribute models)

● Empirically successful:
● Performs well on many practical applications
● Robust to noisy data, complex distributions
● Natural extensions to semi-supervised learning
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Kernel methods
● Family of “pattern analysis” algorithms

● Best known member is the Support Vector Machine (SVM)

● Maps instances into higher dimensional feature space efficiently

● Applicable to:
● Classification
● Regression
● Clustering
●  ….
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History of SVM 
● Linear classifier: 1962
● Use a hyperplane to separate examples
● Choose the hyperplane that maximizes the minimal margin

● Non-linear SVMs:
● Kernel trick: 1992
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History of SVM (cont’d)
● Soft margin: 1995
● To deal with non-separable data or  noise

● Semi-supervised variants:
● Transductive SVM:  1998
● Laplacian SVMs: 2006
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Main ideas
● Use a hyperplane to separate the examples.

● Among all the hyperplanes wx+b=0, choose the one with the maximum 
margin.

●  Maximizing the margin is the same as minimizing ||w|| subject to some 
constraints.
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Main ideas (cont’d)
● For data sets that are not linearly separable, map the data to a higher 

dimensional space and separate them there by a hyperplane. 

● The Kernel trick allows the mapping to be “done” efficiently. 

● Soft margin deals with noise and/or inseparable data sets.
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Papers
● (Manning et al., 2008) 
● Chapter 15

● (Collins and Duffy, 2001): tree kernel
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Outline
● Linear SVM
● Maximizing the margin
● Soft margin

● Nonlinear SVM
● Kernel trick

● A case study

● Handling multi-class problems 
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Inner product vs. dot product
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Dot product
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Inner product
● An inner product is a generalization of the dot product.

● A function that satisfies the following properties:
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Some examples
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Linear SVM
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The setting
● Input:       
● x is a vector of real-valued feature values

● Output:  y in Y  ,  Y = {-1, +1}

● Training set: S = {(x1, y1), …, (xi, yi)} 

● Goal: Find a function y = f(x) that fits the data: 

     f: X ➔ R
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Notation
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Linear classifier
● Consider the 2-D data 

● +: Class +1

● -:  Class -1

● Can we draw a line that

    separates the two classes?
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Linear classifier
● Consider the 2-D data

● +: Class +1

● -:  Class -1

● Can we draw a line that

    separates the two classes?

● Yes!
● We have a linear classifier/separator; >2D! hyperplane

18

++ 
 + + ++  
     +  +

- - - 
  - - - - -  
     - - -



Linear classifier
● Consider the 2-D data 

● +: Class +1

● -:  Class -1

● Can we draw a line that

    separates the two classes?

● Yes!
● We have a linear classifier/separator; >2D! hyperplane

● Is this the only such separator?

19

++ 
 + + ++  
     +  +

- - - 
  - - - - -  
     - - -



Linear classifier
● Consider the 2-D data below

● +: Class +1

● -:  Class -1

● Can we draw a line that

    separates the two classes?

● Yes!
● We have a linear classifier/separator; >2D! hyperplane

● Is this the only such separator?
● No
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Linear classifier
● Consider the 2-D data 

● +: Class +1

● -:  Class -1

● Can we draw a line that

    separates the two classes?

● Yes!
● We have a linear classifier/separator; >2D! hyperplane

● Is this the only such separator?
● No

● Which is the best?
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Maximum Margin Classifier
● What’s best classifier?
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Maximum Margin Classifier
● What’s best classifier?
● Maximum margin
● Biggest distance between decision boundary  

and closest examples

● Why is this better?
● Intuition: 

23

++ 
 + + ++  
     +  +

- - - 
  - - - - -  
     - - -



Maximum Margin Classifier
● What’s best classifier?
● Maximum margin

● Biggest distance between decision boundary  
and closest examples

● Why is this better?
● Intuition: 

● Which instances are we most sure of?
● Furthest from boundary
● Least sure of?
● Closest
● Create boundary with most ‘room’ for error in attributes
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Maximum Margin Classifier
● What’s best classifier?
● Maximum margin
● Biggest distance between decision boundary  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● Why is this better?
● Intuition: 
● Which instances are we most sure of?
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Maximum Margin Classifier
● What’s best classifier?
● Maximum margin
● Biggest distance between decision boundary  

and closest examples

● Why is this better?
● Intuition: 
● Which instances are we most sure of?
● Furthest from boundary
● Least sure of?
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Maximum Margin Classifier
● What’s best classifier?
● Maximum margin

● Biggest distance between decision boundary  
and closest examples

● Why is this better?
● Intuition: 

● Which instances are we most sure of?
● Furthest from boundary
● Least sure of?
● Closest
● Create boundary with most ‘room’ for error in attributes
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Complicating Classification
● Consider the new 2-D data: 

● +: Class +1;    -:  Class -1

● Can we draw a line that separates  
the two classes?
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Complicating Classification
● Consider the new 2-D data 

● +: Class +1;   -:  Class -1

● Can we draw a line that separates  
the two classes?
● No.

● What do we do?
● Give up and try another classifier? No.
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Noisy/Nonlinear Classification
● Consider the new 2-D data 

● +: Class +1;  -:  Class -1

● Two basic approaches:
● Use a linear classifier, but allow some  

(penalized) errors
● soft margin, slack variables

● Project data into higher dimensional space
● Do linear classification there
● Kernel functions
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Multiclass Classification
● SVMs create linear decision boundaries
● At basis binary classifiers

● How can we do multiclass classification?
● One-vs-all
● All-pairs
● ECOC
● ...
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SVM Implementations
● Many implementations of SVMs:

● SVM-Light: Thorsten Joachims
● http://svmlight.joachims.org

● LibSVM: C-C. Chang and C-J. Lin
● http://www.csie.ntu.edu.tw/~cjlin/libsvm/
● Scikit-learn wrapper: https://scikit-learn.org/stable/modules/generated/

sklearn.svm.SVC.html#sklearn.svm.SVC 

● Weka’s SMO

● …
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SVMs: More Formally
● A hyperplane: 

● w: normal vector (aka weight vector), which is perpendicular to the hyperplane

● b: intercept term        

● :
● Euclidean norm of w

● = offset from origin 

⟨w, x⟩ + b = 0

∥w∥

|b |
∥w∥
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Inner product example
● Inner product between two vectors
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Inner product (cont’d)
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cosine similarity = scaled inner product



Hyperplane Example
● <w,x>+b=0

● How many (w,b)s?

● Infinitely many!
● Just scaling
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x1+2x2-2 = 0                 w=(1,2)    b=-2

10x1+20x2-20 = 0         w=(10,20)   b=-20      



Finding a hyperplane 
● Given the training instances, we want to find a hyperplane that separates 

them.

● If there is more than one hyperplane, SVM chooses the one with the 
maximum margin.
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Maximizing the margin
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+

<w,x>+b=0Training: to find w and b.



Support vectors
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<w,x>+b=0<w,x>+b=-1

<w,x>+b=1



Margins & Support Vectors
● Closest instances to hyperplane:
● “Support Vectors”
● Both pos/neg examples

● Add Hyperplanes through
● Support vectors

● d= 1/||w||

● How do we pick support vectors?   Training

● How many are there? Depends on data set
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SVM Training
● Goal: Maximum margin, consistent w/training data
● Margin = 1 /||w||

● How can we maximize?
● Max d ➔ Min ||w||

● So we are:
● Minimizing  ||w||2 

     subject to
     yi(<w,xi>+b) >= 1

● Quadratic Programming (QP) problem
● Can use standard QP solvers
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Let w=(w1, w2, w3, w4, w5)

X1   1   f1:2  f3:3.5  f4:-1 
X2   -1  f2:-1  f3:2  
X3   1   f1:5  f4:2  f5:3.1  

We are trying to choose w 
and b for  the hyperplane  wx 
+ b = 0

1*(2w1 + 3.5w3 - w4) >= 1
(-1)*(-w2 + 2w3) >= 1
1*(5w1 + 2w4 + 3.1w5) >= 1

➔ 
2w1 + 3.5w3 – w4 >= 1
-w2 +2w3 <= 1
5w1 + 2w4 + 3.1w5 >= 1

With those constraints, we want to minimize 
    w1

2+w2
2+w3

2+w4
2+w5
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Training (cont’d)

43

subject to  the constraint ++

+
++

+



Lagrangian**
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The dual problem **
● Find , such that the following is maximized

● Subject to  

𝛼1 …,  𝛼𝑁 
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●  The solution has the form
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for any xk whose weight is non-zero



An example
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x1=(1,0,3),  y1= 1, α1=2

x2=(-1,2,0), y2=-1, α2=3

x3=(0,-4,1), y3=1 , α3=0



An example
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x1=(1,0,3),  y1= 1, α1=2

x2=(-1,2,0), y2=-1, α2=3

x3=(0,-4,1), y3=1 , α3=0

w= (1*1*2+ (-1)*(-1)*3+0*1*0,
      0 + 2*(-1)*3+0,

      3*1*2+0+0)
  = (5,-6,6)
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Finding the solution
● This is a Quadratic Programming (QP) problem.

● The function is convex and there are no local minima.

● Solvable in polynomial time.
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Decoding with w and b
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Hyperplane: w=(1,2), b=-2 
                       f(x) = x1 + 2 x2 – 2 

x=(3,1)

x=(0,0)

f(x) = 3+2-2 = 3 > 0

f(x) = 0+0-2 = -2 < 0

(2,0)

(0,1)



Decoding: 

=Σi<αiyixi,x> +b

Decoding with αi
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kNN  vs.  SVM
● Majority voting:
      c* = arg maxc g(c)

● Weighted voting:  weighting is on each neighbor

      c* = arg maxc ∑i wi δ(c, fi(x))

● Weighted voting allows us to use more training examples:
      e.g., wi = 1/dist(x, xi)

     ➔ We can use all the training examples.
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(weighted kNN,  2-class)

(SVM)



Summary of linear SVM 
● Main ideas:
● Choose a hyperplane to separate instances: 
             <w,x> + b = 0 
● Among all the allowed hyperplanes, choose the one with the max margin
● Maximizing margin is the same as minimizing ||w||
● Choosing w is the same as choosing αi
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The  problem     
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The dual problem **
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Remaining issues 
● Linear classifier: what if the data is not separable?
● The data would be linearly separable without noise
    ➔ soft margin

● The data is not linearly separable
    ➔ map the data to a higher-dimension space
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Soft margin
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Highlights
● Problem: Some data set is not separable or there are mislabeled 

examples.

● Idea: split the data as cleanly as possible, while maximizing the distance to 
the nearest cleanly split examples.

● Mathematically, introduce “slack variables”
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Objective Function
● For each training instance xi, introduce a slack variable ξi

● Minimizing 

● such that

● C  is a regularization term (for controlling overfitting), 

● k = 1 or 2 
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Objective Function
● For each training instance xi, introduce a slack variable ξi

● Minimizing 

● such that

● C  is a regularization term (for controlling overfitting), 

● k = 1 or 2 
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The dual problem**
● Maximize

● Subject to  
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●  The solution has the form
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Xi with non-zero αi is called a support vector
Every data point which is misclassified or within the margin

will have a non-zero αi

b= yk (1−ξk )− w,xk k = argmaxkαk
for 


