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Outline

e Linear SVM
e Maximizing the margin
e Soft margin

e Nonlinear SVM
e Kernel trick

e A case study

e Handling multi-class problems
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Non-linear SVM



Highlights

e Problem: Some data are not linearly separable.

e Intuition: Transform the data to a high dimensional space

— e

Input space Feature space
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Example: Two spirals

Separated by a hyperplane
in feature space (Gaussian kernels)




Feature space

e | earning a non-linear classifier using SVM:
e Define ¢
e Calculate ¢(x) for each training example
e Find a linear SVM in the feature space.

e Problems:
e Feature space can be high dimensional or even have infinite dimensions.
e Calculating ¢(x) is very inefficient and even impossible.
e (Curse of dimensionality

YA/ UNIVERSITY of WASHINGTON é



Kernels

e Kernels are similarity functions that return inner products between the images of data
points.

K: X x X — R
K(Z,2) =< ¢(%), 9(2) >

e Kernels can often be computed efficiently even for very high dimensional spaces.

e Choosing K is equivalent to choosing .

- the feature space is implicitly defined by K
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An example
Let ¢(x) = (xl,xz, f$1332)

K(7,2) =< ¢(Z), p(2) >
=< (1,4,2v/2), (4,9, —6v2) >
— 1 x4 4+4%x9—-—2x0%x2 =10

<Tr,Zz>=-2+4+2x3=4



An example™
Let ¢(Z) = (22, 22, V2z122)
K(Z,7)
=< ¢(7), P(2) >

=< (22,22, V2x122), (22, 22,V 22122) >

2
— 3427 + T525 + 27121 T222

= (121 + 2222)7
=h
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Credit: Michael Jordan
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https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/lectures/lec3.pdf

Another example™
Let ¢(f) — (-/L'?, CC%, \/§$%$27 \@xlx%)

=< ¢(f)7¢(5) >
=< (23,23, V32220, V3x172), (23, 25, V32220, V/32123) >

2,2 2,2
= T3727 + X525 + 3T 2iwaze + 3T121T525

— (513121 -+ QZQZQ)S

—< T, 7 >3



The kernel trick

e No need to know what ¢ is and what the feature space is.
e No need to explicitly map the data to the feature space.

e Define a kernel function K, and replace the dot product <x,z> with a kernel
function K(x,z) in both training and testing.



Maximize

Subject to

Training (™)

Lo) =Y, 00— 1Y, cwajyiy,

a; > 0and ) . o;y; =0

l Non-linear SVM

L(a) = ) _; % Zi,j ;oY Y, K (T, T5)




Decoding

Linear SVM: (without mapping)

f(Z) =< w,x > +b

= )i QY ""b

Non-linear SYM: could be infinite dimensional

f(Z@) =32, cays | K (73, Z)[+ b



Kernel vs. features

Training: Maximize L(a) = >, a; — 5 D i aiajyiyJM
subject to o; > 0 and ) . o;y; =0

Decoding: f(Z) = ) . o,y | K(25,7) b

Need to calculate K(x, z).

For some kernels, no need to represent x as a feature vector.
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A tree kernel

a) S b) NP NP D N NP NP
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| |
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Common kernel functions

e Linear : K(z,?) =<,z >
e Polynomial: K(Z,7) = (y < &, Z> +c)?

e Radial basis function (RBF): K(Z,2) = e 1Z=21D"

—

K(x,Z) =tanh(y < &,z > +c)

tanh(x) = 22;2:;3

For the tanh function, see https://www.youtube.com/watch?v=er tQOBgo-I

e Sigmoid:
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Polynomial kernel

e Allows us to model feature conjunctions (up to the order of the polynomial).

o EX:
e Original feature: single words

e (Quadratic kernel: word pairs, e.g., “ethnic” and “cleansing”, “Jordan” and
“Chicago”
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RBF Kernel

y=0.01 y=1 y=100

Source: Chris Albon
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https://chrisalbon.com/machine_learning/support_vector_machines/svc_parameters_using_rbf_kernel/

Other kernels

e Kernels for

trees

sequences

sets

graphs

general structures

e Atree kernel example in reading #3



The choice of kernel function

e Given a function, we can test whether it is a kernel function by using
Mercer’s theorem (see “Additional slides”).

e Different kernel functions could lead to very different results.

e Need some prior knowledge in order to choose a good kernel.



Summary so far

Find the hyperplane that maximizes the margin.
Introduce soft margin to deal with noisy data
Implicitly map the data to a higher dimensional space to deal with non-linear problems.

The kernel trick allows infinite number of features and efficient computation of the dot product in
the feature space.

The choice of the kernel function is important.
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Modeling
Training

Decoding

Things to
decide

MaxEnt vs. SVM

MaxEnt
Maximize P(Y|X,A)

Learn A, for each feature
function

Calculate P(y|x)

Features
Regularization
Training algorithm

SVM

Maximize the margin

Learn &; for each
training instance and b

Calculate the sign of
f(x). It is not prob

Kernel
Regularization
Training algorithm
Binarization



More Info

e https://en.wikipedia.org/wiki/Kernel method

e Tutorials: http://www.svms.org/tutorials/

e https:/medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-

iImportant-98a98db0961d



https://en.wikipedia.org/wiki/Kernel_method
http://www.svms.org/tutorials/
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d

Additional slides
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Linear kKernel

e The map ¢ is linear.
o(x) = (a171, a22, ..., nTy)

K(:U,Z) =< ¢($)7¢(Z) >

2 2 2
= Q7T121 T A5T222 + ... + A, TpZn

e The kernel adjusts the weight of the features according to their importance.



The Kernel Matrix
(a.k.a. the Gram matrix)

K(LD)  K(1,2) K(I,3) K(I,m)
K(2,1) K(2,2) K(2,3) . K(2,m)
K(m,l) K(m,2) K(m,3) .. K(m,m)

K(i,j) means K(x;x;)
Where x; means the i-th training instance.
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Mercer’'s Theorem

e The kernel matrix is symmetric positive definite.

e Any symmetric, positive definite matrix can be regarded as a
Kernel matrix;
that is, there exists a ¢ such that K(x, z) = <p(x), ¢(z)>



Making kernels

e The set of kernels is closed under some operations. For instance, if K; and
K, are kernels, so are the following:

O K1 +K2
O CK1 and CK2 fOr CcC> O
e CKy +dK, forc>0andd>0

e One can make complicated kernels from simple ones
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