Neural Networks:
Computation + Gradient Descent

LING572 Advanced Statistical Methods in NLP
February 27 2020

Today’s Outline

e Computation: the forward pass
e Functional form / matrix notation

e Parameters and Hyperparameters

e (Gradient Descent
e |ntro

e Stochastic Gradient Descent + Mini-batches

YA/ UNIVERSITY of WASHINGTON 2

Notation

e | will generally use plain variables (e.g. x, y, W) for vectors and matrices as
well as scalars, relying on context

e y:a“guess” aty

® c.g.. a model’s output
e f(x), when x is a vector/matrix means that f is applied element-wise
e 0O:all parameters

o V= f(x;0) =f)(x):yis a (parameterized) function of x with parameters &

Feed-forward networks
aka Multi-layer perceptrons (MLP)

XOR Network

v and and and
9and = © (Wor “aor + W D4 dnand T 0)
— 5 and . and Yor n p,and
N AND Wor "nand| |apand
20 /

YA/ UNIVERSITY of WASHINGTON 5

XOR Network

O

g _ and and and
/ 9and = © (Wor “aor + W D4 dnand T 0)
— 5 lwand Wand] Yor n p,and
N AND or "nand] |apand
/ _ or or or
20 > aor—a(wp -a,+w; -a,+b)
a4 4=0 (W;and a,+ ngand a,+ bnand)

YA/ UNIVERSITY of WASHINGTON é

XOR Network

/O _ and n and n band
dand = % \Wor "Yor TW_.d %nand
_ and _ and] Yor _I_band
AND G(lwor "nand [“nand)

or or
=0
dhand Wnand Wnand a, bnand

P q

YA/ UNIVERSITY of WASHINGTON /

XOR Network

) _ and and and

_ and . and dor and
= O (lwor Wnand] [anand + b)

or or
w w a bOI”
_ and . and P 1 P and
“and = © [WO'" Wnand] ¢ wnand nand| |4, i phand b

P q

YA/ UNIVERSITY of WASHINGTON 8

Generalizing
wl?r wfl’r
Wnand Wnand

p q

y =1 (sz1 (Wix+b') + bz)

dand = O [[W%rlld W%Qﬂd] o

V= (ann—l (fz (W2f1 (Wix+b') + bz)---) + b”)

Some terminology

e Our XOR network is a feed-forward neural network with one hidden layer
e Aka a multi-layer perceptron (MLP)

e |nput nodes: 2; output nodes: 1

e Activation function: sigmoid

input layer ¢

General MLP

hidden layers

| .\\ R SOUrce
ONSY [
\}\S %Ak "(/ outp’)ili_l\aycr
AL XX
KRS K
(R TS
S Zame
“ . \ Wl Weight to neuron 1 in layer 1
l] from neuron j in layer O

http://neuralnetworksanddeeplearning.com/chap1.html

General MLP

vy=rf W_ (f2 (szl (Wix+b') + bz)---) + D"

1 1 1

Woo Wor = Wop,
1 1 1

Wl = Wio Wrii Win,
1 1 1

Wnl() Wnll o Wnlno

Shape: (1, 1)
1n,: number of neurons in layer O (input)
n,: number of neurons in layer 1

Shape: (71,1)

b,
Shape: (n;,1)

YA/ UNIVERSITY of WASHINGTON

12

Parameters of an MLP

e \Weights and biases
e Foreach layer [: nj(n;,_; + 1)
e 1n;_; weights; n; biases

e With n hidden layers (considering the output as a hidden layer):

n

2 nn,_,+1)

=1

Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Qutput: 1 for binary classification or simple regression, number of labels for classification, ...
e Number of hidden layers
e For each hidden layer:

® Size

e Activation function

e Others: initialization, regularization (and associated values), learning rate / training, ...

YA/ UNIVERSITY of WASHINGTON 14

The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

e Empirical drawbacks: Super-exponentially many neurons; hard to discover

e “Deep and narrow” >> “Shallow and wide”
e In principle allows hierarchical features to be learned

e More well-behaved w/r/t optimization

P

-
-

source

YA UNIVERSITY of WASHINGTON 15

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c)

https://distill.pub/2017/feature-visualization/

Activation Functions

® Note: non-linear activation functions are essential

e MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

e Without the non-linearity, would just have several linear transformations

e Composition of linear transformations is also linear!

vy=f| W, (f2 (sz1 (Wix+b') + bz)---) +b"

Activation Functions: Hidden Layer
sigmoid tanh

ReLU

B R(z) =max(0, z)l

1 X X _p—X
o(x) = — = tanh(x) = ——— =20(2x) — 1 e Use RelU by default
l+e™>* e*+1 er + e
e (Generalizations:
o | eaky
Problem: derivative “saturates™ (nearly 0) * ELU
everywhere except near origin * Softplus

Activation Functions: Output Layer

e Depends on the task!

e Regression (continuous output(s)): none!

e Just use final linear transformation

e Binary classification: sigmoid

e Also for multi-label classification

X
e l
e Multi-class classification: softmax softmax(x); = S o
€
e Terminology: the inputs to a softmax are called /logits J

e [there are sometimes other uses of the term, so beware]

YA/ UNIVERSITY of WASHINGTON 18

earning: (Stochastic) Gradient Descent

GGradient Descent: Basic ldea

e [reat NN training as an optimization problem

L” (V, y): loss function (“objective function”); £ (Y Y) = m Z C(y(x),y:)

e How “close” is the model’s output to the true output
e |ocal loss, averaged over training instances

e More later: depends on the particular task, among other things
e View the loss as a function of the model’s parameters

e The gradient of the loss w/r/t parameters tells which direction in parameter
space to “walk” to make the loss smaller (i.e. to improve model outputs)

e (Guaranteed to work in linear case; can get stuck in local minima for NNs

YA UNIVERSITY of WASHINGTON 20

source

Gradient Descent: Basic ldea

Error

NNNNNNNNNNNNNNNNNNNNNN

https://nikcheerla.github.io/deeplearningschool/

Derivatives

e [he derivative of a function of one real variable measures how much the
output changes with respect to a change in the input variable

fx) =x*>+35x+ 12

d

—f = 2x + 35
dx
f) = e

df .

— e

dx

Partial Derivatives

e A partial derivative of a function of several variables measures its
derivative with respect one of those variables, with the others held
constant.

f(x) = 10x°y? 4+ 5xy° + 4x + y

of
ox
of
oy

= 30x°y% + 5y° + 4

= 20x°y + 15xy% + 1

YA UNIVERSITY of WASHINGTON 23

Gradient

e The gradient of a function f(x;, x,, . . . Xx,)) is a vector function, returning all
of the partial derivatives

Vf=< o of af>

ox, 0x, Ox,

flx) = 4x* + y*
V= (8x,2y)
e The gradient is perpendicular to the level curve at a point

e The gradient points in the direction of greatest rate of increase of f

WA UNIVERSITY o f WASHINGTON

Gradient and Level Curves

0,

5

(1,1)

> -
(v 1.25,0)

flx) = 4x* + y°
Vf = (8x,2y)

Level curves: f(x) = ¢

Q: what are the actual gradients
at those points?

WA UNIVERSITY o f WASHINGTON

25

Gradient Descent and Level Curves

source

NNNNNNNNNNNNNNNNNNNNNNNN

https://en.wikipedia.org/wiki/Gradient_descent#/media/File:Gradient_descent.svg

Gradient Descent Algorithm

Initialize 6,

Repeat until convergence:

6., =0 —aVZLY@,),Y)
\Learning rate

High learning rate: big steps, may bounce and “overshoot” the target

Low learning rate: small steps, smoother minimization of loss, but can be slow

WA UNIVERSITY o f WASHINGTON

Gradient Descent: Minimal Example

e Task: predict a target/true value y = 2
o “Model” y(0) = 6
e A single parameter: the actual guess

e Loss: Euclidean distance

F3O),y) =@ -y =0-y)

Gradient Descent: Minimal Example

£(6,2)

0,
59 L0, y) =2(0 —y)

0,
Ory1 =0 — - %L(ea)’)

Stochastic Gradient Descent

e The above is called "batch” gradient descent
e Updates once per pass through the dataset

e EXxpensive, and slow; does not scale well

e Sfochastic gradient descent:

e Break the data into “mini-batches”. small chunks of the data
e Compute gradients and update parameters for each batch

e Mini-batch of size 1 = single example

e A noisy estimate of the true gradient, but works well in practice; more parameter updates

e Epoch: one pass through the whole training data

YA UNIVERSITY of WASHINGTON 30

Stochastic Gradient Descent

initialize parameters / build model

for each epoch:

data = shuffle(data)
batches = make batches(data)

for each batch i1n batches:

outputs = model (batch)

loss = loss fn(outputs, true outputs)
compute gradients // e.g. loss.backward()
update parameters

YA/ UNIVERSITY of WASHINGTON 31

Computing with Mini-batches

e Bad idea:

for each batch i1n batches:
for each datum 1n batch:
outputs = model (datum)
loss = loss fn(outputs, true outputs)
compute gradients // e.g. loss.backward()
update parameters

Computing with a Single Input

vy=rf W_ (f2 (szl (Wix+b') + bz)---) + D"

1 1 1

Woo Wor = Wop,
1 1 1

Wl = Wio Wrii Win,
1 1 |

Wnl() Wnll o Wnlno

Shape: (1, 1)
1n,: number of neurons in layer O (input)
n,: number of neurons in layer 1

Shape: (71,1)

Shape: (n;,1)

W UNIVERSITY o f WASHINGTON

33

Computing with a Batch of Inputs

V=t foo (fz((WD) WE 4 bz)---) W" + b"

I | I
Xg Xp e X, Woo Woir *t Won,
| | I L. I
xpox;o.. X | Wil = | V10 Wi Win, | b' = [b& bll b,}l
: : : Shape: (1,n,)
n n n | | 1 1
Xy X X, Wpo Wil °° Wpp | Added to each row of xW

Shape: (n, ng)

n: batch_size Shape: (ny, 1)

n,: number of neurons in layer O (input)

n,: number of neurons in layer 1 W ONIVERSITY of WhsHINGTON

|

Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

e In principle, can be higher than 2-dimensional
e |Images: (batch_size, width, height, 3)

e Sequences: (batch_size, seq_len, representation_size)

e [wo comments:
e |n your code, annotate every tensor with a comment saying intended shape

e \When debugging, look at shapes early on!!

YA/ UNIVERSITY of WASHINGTON 35

Regularization

e NNs are often overparameterized,

SO regularization helps

o L1/L2: Z(0,y) = Z(6,v) + 16|

e Dropout (2012):

e During training, randomly turn off X%

of neurons in each layer

e (Don’t do this during testing/predicting)

e Batch Normalization (2015)

Input: Values of x over a mini-batch: B = {z1._.,};
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

Un — % Zm: T; // mini-batch mean
1 ZT:nl

0g — 7Z_;(:z:z — uB)° // mini-batch variance

T; < \3;0;3 /—T—Be // normalize

y; < vZ; + f = BN, 5(x;) // scale and shift

YA/ UNIVERSITY of WASHINGTON

36

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1502.03167.pdf

Hyper-parameters

e |n addition to the model architecture ones mentioned earlier

e Optimizer: SGD, Adam, Adagrad, RMSProp,

e Optimizer-specific hyper-parameters: learning rate, alpha, beta, ...

e NB: backprop computes gradients; optimizer uses them to update parameters

e Regqularization: L1/L2, Dropout, BN, ...

e reqgularizer-specific ones: e.g. dropout rate

e Batch size

e Number of epochs to train for

e Early stopping criterion (e.g. number of epochs, “patience”)

YA/ UNIVERSITY of WASHINGTON 37

Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

Error
Tl

: Validation error

L |
I I
| |
: ! _
| y T'raining error source
k —p k Steps
return this model stop

YA UNIVERSITY of WASHINGTON 38

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

A note on hyper-parameter tuning

e Grid search: specify range of values for each hyper-parameter, try all
possible combinations thereof

e Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

Grid Layout Random Layout

4

Bergstra and Bengio 2012

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

YA UNIVERSITY of WASHINGTON 39

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Next time

e Today: how to train an NN by SGD
e Compute gradients of loss w/r/t parameters

e Update parameters (weights) in the opposite direction, to minimize loss

e Next time:
e How do we compute gradients???

e Backpropagation

YA/ UNIVERSITY of WASHINGTON 40

