
Backpropagation
LING 572 Advanced Statistical Methods in NLP

March 2 2020

1

Outline
● Computation graphs, chain rule

● Backpropagation

2

Computation graphs

3

Derivative chain rule

4

or

z = (x2+3)4
z = y4 y=x2+3

dz/dx = 4(x2+3)3 * 2x dz/dy = 4y3 dy/dx=2x

Simple chain rule

5

Multiple paths chain rule

6

Chain rule in computation graph

7

Computation graph
● Nodes: operations

● Edges: dependence
● From A to B: output of A is an input of B

8

source

(a + b)(b + 1)

https://colah.github.io/posts/2015-08-Backprop/

Computation Graph: Forward Pass

9

source

https://colah.github.io/posts/2015-08-Backprop/

Computation Graph: Derivatives

10

source

https://colah.github.io/posts/2015-08-Backprop/

Computation Graph: operation API

11

Computation Graph: feedforward layer

12

Outline
● Computation graphs, chain rule

● Backpropagation

13

Computing gradients in NNs:
Backpropagation

14

Forward

Gradient

15

Error Backpropagation
● Model parameters:

 for brevity:

16

Next 10 slides on back propagation are adapted from Andrew Rosenberg

Error Backpropagation
● Model parameters:

● Let a and z be the input and output of each node

17

Error Backpropagation

18

∑

∑

● Let a and z be the input and output of each node

19

20

● Let a and z be the input and output of each node

Training: minimize loss

21

Empirical Risk
Function

Training: minimize loss

22

Empirical Risk
Function

Error Backpropagation

23

Optimize last layer
weights wkl

Calculus chain
rule

24

Error Backpropagation
Optimize last layer

weights wkl

Calculus chain
rule

25

Error Backpropagation
Optimize last layer

weights wkl

Calculus chain
rule

26

Error Backpropagation
Optimize last layer

weights wkl Calculus chain
rule

27

Error Backpropagation
Optimize last layer

weights wkl
Calculus chain

rule

Error Backpropagation

28

Repeat for all previous
layers

∑

∑

∑

Backprop Recursion

29

Learning: Gradient Descent

30

Backpropagation
● Starts with a forward sweep to compute all the intermediate function values

● Through backprop, computes the partial derivatives recursively =

● A form of dynamic programming
● Instead of considering exponentially many paths between a weight w_ij and the final loss (risk), store and

reuse intermediate results.

● A type of automatic differentiation. (There are other variants e.g., recursive differentiation
only through forward propagation.)

31

Forward

Gradient

32

Backpropagation

Backpropagation: general graphs
● Construct graph (two approaches: static vs. dynamic)

● Forward:
● Loop over nodes in the graph’s topological order
● Computing value of nodes given inputs
● Store any values needed for gradient computation

● Backward:
● Loop over nodes in the graph’s reverse topological order
● Compute derivative of output w/r/t all inputs of a node

33

Backpropagation
● Major libraries like TensorFlow and PyTorch have auto-diff built-in

● Define (now, dynamically) computation graph, get backprop “automatically”

34

Backprop the loss!

Update the parameters

Yes, you should
understand backdrop!

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Cross Entropy Loss (aka log loss, logistic loss)
● Cross Entropy

● Use Cross Entropy for models that should have more probabilistic flavor (e.g.,
language models), incl classifiers

● Use Mean Squared Error loss for regression-like models 
 

● Fancier applications / tasks —> specialized losses

35

Predicted prob

True prob

= − log ̂y(ytrue)
In classification:

Other backprop resources
● This is a lot of complex material. No one understands it the first time!
● Read lots of different expositions, triangulate, find what works for you

● From course website:
● DL book ch 6.5: https://www.deeplearningbook.org/contents/mlp.html
● CS231n notes: http://cs231n.github.io/optimization-2/
● CS231n notes on vector derivatives: http://cs231n.stanford.edu/vecDerivs.pdf

● The matrix calculus you need: https://explained.ai/matrix-calculus/

● Calculus on computation graphs: https://colah.github.io/posts/2015-08-Backprop/

● Minimal (not fully general!) example in pure numpy: http://cs231n.github.io/neural-
networks-case-study/

36

https://www.deeplearningbook.org/contents/mlp.html
http://cs231n.github.io/optimization-2/
http://cs231n.stanford.edu/vecDerivs.pdf
https://explained.ai/matrix-calculus/
https://colah.github.io/posts/2015-08-Backprop/
http://cs231n.github.io/neural-networks-case-study/
http://cs231n.github.io/neural-networks-case-study/

