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Outline
● Computation graphs, chain rule

● Backpropagation
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Computation graphs
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Derivative chain rule
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or

z = (x2+3)4
z = y4  y=x2+3

dz/dx = 4(x2+3)3 * 2x dz/dy = 4y3  dy/dx=2x



Simple chain rule
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Multiple paths chain rule
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Chain rule in computation graph
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Computation graph
● Nodes: operations

● Edges: dependence
● From A to B: output of A is an input of B
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source

(a + b)(b + 1)

https://colah.github.io/posts/2015-08-Backprop/


Computation Graph: Forward Pass
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source

https://colah.github.io/posts/2015-08-Backprop/


Computation Graph: Derivatives
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source

https://colah.github.io/posts/2015-08-Backprop/


Computation Graph: operation API
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Computation Graph: feedforward layer
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Outline
● Computation graphs, chain rule

● Backpropagation
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Computing gradients in NNs: 
Backpropagation
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Forward 

Gradient

15



Error Backpropagation
● Model parameters:

                   for brevity:
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Next 10 slides on back propagation are adapted from Andrew Rosenberg



Error Backpropagation
● Model parameters:

● Let a and z be the input and output of each node
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Error Backpropagation
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∑  

∑  



● Let a and z be the input and output of each node
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● Let a and z be the input and output of each node



Training: minimize loss
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Empirical Risk 
Function



Training: minimize loss
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Empirical Risk 
Function



Error Backpropagation
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Optimize last layer 
weights wkl

Calculus chain 
rule
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Error Backpropagation
Optimize last layer 

weights wkl

Calculus chain 
rule
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Error Backpropagation
Optimize last layer 

weights wkl

Calculus chain 
rule
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Error Backpropagation
Optimize last layer 

weights wkl Calculus chain 
rule
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Error Backpropagation
Optimize last layer 

weights wkl
Calculus chain 

rule



Error Backpropagation
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Repeat for all previous 
layers



∑  

∑  

∑  

Backprop Recursion

29



Learning: Gradient Descent
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Backpropagation
● Starts with a forward sweep to compute all the intermediate function values

● Through backprop, computes the partial derivatives recursively            =

● A form of dynamic programming
● Instead of considering exponentially many paths between a weight w_ij and the final loss (risk), store and 

reuse intermediate results.

● A type of automatic differentiation. (There are other variants e.g., recursive differentiation 
only through forward propagation.)
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Forward 

Gradient
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Backpropagation



Backpropagation: general graphs
● Construct graph (two approaches: static vs. dynamic)

● Forward:
● Loop over nodes in the graph’s topological order
● Computing value of nodes given inputs
● Store any values needed for gradient computation

● Backward:
● Loop over nodes in the graph’s reverse topological order
● Compute derivative of output w/r/t all inputs of a node
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Backpropagation
● Major libraries like TensorFlow and PyTorch have auto-diff built-in

● Define (now, dynamically) computation graph, get backprop “automatically”
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Backprop the loss!

Update the parameters

Yes, you should 
understand backdrop!

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b


Cross Entropy Loss (aka log loss, logistic loss)
● Cross Entropy

● Use Cross Entropy for models that should have more probabilistic flavor (e.g., 
language models), incl classifiers

● Use Mean Squared Error loss for regression-like models 
 

● Fancier applications / tasks —> specialized losses
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Predicted prob

True prob

= − log ̂y(ytrue)
In classification:



Other backprop resources
● This is a lot of complex material.  No one understands it the first time!
● Read lots of different expositions, triangulate, find what works for you

● From course website:
● DL book ch 6.5: https://www.deeplearningbook.org/contents/mlp.html
● CS231n notes: http://cs231n.github.io/optimization-2/
● CS231n notes on vector derivatives: http://cs231n.stanford.edu/vecDerivs.pdf 

● The matrix calculus you need: https://explained.ai/matrix-calculus/ 

● Calculus on computation graphs: https://colah.github.io/posts/2015-08-Backprop/ 

● Minimal (not fully general!) example in pure numpy: http://cs231n.github.io/neural-
networks-case-study/ 
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https://www.deeplearningbook.org/contents/mlp.html
http://cs231n.github.io/optimization-2/
http://cs231n.stanford.edu/vecDerivs.pdf
https://explained.ai/matrix-calculus/
https://colah.github.io/posts/2015-08-Backprop/
http://cs231n.github.io/neural-networks-case-study/
http://cs231n.github.io/neural-networks-case-study/

