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e \Word representations and MLPs for NLP tasks
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MLPs for text classification



Word Representations

e Traditionally: words are discrete features
e e.g. curWord="class”

e As vectors: one-hot encoding
e Each vectoris | V|-dimensional, where Vis the vocabulary
e Each dimension corresponds to one word of the vocabulary
e A1 for the current word; O everywhere else

w,=10 0 1 .- O]



Word Embeddings

e Problem 1: every word is equally different from every other.

e All words are orthogonal to each other.
e Problem 2: very high dimensionality

e Solution: Move words into dense, lower-dimensional space
e (Grouping similar words to each other

e These denser representations are called embeddings
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Word Embeddings

e Formally, a d-dimensional embedding is a matrix E with shape (1VI, d)
e Each row is the vector for one word in the vocabulary

e Matrix multiplying by a one-hot vector returns the corresponding row, i.e. the right word
vector

e Trained on prediction tasks (see LING571 slides)
e (Continuous bag of words
e Skip-gram

e Can be trained on specific task, or download pre-trained (e.g. GloVe, fastText)

e Fancier versions now to deal with OOV: sub-word (e.g. BPE), character CNN/LSTM
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Relationships via Offsets
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https://www.aclweb.org/anthology/N13-1090/
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One More Example

Country and Capital Vectors Projected by PCA

Mikolov et al 201 3¢
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about

what a capital city means.
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https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

ne More

Exam

05 | | | | | | | | |
_ _ — — slowest
0.4 == T _
. “slower = shortest
I SO P
03k o //Ehorter |
' slow y
7
3
short«
0.2 _
01 _
OfF _7stronger” T T T T = = — — -~ strongest i
P 4
/ _“louder = T T T — — — — — — _ _ -
strong ¢ = loudest
—0.1 — |OUd}z$_/ _______ =
e clearer ~ — 7= T T T = = — — — — _ — clearest
~softer - T — — — — — - _ _ _
s — — — - softest
0.2 A -
e Clear =~ .~ darker =~ — — — - _ _ _ _ _ s dikast
soft =~ arkes
dark «
-0.3 | | | ! \ | 1 | |
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

YA/ UNIVERSITY of WASHINGTON



Caveat Emptor

Issues in evaluating semantic spaces using word analogies

Tal Linzen

LSCP & IIN

Ecole Normale Supérieure
PSL Research University
tal.linzen@ens.fr

Abstract

The offset method for solving word analo-
gies has become a standard evaluation tool
for vector-space semantic models: it is
considered desirable for a space to repre-
sent semantic relations as consistent vec-
tor offsets. We show that the method’s re-
liance on cosine similarity conflates offset
consistency with largely irrelevant neigh-
borhood structure, and propose simple
baselines that should be used to improve
the utility of the method in vector space
evaluation.

debugging

scream

Figure 1: Using the vector offset method to solve

the analogy task (Mikolov et al., 2013c).

cosine similarity to the landing point. Formally, if

the analogy is given by

€y

Linzen 2016, a.o.
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Example MLP for Language Modeling

i-th output = P(w, = i| context)
Bengio et al 2003
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Example MLP for Language Modeling

Bengio et al 2003
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w,: one-hot vector
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Example MLP for Language Modeling
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Example MLP for Language Modeling

i-th output = P(w;, = i| context)
Bengio et al 2003

l softmax
o0

/ / most| computation here \

hidden = tanh(W,embeddings + b,)

embeddings = concat(Cw,_;, Cw,_,, ..., CW,_(ns1))
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Example MLP for Language Modeling
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Example MLP for sentiment classification

e Issue: texts of different length.

e One solution: average (or sum, or...) all the embeddings, which are of same dim

softmax

h1=f(W1'CL’U+b1) Model IMDB
T 4 accuracy

v = ;::1 1 Deep averaging 89 4
/ network
NB-SVM

(Wang and Manning 91.2

Predator is a masterpiece 2012)
C1 C2 C3 Cyq

lyyer et al 2015
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Recurrent Neural Networks
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RNNs: high-level
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Other solutions: n-gram assumption (i.e. fixed-size context of word embeddings)
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Other solutions: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Other solutions: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step

e Different RNNSs:

e Different operations at each step
e (QOperation also called “recurrent cell”

e Other architectural considerations (e.g. depth; bidirectionally)
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Steinert- Threlkeld and Szymanik 2019; Olah 2015
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https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Steinert- Threlkeld and Szymanik 2019; Olah 2015
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hy ho h hy
N — N —>» N —— —> N
Xt X0 X1 Xt

h, = f(x,, h,_y)

Simple/“Vanilla” RNN: /1, = tanh(W x, + W, h,_; + b)

Steinert- Threlkeld and Szymanik 2019; Olah 2015
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Simple/“Vanilla” RNN:

h, = f(x,, h,_y)

X0

This

h, = tanh(W.x, + W,h,_, + b)

class

Interesting

Steinert- Threlkeld and Szymanik 2019; Olah 2015
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b, = f%, h,_)) °

Simple/“Vanilla” RNN: /1, = tanh(W x, + W, h,_; + b)

Steinert-Threlkeld and Szymanik 2019; Olah 2015
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Using RNNSs

one to one one to many many to one many to many many to many
! t 1 T t 1t 1 Pt f
! ! ot bt Pt
MLP / seq2seq (later) /
e.g. text classification e.g. POS tagging
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Training: BPITT

e “Unroll” the network across time-steps

e Apply backprop to the “wide” network
e Each cell has the same parameters

e \When updating parameters using the gradients, take the average across the
time steps

YA UNIVERSITY of WASHINGTON 17



Fancier RNNs
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Vanishing/Exploding Gradients Problem

e BPTT with vanilla RNNs faces a major problem:
e The gradients can vanish (approach 0) across time

e This makes it hard/impossible to learn long distance dependencies, which are
rampant in natural language



Vanishing Gradients

J1)(6)
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() R R Lin
O O O ®
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i

If these are small (depends on W), the effect from t=4 on t=1 will be very small
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http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf

Vanishing Gradient Problem

J2)(0) J)(6)
A A
R h2) L(3) h(4)
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ol W __ .o LA W | ® source
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J O O O

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are updated only with respect to near
effects, not long-term effects.
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Vanishing Gradient Problem

@ @ @ 000 C

Graves 2012



https://www.cs.toronto.edu/~graves/preprint.pdf

Vanishing Gradient Problem

e Gradient measures the effect of the past on the future

e |f it vanishes between t and t+n, can’t tell if:
e There’s no dependency in fact

e The weights in our network just haven’t yet captured the dependency



The need for long-distance dependencies

e [Language modeling (fill-in-the-blank)
e The keys

e [he keys on the table

e [he keys next to the book on top of the table

e [0 get the number on the verb, need to look at the subject, which can be very far
away

e And number can disagree with linearly-close nouns

e Need models that can capture long-range dependencies like this.
Vanishing gradients means vanilla RNNs will have difficulty.
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Long Short-Term Memory (LSTM)



LSTMs

e Long Short-Term Memory (Hochreiter and Schmidhuber 1997)
e The gold standard / default RNN

e |[f someone says “RNN” now, they almost always mean “LSTM”

e Originally: to solve the vanishing/exploding gradient problem for RNNs
e Vanilla: re-writes the entire hidden state at every time-step

e |LSTM: separate hidden state and memory
e Read, write to/from memory; can preserve long-term information
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LSTMs

fi=0 (W' -h_xx+b)
i, =06 (W' h_x,+b')

¢, = tanh (WC h,_x, + b“)
c,=f0Oc_+1,0C¢

0,= 0 (W’ h_x,+ b°)

h, = o0, © tanh (Ct)
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LSTMs

fi=0 (W' -h_xx+b)
i, =06 (W' h_x,+b')

¢, = tanh (W° - h,_,x, + b°)
c,=f0Oc_+1,0C¢

0,= 0 (W’ h_x,+ b°)

h, = o0, © tanh (Ct)

DOW e




e Key Innovation:

o C,h = f(x,c_1,h_1)
e C,.a memory cell

e Reading/writing (smooth)
controlled by gates

e /. forget gate
e I:input gate

e 0, output gate

LSTMs

o (W - h,_x,+b)

o (W' h_x,+Db")
tanh (W° - h,_x, + b°)
f,0c_+i,0O¢,

o (W° - h,_x,+ b°)

0, © tanh (ct)

YR > T X
o N ‘




Ji

LSTMs

Steinert-Threlkeld and Szymanik 2019; Olah 2015
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LSTMs

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs

Element-wise multiplication:
O: erase
|: retain

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs

Element-wise multiplication:
O: erase
|: retain

I, € [0,1]™: which cells to write to

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs

Element-wise multiplication:
O: erase
|: retain

“candidate” / new values

I, € [0,1]™: which cells to write to

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs

Element-wise multiplication:

0: erase
|: retain Add new values to memory

I, € [0,1]™: which cells to write to candidate™ / new values

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs

Element-wise multiplication:

0: erase
|: retain Add new values to memory

Ct =f,0c,_;+1,0¢,

I, € [0,1]™: which cells to write to candidate™ / new values

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs

Element-wise multiplication:

0: erase
|: retain Add new values to memory

CZ’ zﬁGCt_1+it®ét

o, € [0,1]": which cells to output

I, € [0,1]™: which cells to write to candidate™ / new values

Steinert-Threlkeld and Szymanik 2019; Olah 2015  YAT UNIVERSITY of WASHINGTON 28
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LSTMs solve vanishing gradients
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Graves 2012



https://www.cs.toronto.edu/~graves/preprint.pdf

Gated Recurrent Unit (GRU)

e Cho et al 2014: gated like LSTM, but no separate memory cell

e “Collapses” execution/control and memory

e Fewer gates = fewer parameters, higher speed
e Update gate u=oc(Wh,_,+Ux +b)
e Reset gate r,=0c(Wh_,+Ux,+0b,)
h, = tanh(W,(r, ® h) + U,x, + b,)
h=(1-u)Oh_, +u0h,



LSTM vs GRU

e Generally: LSTM a good default ”
choice o
e GRU can be used if speed and o N
fewer parameters are important

® . 0 —25; 500 750 1060 1250 1500 1750 2000 0 50 100 150 200 250 300

':::Ulljlll %Igggerg% eOS dbetween them nOt (a) a™b™-LSTM on q!9%9p1000 (b) a™b™c"*-LSTM on a1%0p100100
g el

e Performance often comparable, - f vl B
but: LSTMs can store unboundedly ||\ .

-0.50 -

large values in memory, and seem 7

-0.75 - -0.75

-

-1.00 { , ~1.00 - 4 |
tO e . g . CO u nt better 0 250 500 750 1000 1250 1500 1750 2000 0 50 100 150 200 250 300
(¢) a™b"-GRU on a!?09910% (d) a™b"c"-GRU on 1005100100

Source
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Two Extensions

e Deep RNNSs:
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Source: RNN cheat sheet YA/ UNIVERSITY of WASHINGTON 32



https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

e Deep RNNSs:
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e Bidirectional RNNSs:
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:

4 N O R s N
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:
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https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

“The BILSTM Hegemony”

e Chris Manning, in 2017:

To a first approximation,
the de facto consensus in NLP in 2017 is
that no matter what the task,
you throw a BILSTM at it, with
attention if you need information flow

SOUrce



https://nlp.stanford.edu/~manning/talks/Simons-Institute-Manning-2017.pdf

Seq2Seq + attention
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Sequence to sequence problems

e Many NLP tasks can be construed as sequence-to-sequence problems

e Machine translations: sequence of source lang tokens to sequence of target
lang tokens

e Parsing: “Shane talks.” —> “(S (NP (N Shane)) (VP V talks))”
e [ncl semantic parsing

e Summarization

e NB: not the same as tagging, which assigns a label to each position in a
glven sequence



seg2sed architecture [e.g. NMT]
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https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

seg2sed architecture [e.g. NMT]
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seg2sed architecture [e.g. NM T}
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https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

BLEU score
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seq2seq results

—> |STM (34.8)
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test sentences sorted by average word frequency rank
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seq2seq architecture: problem
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seq2seq architecture: problem

Decoder can only see info in this one vector
all info about source must be “crammed’’ into here
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seq2seq architecture: problem

Decoder can only see info in this one vector Mooney 2014:"You can't cram the meaning of a
all info about source must be “crammed” into here whole %&!$# sentence into a single $&!#* vector!
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NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to SOource
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder—decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder—decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.
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Attention, Generally

e A query g pays attention to some values {v, } based on similarity with
some keys {k,}.

e Dot-product attention: = . k.
P % =4q-K

. - -

e =e J/Zje j
C = Zjejvj

e In the previous example: encoder hidden states played both the keys and
the values roles.
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e By “solving” the bottleneck issue
e Aids interpretability (maybe)

e A general technique for combining
representations, applications in;

e NMT, parsing, image/video captioning, ...

everything

Why attention?

e Incredibly useful (for performance)
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Next Time

e We will introduce a new type of large neural model: the Transformer

e Hint: “Attention is All You Need” is the original paper

e Introduce the idea of transfer learning and pre-training language models
e (Canvas recent developments and trends in that approach

e \What we might call “The Transformer Hegemony” or “The Muppet Hegemony”
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