
Decision Trees
LING 572

Advanced Statistical Methods for NLP
January 9, 2020

1

Sunburn Example

2

Name Hair Height Weight Lotion Result

Sarah Blonde Average Light No Burn

Dana Blonde Tall Average Yes None

Alex Brown Short Average Yes None

Annie Blonde Short Average No Burn

Emily Red Average Heavy No Burn

Pete Brown Tall Heavy No None

John Brown Average Heavy No None

Katie Blonde Short Light Yes None

Learning about Sunburn
● Goal:
● Train on labelled examples
● Predict Burn/None for new instances

● Solution??
● Exact match: same features, same output
● Problem: N*3*3*3*2 feature combinations, which could be much worse when there are

thousands or even millions of features.

● Same label as ‘most similar’
● Problem: What’s close? Which features matter? Many match on two features but differ

on result.

3

DT highlight
● Training stage: build a tree (aka decision tree) using a greedy algorithm:
● Each node represents a test.
● Training instances are split at each node.
● The set of samples at a leaf node indicates decision

● Test stage:
● Route NEW instance through tree to leaf based on feature tests
● Assign same value as samples at leaf

4

Where should we send Ads?

5

District House type Income
Previous
Customer

Outcome(
target)

Suburban Detached High No Nothing

Suburban Semi-
detached High Yes Respond

Rural Semi-
detached Low No Respond

Urban Detached Low Yes Nothing

…

District

Suburban

(5)
Rural

(4)

Urban
(5)

RespondHouse type

Deta
ch

ed

(2
)

Nothing

Previous customer

Yes
(3)

No (2)

Sem
i-detached

(3)

Respond
Nothing Respond

Decision tree

6

NLP Example

7

NLTK book ch 6

https://www.nltk.org/book/ch06.html

Decision tree representation
● Each internal node is a test:
● Theoretically, a node can test multiple features
● In general, a node tests exactly one feature

● Each branch corresponds to test results
● A branch corresponds to a feature value or a range of feature values

● Each leaf node assigns
● a class: decision tree
● a real value: regression tree

8

What’s the best decision tree?
● “Best”: We need a bias (e.g., prefer the “smallest” tree):
● Smallest depth?
● Fewest nodes?
● Most accurate on unseen data?

● Occam's Razor: we prefer the simplest hypothesis that fits the data.

➔ Find a decision tree that is as small as possible and fits the data

9

Finding a smallest decision tree
● The space of decision trees is too big for systemic search for a smallest

decision tree.

● Solution: greedy algorithm
● At each node, pick test using ‘best’ feature

● Split into subsets based on outcomes of feature test

● Repeat process until stopping criterion

10

Basic algorithm: top-down induction
1. Find the “best” feature, A, and assign A as the decision feature for the node

2. For each value (or a range of values) of A, create a new branch, and divide up
training examples

3. Repeat the process 1-2 until the gain is small enough

➔ Effectively creates set of rectangular regions

 Repeatedly draws lines in different axes

11

Features in DT
● Pros: Only features with high gains are used as tests when building DT

 ➔ irrelevant features are ignored

● Cons: Features are assumed to be independent

 ➔ if one wants to capture group effect, they must model that explicitly
(e.g., creating tests that look at feature combinations)

12

13

f1 > 10

f2 > 10

yes no

f1 > 0

yes no yes no

f1 > 20

yes no

L1 L2

L3 L4 f2 > 20

yes no

L5

yes no

f1 > -10

L6 L7-20 <= f1 <= 30
-10 <= f2 <= 30

f1

f2

Major issues
Q1: Choosing best feature: what quality measure to use?

Q2: Determining when to stop splitting: avoid overfitting

Q3: Handling features with continuous values

14

Q1: What quality measure
● Information gain

● Gain Ratio

● χ2

● Mutual information

● ….

15

Entropy of a training set
● S is a sample of training examples

● Entropy is one way of measuring the impurity of S

● P(ci) is the proportion of examples in S whose category is ci.

16

H(S) = − ∑
i

p(ci)log p(ci)

Information gain
● InfoGain(Y | X): We must transmit Y. How many bits on average would it save

us if both ends of the line knew X?

● Definition:

● Also written as InfoGain(Y, X)

17

InfoGain(Y |X) = H(Y) − H(Y |X)

Information Gain
● InfoGain(S, A): expected reduction in entropy due to knowing A.

● Choose the A with the max information gain.
(a.k.a. choose the A with the min average entropy)

18

)(
||
||)(

)|()()(
)|()(),(

)(
a

AValuesa

a

a

SH
S
SSH

aASHaApSH
ASHSHASInfoGain

∑

∑

∈

−=

==−=

−=
Average
Entropy

An example

19

Income
High Low

S=[9+,5-]
H=0.940

[3+,4-] [6+,1-]

InfoGain (S, Income)
=0.940 - (7/14)*0.985 - (7/14)*0.592

=0.151

PrevCustom

Yes No

S=[9+,5-]
H=0.940

[6+,2-] [3+,3-]

InfoGain(S, PrevCustom)
=0.940 - (8/14)*0.811 - (6/14)*1.0

=0.048

H=0.985 H=0.592 H=0.811 H=1.00

Other quality measures
● Problem of information gain:
● Information Gain prefers attributes with many values.

● An alternative: Gain Ratio

Where Sa is subset of S for which A has value a.

20

||
||

log
||
||

)(),(

),(
),(

),(

2
)(S

S
S
SAHASSplitInfo

ASSplitInfo
ASInfoGainASGainRatio

a

AValuesa

a
S ∑

∈

−==

=

Q2: Avoiding overfitting
● Overfitting occurs when the model fits the training data too well:
● The model characterizes too much detail or noise in our training data.
● Why is this bad?
● Harms generalization
● Fits training data well, fits new data badly

● Consider error of hypothesis h over
● Training data: ErrorTrain(h)
● Entire distribution D of data: ErrorD(h)

● A hypothesis h overfits training data if there is an alternative hypothesis h’, such that
● ErrorTrain(h) < ErrorTrain(h’), and
● ErrorD(h) > errorD(h’)

21

How to avoiding overfitting
● Strategies:
● Early stopping: e.g., stop when
● InfoGain < threshold
● Size of examples in a node < threshold
● Depth of the tree > threshold
● Post-pruning
● Grow full tree, and then remove branches

● Which is better?
● Unclear, both are used.
● For some applications, post-pruning better

22

Post-pruning
● Split data into training and validation sets

● Do until further pruning is harmful:
● Evaluate impact on validation set of pruning each possible node (plus those below it)
● Greedily remove the ones that don’t improve the performance on validation set

➔Produces a smaller tree with good performance

23

Performance measure
● Accuracy:
● on validation data
● K-fold cross validation

● Misclassification cost: Sometimes more accuracy is desired for some
classes than others.

● Minimum description length (MDL):
● Favor good accuracy on compact model
● MDL = model_size(tree) + errors(tree)

24

Rule post-pruning
● Convert the tree to an equivalent set of rules

● Prune each rule independently of others

● Sort final rules into a desired sequence for use

● Perhaps most frequently used method (e.g., C4.5)

25

Decision tree ➔ rules

26If District==Urban && PrevCustomer==Yes then Nothing

District

Suburban

(5)
Rural

(4)

Urban
(5)

RespondHouse type

Deta
ch

ed

(2
)

Nothing

Previous customer

Yes
(3)

No (2)

Sem
i-detached

(3)

Respond
Nothing Respond

Q3: handling numeric features
● Different types of features need different tests:
● Binary: Test branches on true/false
● Discrete: Branches for each discrete value
● Continuous feature ➔ discrete feature

● Example
● Original attribute: Temperature = 82.5
● New attribute: (temperature > 72.3) = true, false

➔ Question: how to choose split points?

27

Choosing split points for a continuous attribute
● Sort the examples according to the values of the continuous attribute.

● Identify adjacent examples that differ in their target labels and attribute
values

 ➔ a set of candidate split points

● Calculate the gain for each split point and choose the one with the
highest gain.

28

Summary of Major issues
Q1: Choosing best attribute: different quality measures.

Q2: Determining when to stop splitting: stop earlier or post-pruning

Q3: Handling continuous attributes: find the breakpoints

29

Other issues
Q4: Handling training data with missing feature values

Q5: Handing features with different costs
● Ex: features are medical test results

Q6: Dealing with y being a continuous value

30

Q4: Unknown attribute values
Possible solutions:

● Assume an attribute can take the value “blank”.

● Assign most common value of A among training data at node n.

● Assign most common value of A among training data at node n which have the same
target class.

● Assign prob pi to each possible value vi of A
● Assign a fraction (pi) of example to each descendant in tree
● This method is used in C4.5.

31

Q5: Attributes with cost
● Ex: Medical diagnosis (e.g., blood test) has a cost
● Question: how to learn a consistent tree with low expected cost?
● One approach: replace gain by
● Tan and Schlimmer (1990)

32

)(
),(2

ACost
ASGain

Q6: Dealing with continuous target attribute  
➔ Regression tree

● A variant of decision trees

● Estimation problem: approximate real-valued functions: e.g., the crime
rate

● A leaf node is marked with a real value or a linear function: e.g., the
mean of the target values of the examples at the node.

● Measure of impurity: e.g., variance, standard deviation, …

33

Summary
● Basic case:
● Discrete input attributes
● Discrete target attribute
● No missing attribute values
● Same cost for all tests and all kinds of misclassification.

● Extended cases:
● Continuous attributes
● Real-valued target attribute
● Some examples miss some attribute values
● Some tests are more expensive than others.

34

Strengths of decision tree
● Simplicity (conceptual)

● Robust to irrelevant features

● Efficiency at testing time

● Interpretability: Ability to generate understandable rules

● Ability to handle both continuous and discrete attributes.

35

Weaknesses of decision tree
● Efficiency at training: sorting, calculating gain, etc.

● Poor feature combination

● Theoretical validity: greedy algorithm, no global optimization

● Predication accuracy: trouble with non-rectangular regions

● Stability: not stable

● Sparse data problem: split data at each node.

36

Addressing the weaknesses
● Used in classifier ensemble algorithms:
● Bagging: sample the training data m times, build a classifier for each sample,

and then let the m classifiers vote on a test instance.

● Boosting: build one classifier at a time, based on the results of the current
ensemble

● Decision tree stump: one-level DT

37

Common algorithms
● ID3

● C4.5

● CART

More in “additional slides”

38

Additional slides

39

Common algorithms
● ID3

● C4.5

● CART

40

ID3
● Proposed by Quinlan (so is C4.5)

● Can handle basic cases: discrete attributes, no missing information, etc.

● Information gain as quality measure

41

C4.5
● An extension of ID3:
● Several quality measures
● Incomplete information (missing attribute values)
● Numerical (continuous) attributes
● Pruning of decision trees
● Rule derivation
● Random mode and batch mode

42

CART
● CART (classification and regression tree)

● Proposed by Breiman et. al. (1984)

● Constant numerical values in leaves

● Variance as measure of impurity

43

