Pre-training + Fine-tuning Paradigm, |

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld



Do Transformer Modifications Transfer Across
Implementations and Applications?

Sharan Narang® Hyung Won Chung Yi Tay Wailliam Fedus
Thibault Fevry! Michael Matena |
Noam Shazeer Zhenzhong Lan’ Yanqi Zhou Wei Li

Adam Roberts Colin Raffel

Nan Ding Jake Marcus

Karishma Malkan! Noah Fiedel

Google Research

Abstract

The research community has proposed copious mod-
ifications to the Transformer architecture since it
was introduced over three years ago, relatively few
of which have seen widespread adoption. In this
paper, we comprehensively evaluate many of these
modifications in a shared experimental setting that
covers most of the common uses of the Transformer
in natural language processing. Surprisingly, we find
that most modifications do not meaningfully improve

performance. Furthermore, most of the Transformer

will yield equal-or-better performance on any task
that the pipeline is applicable to. For example, resid-
ual connections in convolutional networks (He et al.,
2016) are designed to ideally improve performance
on any task where these models are applicable (im-
age classification, semantic segmentation, etc.). In
practice, when proposing a new improvement, it is
impossible to test it on every applicable downstream
task, so researchers must select a few representative
tasks to evaluate it on. However, the proposals that
are ultimately adopted by the research community
and practitioners tend to be those that reliably im-
prove performance across a wide variety of tasks “in

Note on Transformer Architecture
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https://arxiv.org/pdf/2102.11972.pdf

Today's Plan

e Transfer learning in general
e Language model pre-training: initial steps

e Transformer-based pre-training
® Encoder only

e Next time:
e Decoder only
e Encoder-Decoder

e [Some] limitations [more later in course]

YA/ UNIVERSITY of WASHINGTON 3
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Standard Learning

e New task = new model

e EXxpensive!
e T[raining time
e Storage space

e Data availability
e Can be impossible in low-data regimes
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Pre-trained model, either:
- General feature extractor
- Fine-tuned on tasks



Pre-training + Fine-tuning

e Step 1: pre-train a model on a “general” task
e Questions: which task for pre-training? More in a minute.

e (Goal: produce general-purpose representations of the input (“representation
learning”), that will be useful when “transferred” to a more specific task.

e Step 2: fine-tune that model on the main task
e Replace the “head” of the model with some task-specific layers

e Run supervised training with the resulting model

YA/ UNIVERSITY of WASHINGTON 8



Transfer Learning in Computer Vision

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson
CVAP, KTH (Royal Institute of Technology)
Stockholm, Sweden

{razavian,azizpour,sullivan,stefanc}@csc.kth.se

“We use features extracted from the OverFeat network as a generic image representation to
tackle the diverse range of recognition tasks of object image classification, scene recognition,
fine grained recognition, attribute detection and image retrieval applied to a diverse set of

datasets. We selected these tasks and datasets as they gradually move further away from the

original task and data the OverFeat network was trained to solve [cf. ImageNet].
Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-

art systems in all the visual classification tasks on various datasets”

YA/ UNIVERSITY of WASHINGTON
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https://arxiv.org/pdf/1403.6382.pdf

Current Benchmarks

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WwiC WSC AX-g AX-b

1 JDExplore d-team Vega v2 [:};' 91.3 90.5 98.6/99.2 99.4 88.2/62.4 94.4/93.9 96.0 77.4 98.6 100.0/50.0 -0.4

-|- 2 Liam Fedus ST-MoE-32B C};' 91.2 92.4 96.9/98.0 99.2 89.6/65.8 95.1/94.4 93.5 77.7 96.6 96.1/94.1 72.3
3 Microsoft Alexander v-team Turing NLR v5 C};. 90.9 92.0 95.9/97.6 98.2 88.4/63.0 96.4/95.9 941 771 97.3 93.3/95.5 67.8

4 ERNIE Team - Baidu ERNIE 3.0 C);' 90.6 91.0 98.6/99.2 97.4 88.6/63.2 94.7/94.2 92.6 77.4 97.3 92.7/94.7 68.6

5 YiTay PaLM 540B C},' 90.4 91.9 94.4/96.0 99.0 88.7/63.6 94.2/93.3 941 77.4 95.9 95.5/90.4 72.9

+ 6 Zirui Wang T5 + UDG, Single Model (Google Brain) [:);l 90.4 914 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 77.9 96.6 92.7/91.9 69.1
-l- 7 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 C};. 90.3 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9 93.3/93.8 66.7
8 SuperGLUE Human Baselines = SuperGLUE Human Baselines [:};' 89.8 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 99.3/99.7 76.6

-l- 9 T5 Team - Google T5 C);' 89.3 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8 92.7/91.9 65.6
10 SPoT Team - Google Frozen T5 1.1 + SPoT C};. 89.2 91.1 95.8/97.6 95.6 87.9/61.9 93.3/92.4 92.9 75.8 93.8 83.1/82.6 66.9

+ 11 Huawei Noah's Ark Lab NEZHA-Plus [:};' 86.7 87.8 94.4/96.0 93.6 84.6/55.1 90.1/89.6 89.1 74.6 93.2 87.1/74.4 58.0
-|- 12 Alibaba PAI&ICBU PAI Albert 86.1 88.1 92.4/96.4 91.8 84.6/54.7 89.0/88.3 88.8 741 93.2 98.3/99.2 75.6
+ 13 Infosys : DAWN : Al Research  RoBERTa-iCETS 86.0 88.5 93.2/95.2 91.2 86.4/58.2 89.9/89.3 89.9 72.9 89.0 88.8/81.5 61.8
-l- 14 Tencent Jarvis Lab RoBERTa (ensemble) 85.9 88.2 92.5/95.6 90.8 84.4/53.4 91.5/91.0 87.9 741 91.8 89.3/75.6 57.6
15 Zhuiyi Technology RoBERTa-mtl-adv 85.7 87.1 92.4/95.6 91.2 85.1/564.3 91.7/91.3 88.1 72.1 91.8 91.0/78.1 58.5

16 Facebook Al RoBERTa C);' 84.6 87.1 90.5/95.2 90.6 84.4/52.5 90.6/90.0 88.2 69.9 89.0 91.0/78.1 57.9

YA/ UNIVERSITY of WASHINGTON
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Language Model Pre-training
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Where to transfer from?®?

e Goal: find a linguistic task that will build general-purpose / transferable

representations

e Possibilities:
e (Constituency or dependency parsing
e Semantic parsing
e Machine translation
o QA

e Scalability issue: all require expensive annotation
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Language Modeling

e A good language model should produce good general-purpose and transferable
representations

e Linguistic knowledge:

e The bicycles, even though old, were in good shape because

e The bicycle, even though old, was in good shape because
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Language Modeling

e A good language model should produce good general-purpose and transferable
representations

e Linguistic knowledge:

e The bicycles, even though old, were in good shape because

e The bicycle, even though old, was in good shape because

e World knowledge:

e The University of Washington was founded in

e Seattle had a huge population boom as a launching point for expeditions to

YA/ UNIVERSITY of WASHINGTON 13



Data for LM is cheap
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Language Model Pre-training

e A currently powerful paradigm for training models for NLP tasks:
e Pre-train a large language model on a large amount of raw text
e Fine-tune a small model on top of the LM for the task you care about
e [or use the LM as a general feature extractor]

e [or prompt it for “in-context learning”; later]

YA/ UNIVERSITY of WASHINGTON 15
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(a) LM pre-training
Universal Language Model Fine-tuning for Text Classification (ACL ’18)

The gold


https://www.aclweb.org/anthology/P18-1031/

ULMFIT

Model Test Model Test
CoVe (McCann et al., 2017) 8.2 , CoVe (McCann et al., 2017) 4.2
'5 oh-LSTM (Johnson and Zhang, 2016) 5.9 © TBCNN (Mou et al., 2015) 4.0
E Virtual (Miyato et al., 2016) 5.9 E LSTM-CNN (Zhou et al., 2016) 3.9
ULMFIT (ours) 4.6 ' ULMFIT (ours) 3.6

YA/ UNIVERSITY of WASHINGTON
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Deep Contextualized Word Representations

Peters et. al (2018)
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Deep Contextualized Word Representations

Peters et. al (2018)
e NAACL 2018 Best Paper Award



https://arxiv.org/abs/1802.05365

Deep Contextualized Word Representations

Peters et. al (2018)
e NAACL 2018 Best Paper Award

e Embeddings from Language Models (ELMo)
e [aka the OG NLP Muppet]



https://arxiv.org/abs/1802.05365

ELMo

Deep contextualized word representations

Matthew E. Peters’, Mark Neumann', Mohit Iyyer', Matt Gardner’,
{matthewp, markn, mohiti,mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer'™
{csquared, kentonl, 1sz}@cs.washington.edu

T Allen Institute for Artificial Intelligence
*Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of deep contextual-
ized word representation that models both (1)
complex characteristics of word use (e.g., syn-
tax and semantics), and (2) how these uses
vary across linguistic contexts (i.e., to model
polysemy). Our word vectors are learned func-
tions of the internal states of a deep bidirec-
tional language model (biLM), which is pre-
trained on a large text corpus. We show that
these representations can be easily added to
existing models and significantly improve the
state of the art across six challenging NLP
problems, including question answering, tex-
tual entailment and sentiment analysis. We
also present an analysis showing that exposing
the deep internals of the pre-trained network is
crucial, allowing downstream models to mix
different types of semi-supervision signals.

guage model (LM) objective on a large text cor-
pus. For this reason, we call them ELMo (Em-
beddings from Language Models) representations.
Unlike previous approaches for learning contextu-
alized word vectors (Peters et al., 2017; McCann
et al., 2017), ELMo representations are deep, in
the sense that they are a function of all of the in-
ternal layers of the biLM. More specifically, we
learn a linear combination of the vectors stacked
above each input word for each end task, which
markedly improves performance over just using
the top LSTM layer.

Combining the internal states in this manner al-
lows for very rich word representations. Using in-
trinsic evaluations, we show that the higher-level
LSTM states capture context-dependent aspects
of word meaning (e.g., they can be used with-
out modification to perform well on supervised

YA/ UNIVERSITY of WASHINGTON
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We introduce a new type of deep contextual-
ized word representation that models both (1)
complex characteristics of word use (e.g., syn-
tax and semantics), and (2) how these uses
vary across linguistic contexts (i.e.. to model
polysemy). Our word vectors are learned func-
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ELMo Model

2]
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Source: BERT paper



https://arxiv.org/pdf/1810.04805.pdf

ELMo Model
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Source: BERT paper YA/ UNIVERSITY of WASHINGTON 21
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ELMo Model

4096-d hidden state .
512d projection

residual connection

Source: BERT paper YA/ UNIVERSITY of WASHINGTON 21


https://arxiv.org/pdf/1810.04805.pdf

ELMo Model
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char CNN
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Helps with rare / new words (no OQV)

Source: BERT paper YA/ UNIVERSITY of WASHINGTON 21



https://arxiv.org/pdf/1810.04805.pdf

ELMo Training

e 10 epochs on 1B Word Benchmark

e NB: not SOTA perplexity even at time of publishing

e See “Exploring the Limits of Language Modeling” paper

e Regularization:

e Dropout

e L2 norm


https://opensource.google/projects/lm-benchmark
https://arxiv.org/abs/1602.02410
http://jmlr.org/papers/v15/srivastava14a.html

Deep Contextualized Word Representations

Peters et. al (2018)

_ SNLI NER SQUAD Coref SRL SST-5 Parsing*
e Used in place of other .
embeddings on multiple tasks: ol | -

SQUAD = Stanford Question Answering Dataset
SNLI = Stanford Natural Language Inference Corpus
SST-5 = Stanford Sentiment Treebank

CXRLRLKKK

XX

XX

5

N

WX Previos SOTA Bl Baseline
*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

figure: Matthew Peters W UNIVERSITY of WASHINGTON 23



https://arxiv.org/abs/1802.05365
https://rajpurkar.github.io/SQuAD-explorer/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/sentiment/treebank.html

Global vs. Contextual Word Vectors

e (Global vectors: one vector per word-type
e E.g. word2vec, GloVe

e No difference between e.qg. “play” as a verb, noun, or its different senses

e Contextual vectors: one vector per word-occurrence
e “"We saw a really great play last week.”
e ‘Do you want to play basketball tomorrow?”

e Each occurrence gets its own vector representation.

YA/ UNIVERSITY of WASHINGTON 24



Deep Contextualized Word Representations

Peters et. al (2018)

e Comparison to GloVe:

Source Nearest Neighbors

playing, game, games, played, players, plays, player, Play,

Glove play football, multiplayer
Chico Ruiz made a Kieffer, the only junior in the group, was commended for
spectacular play on his ability to hit in the clutch, as well as his all-round
Alusik’s grounder... excellent play.

DILM OIIYIa De Havilland ...they were actors who had been handed fat roles in a

signed to do a .
successful play, and had talent enough to fill the roles

Broadway play for

competently, with nice understatement.
Garson...

YA/ UNIVERSITY of WASHINGTON 25
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Shallow vs Deep Pre-training

Model for task

Model for task

Contextual embedding
(pre-trained)

Global embedding

Raw tokens Raw tokens




Pre-trained Transformers
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Paralellizability + Scale
e ULMFIT + ELMo:

e Demonstrate the value of LM pre-training + transfer learning
e Noted that there are “virtually unlimited” quantities of data for LM

e Used bi-LSTMs for the LM
e Concurrently: Transformer paper introduced

e Triggered an explosion in the pretraining approach

e Lack of recurrence —> paralellizability —> scaling up both model size and
dataset size

YA/ UNIVERSITY of WASHINGTON 28



Pre-trained Transformers: Encoder-only



BERT: Bidirectional Encoder Representations
from Transformers

Devlin et al NAACL 2019



https://www.aclweb.org/anthology/N19-1423/

Overview

e Encoder Representations from Transformers: v/

e Bidirectional: ......... ?
e BILSTM (ELMo): left-to-right and right-to-left
e Sclf-attention: every token can see every other

e NB: adirectional probably a better term

e How do you treat the encoder as an LM (as computing
PW,\w,_{,W,_s, ..., Ww))?

e Don’t: modify the task

YA/ UNIVERSITY of WASHINGTON 31



Masked Language Modeling

e Language modeling: next word prediction
e Masked Language Modeling (a.k.a. cloze task): fill-in-the-blank

e Nancy Pelosi sent the articles of to the Senate.

e Seattle some snow, so UW was delayed due to roads.

o Le. PW Wi Wintkmty - Wi s Wit - 5 Wi mar 1)y Wie)
e (very similar to CBOW: continuous bag of words from word2vec)

e Auxiliary training task: next sentence prediction.

e Given sentences A and B, binary classification: did B follow A in the corpus or not?

WA/ UNIVERSITY of WASHINGTON 32



Schematically

(o) () .. (o ) (oo | [r) . (o (oo (). [ [sep]][m.._

Masked Sentence A Masked Sentence B Question Paragraph
. 2
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

YA/ UNIVERSITY of WASHINGTON 33



Some detalls
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Some detalls

e BASE model:
e 12 Transformer Blocks
e Hidden vector size: 768
e Attention heads / layer: 12

e [otal parameters: 110M

YA/ UNIVERSITY of WASHINGTON 34



Some detalls

e BASE model:
e 12 Transformer Blocks
e Hidden vector size: 768
e Attention heads / layer: 12

e [otal parameters: 110M

e LARGE model:
e 24 Transformer Blocks
e Hidden vector size: 1024
e Attention heads /layer: 16

e [otal parameters: 340M
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Some detalls

e BASE model:

e 12 Transformer Blocks
e Hidden vector size: 768
e Attention heads / layer: 12

e [otal parameters: 110M

e LARGE model: this is the first work to demonstrate convinc-
ingly that scaling to extreme model sizes also
e 24 Transformer Blocks leads to large improvements on very small scale

tasks, provided that the model has been suffi-

e Hidden vector size: 1024 ciently pre-trained. Peters et al. (2018b) presented

e Attention heads / layer: 16

e [otal parameters: 340M
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Some detalls

O B AS E m Od el : ; Andrej Karpathy &

New (small!) language model Chinchilla (70B)
e 12 Transformer Blocks outperforms much larger Gopher (280B), GPT-3 (175B),

Jurrasic-1 (178B), MT-NLG (530B)
Important new LM scaling laws
paper from DeepMind. Go smaller, train longer. Many

e Attention heads/ Iayer: 12 misconfigurations likely continue to lurk.

e Hidden vector size: 768

e [otal parameters: 110M

= IIXiV Training Compute-Optimal Large Language Models

e LARGE model: nvinc-
s jalso
e 24 Transformer Blocks SHUS 10 TATDC TNPTOVCITICHTS Off very st scale

tasks, provided that the model has been suffi-

e Hi 1ze:
Hidden vector size: 1024 ciently pre-trained. Peters et al. (2018b) presented

e Attention heads / layer: 16

e [otal parameters: 340M

YA/ UNIVERSITY of WASHINGTON 34


https://twitter.com/karpathy/status/1509227367302148098

Input

Token
Embeddings

Segment
Embeddings

Position
Embeddings

Input Representation

N \
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o+ . . + + -+ -+ -+ . + -+
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o+ o+ o+ -+ o+ -+ + -+ -+ + +
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Input
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Segment
Embeddings
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Embeddings

e [CLS], [SEP]: special tokens

Input Representation

N\ N
[CLS] \ my dog 15 ( cute W [SEP] he ( likes W play W ( ##ing W [SEP]
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+ + -+ -+ + -+ + o+ o+ -+ +
E, || E, || Ex || Ex || Ex || Ex || Ex || BEx || Es || Es || Eg
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e [CLS], [SEP]: special tokens

Input Representation

f ) / N
[CLS] \ my dog 15 ( cute W [SEP] he ( likes W play W ( ##ing W [SEP]
E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
+ + -+ -+ + -+ + o+ o+ -+ +
E, || E, || Ex || Ex || Ex || Ex || Ex || BEx || Es || Es || Eg
+ o+ o+ + + + + -+ -+ + -+
EO El E2 E3 E4 ES E6 E7 E8 E9 ElO

e Segment: is this a token from sentence A or B?
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Input Representation

N / N [/ N\ / N /7 N / N\
Input [CLS] \ my dog is ( cute W [SEP] he ( likes W play W ( ##ing W [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
3= 3= = 3= 3= == = 3= = == =
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
== 3= )= 4= 3= = . 2 3= - = =
Position
Embeddings EO E1 E2 E3 E4 ES E6 E7 E8 E9 E10

e [CLS], [SEP]: special tokens
e Segment: is this a token from sentence A or B?

e Position embeddings: provide position in sequence (learned in this case, not fixed)
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== 3= = == 3= == == 3= ==
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
== == == == == =+ == == -+ -+ =+
Position
Embeddings EO El E2 E3 E4 ES E6 E7 E8 E9 E10

e [CLS], [SEP]: special tokens
e Segment: is this a token from sentence A or B?

e Position embeddings: provide position in sequence (learned in this case, not fixed)
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Training Detalls

e BooksCorpus (800M words) + Wikipedia (2.5B)

e Masking the input text. 15% of all tokens are chosen. Then:
e 80% of the time: replaced by designated [MASK] token
e 10% of the time: replaced by random token

e 10% of the time: unchanged
e Loss is cross-entropy of the prediction at the masked positions.
e Max seq length: 128 tokens for first 90%, 512 tokens for final 10%

e 1M training steps, batch size 256 = 4 days on 4 or 16 TPUs



INnitial Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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Ablations

e Not a given (depth doesn’t help ELMo);
possibly a difference between fine-

tuning vs. feature extraction

MNLI-m QNLI MRPC ssT2 suaD @ [Mlany more variations to explore

Hyperparams Dev Set Accuracy
#L. #H #A LM (ppl) MNLI-m MRPC SST-2
3 768 12 5.84 77.9 79.8 884
6 768 3 524 80.6 82.2  90.7
6 768 12  4.68 81.9 84.8 91.3
12 768 12  3.99 84.4 86.7 929
12 1024 16 3.54 85.7 86.9 933
24 1024 16  3.23 86.6 87.8  93.7
Dev Set
Tasks
(Acc) (Acc) (Acc) (Acc) (F1)
BERTgAsE 84.4 88.4 867 9277  88.5
No NSP 83.9 849 865 926 87.9
LTR & NoNSP  82.1 843 77,5 92.1 77.8
+ BiLSTM 82.1 84.1 757 91.6 849
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Other Prominent Encoders
e RoBERTa: robustly optimized BERT approach

e BERT was very under-trained. give it more data, train it longer [keep model the
same otherwise]

e (Good default encoder

e EIL ECTRA: replace Masked Language Modeling with “replaced token
detection”, trains just as well with much less data

e SpanBERT: mask out entire spans instead of single tokens

e DeBERTa: disentangled attention and novel position encoding



https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/1907.10529
https://arxiv.org/abs/2006.03654

Limitation of Encoders

e No left-to-right modeling assumption
e Good for NLU (understanding/comprehension) tasks

e Does not straightforwardly generate text



Next Time

e Pre-training + F1, cont.
e Decoder
e Encoder-decoder
e Risks
e Accessing / using pre-trained LMs

e In-context learning
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