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Today’s Plan
● NLP’s “Clever Hans” Moment: motivating interpretability and analysis

● Survey of several different methods:
● Neuron-level
● Psycholinguistic experiments
● Diagnostic classifiers
● Attention analysis
● Adversarial datasets
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NLP’s “Clever Hans Moment”
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link

BERT

Clever Hans

https://thegradient.pub/nlps-clever-hans-moment-has-arrived/


Clever Hans
● Early 1900s, a horse trained by his owner to do:
● Addition
● Division
● Multiplication
● Tell time
● Read German
● …

● Wow! Hans is really smart!
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Clever Hans Effect
● Upon closer examination / experimentation…

● Hans’ success:
● 89% when questioner knows answer
● 6% when questioner doesn’t know answer

● Further experiments: as Hans’ taps got closer to correct answer, facial 
tension in questioner increased

● Hans didn’t solve the task but exploited a spuriously correlated cue
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Central question
● Do BERT et al’s major successes at solving NLP tasks show that we have 

achieved robust natural language understanding in machines?

● Or: are we seeing a “Clever BERT” phenomenon?
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McCoy et al 2019

https://arxiv.org/pdf/1902.01007.pdf
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Results

(performance improves if fine-tuned on this challenge set)
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link

https://www.aclweb.org/anthology/P19-1459/


Why care?
● Effects of learning what neural language models understand:
● Engineering: can help build better language technologies via improved models, 

data, training protocols, …
● Trust, critical applications
● Theoretical: can help us understand biases in different architectures (e.g. 

LSTMs vs Transformers), similarities to human learning biases
● Which linguistic features / properties are learnable from raw text alone?
● Ethical: e.g. do some models reflect problematic social biases more than others?
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Visualization / neuron-level analysis
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Main Idea
● Individual neurons in a network have activations that depend on the input

● Check to see whether any of them have activations which depend on / 
correlate with (linguistically) interesting features of the input

● [Think of the alleged “Jennifer Anniston cells”, aka grandmother cells] 
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https://arxiv.org/pdf/1704.01444.pdf


Approach
● Character-level language model (LSTM variant)
● One layer; 4096 dim hidden state
● Training: ~1 month on 4 GPUs

● Data: Amazon product reviews

● Fine-tune: sentiment analysis
● NB: this data partially overlaps with training data [but a different task]
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A sentiment neuron
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Samples of the sentiment neuron
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Sentiment unit does all the work!
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https://www.aclweb.org/anthology/N19-1002/


Approach
● Evaluating the Gulordava et al 2018 LSTM LM (trained on Wikipedia)

● Number agreement tasks: as in Linzen et al 2016 (to be discussed shortly!)
● Plus synthetic: 
 
 
 
 
 

● Find important cells by ablation: set activation to 0, see if performance 
suffers.  (Also by regression; more in a minute)
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https://aclanthology.org/N18-1108/


Cell dynamics for storing number info
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Learned cell dynamics for number info
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Finding a syntax unit
● Predict, via linear regression, from the cell:
● Depth of the word in syntactic parse of the sentence
● (Works pretty well: R^2 = 0.85.  More on this idea later.)

● Identify cells that are assigned very high weight in the regression
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Cell dynamics for a syntax unit
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Neuron-level analysis: summary
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● “A needle in a haystack”: how to find the “good” neurons?
● Some principled methods (ablation, regression); not all of them scale well
● But also: 
● Is there a neuron that tracks property P?
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Neuron-level analysis: summary
● Very promising and exciting when it does work: a good look “inside the 

black box”, with very interpretable neural/cell dynamics.  But:

● “A needle in a haystack”: how to find the “good” neurons?
● Some principled methods (ablation, regression); not all of them scale well
● But also: 
● Is there a neuron that tracks property P?
● Not: what are you tracking?

● Deleting interpretable neurons may not effect performance in the original or 
downstream task (Morcos et al 2018)
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http://www.apple.com


Psycholinguistic methods
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Animating Idea
● NLMs are a bit of a “black box”.  How can we figure out what they’re 

doing?

● Well: humans are also (approximately) black boxes!

● So: let’s treat NLMs the way we treat people when we try to figure out the 
nature of their linguistic knowledge.
● In other words: treat NLMs as if they were participants in the kinds of 

experiments that (psycho-)linguists perform.
● [NB: lots more to do here!]
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https://www.mitpressjournals.org/doi/10.1162/tacl_a_00115


Subject-verb agreement
● Adjacent:
● The key is on the table [SS]
● * The key are on the table [SP]
● * The keys is on the table [PS]
● The keys are on the table [PP]

● Arbitrarily many attractors (nouns w/ different number) in between:
● But even the city with several tall buildings and many thriving industries is 

struggling.
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Method
● Does LM predict the right form of the verb?
● “The keys on the cabinet …”

●

● Single layer LSTM w/ 50 hidden units 

● NB: a lot more in the paper than we’ll talk about here.

● Later: other methods for getting LM grammaticality judgments.

PLM(are) > PLM(is)?
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Accuracy vs. Attractors

31



Effect of Task
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Take Home
● LSTMs can in general learn hierarchical dependencies

● But language modeling may not provide enough signal on its own
● i.e. explicit supervision on the task is required
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https://www.aclweb.org/anthology/N18-1108/


Innovations
● Same basic protocol, but:
● More constructions / contexts to test agreement on
● Multiple languages
● Comparison to human judgments (in Italian)
● Nonsense (nonce) constructions: think “colorless green ideas sleep furiously”
● It presents the case for marriage equality and states …
● It stays the shuttle for honesty insurance and finds …

● [Note: no “wug” / pseudo-words (“It blergs the shuttle …”); why not?] 
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Four languages; two constructions
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Four languages; two constructions
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Maybe English’s poor morphology 
and high POS ambiguity:
“If you have any questions or 
need/needs, …”



Comparison with Italians
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On the Linzen et al 2016 Data
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On the Linzen et al 2016 Data
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Be careful with what you can 
conclude from one experiment!



Take Home
● Language modeling may after all provide enough of a signal to learn hierarchical 

syntactic dependencies
● But may be very sensitive to hyper-parameters, including training data
● [NB: the Gulordava et al model is a lot smaller than the Google LM]
● “suggests that the input itself contains enough information to trigger some form of 

syntactic learning in a system, such as an RNN, that does not contain an explicit prior 
bias in favour of syntactic structures”

● Good model and data (we’ve used in several projects) to play with (https://
github.com/facebookresearch/colorlessgreenRNNs)

● A follow-up, with more constructions than just subject/verb agreement, and 
artificially generated data: https://www.aclweb.org/anthology/D18-1151/ 
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https://github.com/facebookresearch/colorlessgreenRNNs
https://github.com/facebookresearch/colorlessgreenRNNs
https://www.aclweb.org/anthology/D18-1151/


Diagnostic classifiers
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Main Idea
● What’s in a representation (a vector)?  How can we tell?

● For example: does an LSTM’s memory encode grammatical number?
● If we’re lucky: a single cell might, as we saw earlier.  (Sparse representation)
● In general: if we can easily predict the number from the memory, it’s “already in 

there”.

● Given a representation, train a simple model (usually a linear classifier) to 
predict a property of interest (usually linguistic) from that representation.
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Note on Terminology

● Roughly synonyms: diagnostic classifiers, probing classifiers, auxiliary 
prediction tasks, …

● [Basically: very simple transfer learning]
42

https://jair.org/index.php/jair/article/view/11196/26408
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https://www.aclweb.org/anthology/N19-1112/


Tagging Results
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Tagging Results
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Context matters!



Coreference
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No significant improvement over
global embedding baseline 
[BERT does a bit better, so 
adirectionality seems to matter]



Layer-wise Prediction
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(each column is  
a different task) 



Effect of Pretraining Task
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● See also:

● Zhang and Bowman 2018

● Peters et al 2018b

● Blevins et al 2018

https://arxiv.org/pdf/1809.10040.pdf
https://www.aclweb.org/anthology/D18-1179/
https://www.aclweb.org/anthology/P18-2003/
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https://openreview.net/pdf?id=SJzSgnRcKX


Edge Probing Set-up
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Results
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Conclusion
● “in general, contextualized embeddings improve over their non-

contextualized counterparts largely on syntactic tasks (e.g. constituent 
labeling) in comparison to semantic tasks (e.g. coreference), suggesting 
that these embeddings encode syntax more so than higher-level 
semantics”
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Is it in the probe or the representation?

52

https://www.aclweb.org/anthology/D19-1275/
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Is it in the probe or the representation?
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https://www.aclweb.org/anthology/D19-1275/


Summary
● Use simple classifiers to see what can be extracted from a model’s 

representations.

● Some clear trends:
● Contextualized representations have more info than global ones (GloVe e.g.)
● Especially for syntax
● Layer-wise: early recurrent layers are more transferrable, less clear on 

Transformers
● Language modeling a very good task for building transferrable representations
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Summary, cont.
● Promises:
● Lets us learn what’s encoded in a 

model’s opaque representation

● Shortcomings:
● Comparison/control (cf H+L)
● Correlation vs causation: 

encoding != used by the model
● New methods try to overcome this
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https://direct.mit.edu/coli/article/48/1/207/107571/Probing-Classifiers-Promises-Shortcomings-and


Attention-based
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https://www.aclweb.org/anthology/W19-4828/


Qualitative Patterns
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Attention Head as Classifier

● No new training required

● Do any of these work for pairwise classification tasks “off-the-shelf”?
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Attention Head as Classifier

● No new training required

● Do any of these work for pairwise classification tasks “off-the-shelf”?
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αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

class(q) = arg max
j

αj



Dependency Parsing
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Coreference
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Examples
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https://www.aclweb.org/anthology/D19-1445/


Overall
● Same observation as previous: many heads only pay attention to [SEP] 

and [CLS] tokens

● Changes in attention before and after fine-tuning

● Pruning some heads can actually improve performance (see also Voita et 
al on the original Transformer)
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https://www.aclweb.org/anthology/P19-1580/
https://www.aclweb.org/anthology/P19-1580/


Pruning all attention in a layer
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NB: pay attention to 
the scales



Summary
● Sometimes, attention heads seem to encode some linguistically interesting 

properties
● But there appears to be lots of redundancy
● And there’s much more terrain to explore here

● As before: we can ask if property P can be found in attention, but not what 
role (independently of a hypothesis) a head is playing

● For the curious: ongoing debate about the connection between attention 
and model predictions (not as applied to LMs yet): Attention is not 
explanation; Attention is not not explanation
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https://www.aclweb.org/anthology/N19-1357/
https://www.aclweb.org/anthology/N19-1357/
https://www.aclweb.org/anthology/D19-1002/


Adversarial Datasets
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https://www.aclweb.org/anthology/P19-1334/
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Results

(performance improves if fine-tuned on this challenge set)



Fine-tuning augmented with examples
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Conclusion
● Solving a dataset != solving a task
● Models are very powerful, can be very “clever”
● Adopt heuristics that exploit spurious cues in the data

● Careful design of “adversarial” data can both expose the heuristics being 
relied on and hopefully improve the representations learned
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https://www.aclweb.org/anthology/P19-1459/


Results, with and w/o adversarial set 
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Results, with and w/o adversarial set 

73

eliminates reliance on “not” as a cue; found to be helpful

even though trained on adversarial examples



Adversarial Datasets
● Can help identify heuristics and/or statistical cues that models are relying 

on to make decisions

● Sometimes, but not always, the models just need to see some examples 
from the adversarial set to learn it

● NB: constructing such a set often relies on deep linguistic knowledge!
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Interventions / Causal Analysis
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Problem with Probing
● Recall the issue with diagnostic classifiers / probing:
● We can learn that property X is encoded in representation R
● But not: does the model use property X in making its decisions

● Main idea here: causally intervene on the model and/or data to figure out 
which properties the model is relying on
● Somewhat analogous to individual neuron ablation
● E.g. if we “remove all number information” from R, does the model’s 

performance on a given task suffer
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Amnesic Probing
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00359/98091/Amnesic-Probing-Behavioral-Explanation-with


Amnesic Probing Method
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Amnesic Probing Results
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● Model relies differentially on different linguistic properties

● Probing performance does not entail model reliance



One last meta-point
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https://www.aclweb.org/anthology/D19-1286/


Negative polarity items
● NPIs are expressions like any, ever that are only grammatical in “negative” 

environments:
● * Shaan has done any of the reading.
● Shaan hasn’t done any of the reading.

● Question: does BERT “understand” NPIs?

● [NB: see also Marvin and Linzen 2018; Jumelet and Hupkes 2018; Jumelet 
et al 2021 (w/ yours truly :))]
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https://www.aclweb.org/anthology/D18-1151/
https://www.aclweb.org/anthology/W18-5424/
http://dx.doi.org/10.18653/v1/2021.findings-acl.439
http://dx.doi.org/10.18653/v1/2021.findings-acl.439


Does BERT “understand” NPIs?
● It depends!

● “We find that BERT has significant knowledge of these features, but its 
success varies widely across different experimental methods. We conclude 
that a variety of methods is necessary to reveal all relevant aspects of a 
model’s grammatical knowledge in a given domain.”
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Wrapping Up
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Interpretability and Analysis
● Current NLP models are often a “black box”, trained on huge amounts of 

data, which makes it very unclear what they are learning from their data
● Engineering: build better models for the future [though caveat emptor]
● Theoretical: what kinds of linguistic information are learnable (and not) from 

what kinds of data
● Ethical: what harmful effects are learned from the data, and how can these be 

mitigated

● Methods briefly surveyed: neuron-level, psycholinguistic, diagnostic 
classifiers (+ causal variants), attention analysis, adversarial data

● A huge and growing area!
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https://twitter.com/sleepinyourhat/status/1364997476587950080

