Neural Network Introduction

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld



Announcements

e HW1 due tomorrow night, upload readme and hw1.tar.gz to Canvas
e NB: separate files!

e Do not put readme inside of tar.gz
e indices_to_tokens (and in general): no error handling

e You can/should use Vocabulary.from_text_files to build your vocab object
e Factory design pattern allows for different initialization signatures in Python

e E.g. from_csv in pandas, from_pretrained in huggingface (later this course)

e Note on "args and *“kwargs
e https://book.pythontips.com/en/latest/args_and_kwargs.html
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*args and *“kwargs

lef add(a, b):
return a + b

print(add(1, 2)) ¢4
print(add(x(1, 2)))

lef add_any(xargs):
return sum(args)

print(add _any(1, 2, 3)) ¢
print(add_any(1, 2, 3, 4))
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*args and *“kwargs

def keywords(name="Shane", course="575k"):
return f"{name} is teaching {course};"

print (keywords (name="Agatha"))
print(keywords (xx{'"name": "Agatha"}))

def keywords_any (kxkwargs):
for key, value in kwargs.items():
print(f"{key}: {value}")

keywords_any(name="Shane", course="575k"))
keywords_any(name="Shane", course="575k", foo="bar"))
keywords_anyM**{“name“: "'Shane", '"course": “575k“})l
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Plan for Today

e Lasttime:
e Prediction-based word vectors

e Skip-gram with negative sampling [model + loss]

e Joday: intro to feed-forward neural networks
e Basic computation + expressive power
e Multilayer perceptrons
e Mini-batches

e Hyper-parameters and regularization
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Computation: Basic Example



Artificial Neuron

3=f(30'Wo+21°W1+32°W2)

https://github.com/shanest/nn-tutorial



https://github.com/shanest/nn-tutorial

Activation Function: Sigmoid

1

o(x) =
Il +e>
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Computing a Boolean function
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Computing ‘and’
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The XOR problem
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The XOR problem

XOR is not linearly separable
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Computing XOR
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Key ldeas

e Hidden layers compute high-level / abstract features of the input
e \ia training, will learn which features are helpful for a given task

e Caveat: doesn’t always learn much more than shallow features

e Doing so increases the expressive power of a neural network

e Strictly more functions can be computed with hidden layers than without
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Expressive Power
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Expressive Power

e Neural networks with one hidden layer are universal function approximators


http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".
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Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".

e (Generalizations (diff activation functions, less bounded, etc.) exist.
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Expressive Power

Neural networks with one hidden layer are universal function approximators

Let f: [0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | /(X) — 2(X)| < € for all

x € [0,1]".
Generalizations (diff activation functions, less bounded, etc.) exist.

But:
e Size of the hidden layer is exponential in m

e How does one find/learn such a good approximation?
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Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".
e (Generalizations (diff activation functions, less bounded, etc.) exist.

e But:
e Size of the hidden layer is exponential in m

e How does one find/learn such a good approximation?

e Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html
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Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".
e (Generalizations (diff activation functions, less bounded, etc.) exist.

e But:
e Size of the hidden layer is exponential in m

e How does one find/learn such a good approximation?

e Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

e See also GBC 6.4.1 for more references, generalizations, discussion
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Feed-forward networks
aka Multi-layer perceptrons (MLP)
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XOR Network
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XOR Network
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XOR Network

V and and and
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XOR Network
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XOR Network
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Some terminology

e Our XOR network is a feed-forward neural network with one hidden layer
e Aka a multi-layer perceptron (MLP)

e |nput nodes: 2; output nodes: 1

e Activation function: sigmoid
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General MLP
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General MLP

Y=t (fn_l (fz ( (W + b W2+ bz)---) W + b”)



General MLP

Y=t (fn_l (fz ( (W + b W2+ bz)---) W + b”)

v=[o X o X
Shape: (1,n,)



General MLP
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General MLP
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Shape: (1, 1)
1. number of neurons in layer O (input)
1, number of neurons in layer 1
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General MLP

Y=t (fn_l (fz (f1 (xW+ ') W2+ bz)---) W + b”)
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1 |nl 1 0 pl
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Shape: (1,n,) 1. number of neurons in layer O (input)

1, number of neurons in layer 1
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Parameters of an MLP

e \Weights and biases
e Foreach layer [: nj(n;,_; + 1)
e 1nn,_; weights; n; biases

e With n hidden layers (considering the output as a hidden layer):

n

Z nn,_,+ 1)

=1



Hyper-parameters of an MLP
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Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Qutput: 1 for binary classification or simple regression, number of labels for classification, ...



Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Qutput: 1 for binary classification or simple regression, number of labels for classification, ...

e Number of hidden layers
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Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Output: 1 for binary classification or simple regression, number of labels for classification, ...
e Number of hidden layers
e For each hidden layer:

® Size

e Activation function
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Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Output: 1 for binary classification or simple regression, number of labels for classification, ...
e Number of hidden layers
e For each hidden layer:

® Size

e Activation function

e Others: initialization, regularization (and associated values), learning rate / training, ...
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The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

e Empirical drawbacks: Super-exponentially many neurons; hard to discover

e “Deep and narrow” >> “Shallow and wide” (some theoretical analysis)

e In principle allows hierarchical features to be learned

e More well-behaved w/r/t optimization


https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

discover
SOource
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e Empirical d
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The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

discover
SOource

e Empirical d

R4

e "Deep and

gimmmmw

&

e In principle

=
P

source

YA/ UNIVERSITY of WASHINGTON 27

SN
0

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

a


https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://distill.pub/2017/feature-visualization/
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Activation Functions

® Note: non-linear activation functions are essential

e MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

e Without the non-linearity, would just have several linear transformations

e Composition of linear transformations is also linear!
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Activation Functions

® Note: non-linear activation functions are essential

e MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

e Without the non-linearity, would just have several linear transformations

e Composition of linear transformations is also linear!

Y=t (fn_l (f2 (f1 (xW+b1) W2 + bz)---) W + b”)



Non-linearity, cont.
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Non-linearity, cont.

e Recall: XOR was not computable by a
single neuron because the latter can

only compute linearly separable
functions


https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.

e Recall: XOR was not computable by a

_ O o
single neuron because the latter can
only compute linearly separable L w2057
functions )

e One perspective: integrating extracted NS
] AN O

features
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Non-linearity, cont.

e Recall: XOR was not computable by a

. | )
single neuron because the latter can
only compute linearly separable W awe0s )
functions y

e One perspective: integrating extracted R
L A O
features \

Original @ space Learned h space

e An equivalent perspective: 1 [ ]
1 1 0 1 0

e T[ransforming the input space (source; p.
169)

e Thisis a non-linear transformation ) )
e Space folding intuition more generally ok o . ol o . _
(also GBC sec 6.4.1) — l_‘l I;(‘) i -
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Non-linearity, cont.

e Recall: XOR was not computable by a

. | )
single neuron because the latter can
only compute linearly separable W awe0s )
functions y

e One perspective: integrating extracted R
L A O
features \

Original @ space Learned h space

e An equivalent perspective: rv—vj rv——j
1 1 0 1 0

e T[ransforming the input space (source; p.
169)

® [hisis a non-linear transformation

e Space folding intuition more generally
(also GBC sec 6.4.1)
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Activation Functions: Hidden Layer

sigmoid

B

o(x) =

l+e>* e+ 1



Activation Functions: Hidden Layer

sigmoid tanh
B /
6 4 2 0 2 4 & % 4 s 2 a4 0 1 2 3 4 5
e X _ ,—X
o(x) = = tanh(x) = = 20(2x) — 1
l+e™>* e+ 1 e + eX




Activation Functions: Hidden Layer

sigmoid tanh

B

-1
---------------

o(x) = 1_ —_° tanh(x) = x_e_x = 20(2x) — 1
l+e* e*+1 eX+e

Problem: derivative “saturates” (nearly 0)
everywhere except near origin



Activation Functions: Hidden Layer

Singid tanh Ll

B

B R(z) =max(0, z)l

6 4 2 O0 p) 4 c s 4 a2 a0 1z a4 s
e X __ X
o(x) = = tanh(x) = = 20(2x) — 1
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Problem: derivative “saturates” (nearly 0)
everywhere except near origin



Activation Functions: Hidden Layer
sigmoid tanh

ReLU

B R(z) =max(0, z)l

1 e~ X_ o
6(x) = — = tanh(x) = ——— = 20(2x) — 1 e Use ReLU by default
l+e™>* e*+1 er + e
e Generalizations:
e Leaky
Problem: derivative “saturates” (nearly 0) e ELU
everywhere except near origin e Softplus
®



Activation Functions: Output Layer

e Depends on the task!

e Regression (continuous output(s)): none!

e Just use final linear transformation

e Binary classification: sigmoid

e Also for multi-label classification

X
e l
e Multi-class classification: softmax softmax(x); = S o
N A
e Terminology: the inputs to a softmax are called logits J

e [there are sometimes other uses of the term, so beware]
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Mini-batch computation
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Computing with a Single Input

Y=t (fn_l (fz (fl (xW+ ') W2+ bz)---) W + b”)

| I I

¥ = [XO Xy e xn()] Woo Wio 0 Won,
_ | 1 |

Shape: (1,n,) wl = [0 Wi Wi
| | |

Wno() Wl’lol T Wnonl

n

b' = [b(% bll bl] Shape: (1, 1)

Shape: (1,n,) 1. number of neurons in layer O (input)

1, number of neurons in layer 1
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Mini-batch Gradient Descent (from lecture 2)

initialize parameters / build model
for each epoch:

data = shuffle(data)
batches = make batches(data)

for each batch i1in batches:

outputs = model (batch)

loss = loss fn(outputs, true outputs)
compute gradients

update parameters
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Computing with Mini-batches

e Bad idea:

for each batch i1n batches:
for each datum 1n batch:
outputs = model (datum)
loss = loss fn(outputs, true outputs)
compute gradients
update parameters



Computing with a Batch of Inputs



Computing with a Batch of Inputs
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Computing with a Batch of Inputs

y=1, (fn_l (f2 (f1 (XW'+Db') W=+ bz)---) W" + b”)
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Shape: (1, ny)
n: batch_size

NNNNNNNNNNNNNNNNNNNNNN



Computing with a Batch of Inputs

y=Ff (fn_l (f2 (fl (XW'+b') W2+b2)---) W”+b”)
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Computing with a Batch of Inputs

y=1, (fn_l (f2 (fl (XW'+Db') W=+ bz)---) W" + b”)
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n,: number of neurons in layer O (input)
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Computing with a Batch of Inputs

y=1, (fn_l (f2 (fl (XW'+Db') W=+ bz)---) W" + b”)

1 1 1
Xg Xp e X, Woo Woir  *t Won,
0 1 1 l L. l 1 _ |pl 3l 1
X _ xl Xl c oo an Wl _ WIO Wll Wlnl b — [bo bl c oo bn1]
: ' ' Shape: (1,n,)
n n n 1 1 1 1
Xp Xp e Xy Wpo Wit 0 W | Addedtoeach row of AW

Shape: (1, ny)

n: batch_size Shape: (i’l(), ”1)

n,: number of neurons in layer O (input)
1, number of neurons in layer 1 W onivesiny o washincron 36



Note on mini-batches and shape



Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)
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Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

e In principle, can be higher than 2-dimensional
e |Images: (batch_size, width, height, 3)

e Sequences: (batch_size, seq_len, representation_size)
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Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

e In principle, can be higher than 2-dimensional
e |Images: (batch_size, width, height, 3)

e Sequences: (batch_size, seq_len, representation_size)

e [wo comments:
e In your code, annotate every tensor with a comment saying intended shape

e \When debugging, look at shapes early on!!

YA/ UNIVERSITY of WASHINGTON 37



Homework 2
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Next Time

e Further abstraction: computation graph

e Backpropagation algorithm for computing gradients

e Using forward/backward API for nodes in a comp graph



