Neural Network Introduction

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld

Announcements

e HW1 due tomorrow night, upload readme and hw1.tar.gz to Canvas
e NB: separate files!

e Do not put readme inside of tar.gz
e indices_to_tokens (and in general): no error handling

e You can/should use Vocabulary.from_text_files to build your vocab object
e Factory design pattern allows for different initialization signatures in Python

e E.g. from_csv in pandas, from_pretrained in huggingface (later this course)

e Note on "args and *“kwargs
e https://book.pythontips.com/en/latest/args_and_kwargs.html

YA/ UNIVERSITY of WASHINGTON 2

https://book.pythontips.com/en/latest/args_and_kwargs.html

*args and *“kwargs

lef add(a, b):
return a + b

print(add(1, 2)) ¢4
print(add(x(1, 2)))

lef add_any(xargs):
return sum(args)

print(add _any(1, 2, 3)) ¢
print(add_any(1, 2, 3, 4))

YA/ UNIVERSITY of WASHINGTON 3

*args and *“kwargs

def keywords(name="Shane", course="575k"):
return f"{name} is teaching {course};"

print (keywords (name="Agatha"))
print(keywords (xx{'"name": "Agatha"}))

def keywords_any (kxkwargs):
for key, value in kwargs.items():
print(f"{key}: {value}")

keywords_any(name="Shane", course="575k"))
keywords_any(name="Shane", course="575k", foo="bar"))
keywords_anyM**{“name“: "'Shane", '"course": “575k“})l

YA/ UNIVERSITY of WASHINGTON 4

Plan for Today

e Lasttime:
e Prediction-based word vectors

e Skip-gram with negative sampling [model + loss]

e Joday: intro to feed-forward neural networks
e Basic computation + expressive power
e Multilayer perceptrons
e Mini-batches

e Hyper-parameters and regularization

YA/ UNIVERSITY of WASHINGTON 5

Computation: Basic Example

Artificial Neuron

3=f(30'Wo+21°W1+32°W2)

https://github.com/shanest/nn-tutorial

https://github.com/shanest/nn-tutorial

Activation Function: Sigmoid

1

o(x) =
Il +e>

NNNNNNNNNNNNNNNNNNNNNN

Computing a Boolean function

20

20

30

E) (=

Computing a Boolean function

20

20

30

E) (=

Computing a Boolean function

20
1 1 1

20

30

E) (=

Computing a Boolean function

20
1 1 1

20
C e o

=30

Computing a Boolean function

20
1 1 1

20
D (V)=
0 1 0 /20

Computing a Boolean function

20
1 1 1

20
C e o
0 1 0 /20
0 0 0 @

Computing ‘and’

YA/ UNIVERSITY of WASHINGTON 10

The XOR problem

NNNNNNNNNNNNNNNNNNNNNN

The XOR problem

XOR is not linearly separable

NNNNNNNNNNNNNNNNNNNNNN

Computing XOR

20

-20
20

-20

OR

20

AND

Computing XOR

20

-20
20 /

Exercise: show that
NAND behaves as described.

OR

AND

Computing XOR

\
\
\
\
N\
\
\
] ‘. N
\
N\
\
/>\\
ananp = 0.5%
\ \
\ N\
N\ \
N\ \
N\ \
\ \
N\ \
\ \
\ \
\
\
AN 2 dOR > 0.5
/7
¢
\
] S]
\
\
\

YA/ UNIVERSITY of WASHINGTON 13

Key ldeas

e Hidden layers compute high-level / abstract features of the input
e \ia training, will learn which features are helpful for a given task

e Caveat: doesn’t always learn much more than shallow features

e Doing so increases the expressive power of a neural network

e Strictly more functions can be computed with hidden layers than without

YA/ UNIVERSITY of WASHINGTON 14

Expressive Power

NNNNNNNNNNNNNNNNNNNNNN

Expressive Power

e Neural networks with one hidden layer are universal function approximators

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".

YA/ UNIVERSITY of WASHINGTON 15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".

e (Generalizations (diff activation functions, less bounded, etc.) exist.

YA/ UNIVERSITY of WASHINGTON 15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power

Neural networks with one hidden layer are universal function approximators

Let f: [0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | /(X) — 2(X)| < € for all

x € [0,1]".
Generalizations (diff activation functions, less bounded, etc.) exist.

But:
e Size of the hidden layer is exponential in m

e How does one find/learn such a good approximation?

YA/ UNIVERSITY of WASHINGTON 15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".
e (Generalizations (diff activation functions, less bounded, etc.) exist.

e But:
e Size of the hidden layer is exponential in m

e How does one find/learn such a good approximation?

e Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

YA/ UNIVERSITY of WASHINGTON 15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power

e Neural networks with one hidden layer are universal function approximators

o Let/:]0,1]" — R be continuous and € > 0. Then there is a one-hidden-layer
neural network g with sigmoid activation such that | f(X) — g(x)| < € for all

x € [0,1]".
e (Generalizations (diff activation functions, less bounded, etc.) exist.

e But:
e Size of the hidden layer is exponential in m

e How does one find/learn such a good approximation?

e Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

e See also GBC 6.4.1 for more references, generalizations, discussion

YA/ UNIVERSITY of WASHINGTON 15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Feed-forward networks
aka Multi-layer perceptrons (MLP)

NNNNNNNNNNNNNNNNNNNNNN

20

=20
20

O

XOR Network

N AND

20

NNNNNNNNNNNNNNNNNNNNNN

O

XOR Network
: and Gop + ,and

_ d
Qand = © (Wor nand ~ @nand T b)

N AND

20

30

XOR Network

v and and and
9and = © (Wor “aor + Wi D4 9nand T 0)
e
N AND = o | [9or Y%nand] + pand
! Wand
7 nand
20

YA/ UNIVERSITY of WASHINGTON 17

XOR Network

v and and and
9and = © (Wor “aor + Wi D4 9nand T 0)
e
N AND = o | [9or Y%nand] + pand
! Wand
7 nand
20

YA/ UNIVERSITY of WASHINGTON 18

XOR Network

O

: _ and and and
/ 9and = © (Wor “aor + Wi D4 9nand T 0)
3
AND = o | [9or Ynand] + pand
. Wand
L nand

_ or or or
aor—a(wp a,+w; -a,+b)

YA/ UNIVERSITY of WASHINGTON 18

XOR Network

V and and and
/ 9and = © (Wor “aor + Wi D4 9nand T 0)
e
N AND = o | [9or Y%nand] 2 nd + pand
"hand
20
dor = O (wl?r - a, + wf])r - a, + bor)
230 a4 4=0 (W;and a,+ Wcr]\and a,+ bnand)

YA/ UNIVERSITY of WASHINGTON 18

XOR Network

Y and and and
- } Qand = © (Wor “dor TW ood %nand T b)
P >
-20 w%'?.d y
20 / 20 AND =o||%r 9“pandl T pan
/ an
7 nand
wOr Wnand
p p
+ [bor bnand]
wOr Wnand

q q

YA/ UNIVERSITY of WASHINGTON 19

XOR Network

| _ and and and
N / 20 - Qand = © (Wor “dor TW ood %nand T b)

s
= o | [9or Ynand] 2 nd + paNd

W

nand

or nand and
Wp W) Wor

or inand
or . .nand '+'h7 b] and

Wg o Wq Whand

4+ band

YA/ UNIVERSITY of WASHINGTON 20

Generalizing

or
WP

or
Wq

nand
Wp

Wcr;and

+ [bor bnand]

and
Wor

and

Whand

4+ band

Generalizing

wOor wnand and
1 a [por pnand] WO';j
or . .nan an
Wg o Wg Whnand

fo (/i (W' +b1) W2+ b2

} 4+ band

"<
|

Generalizing

[wOr wnand
[a a] P P
O\l O D q

+ [bor bnand]

wOr wnand

q q nand

and
Wor 4+ band
Wand

9=/ (/i (xW!+bT) W2+ b2

f (fn—l (f2 (fl (xW!+ ') W2+b2)---) W" + b”)

Some terminology

e Our XOR network is a feed-forward neural network with one hidden layer
e Aka a multi-layer perceptron (MLP)

e |nput nodes: 2; output nodes: 1

e Activation function: sigmoid

input layer ¢

\

TEHen EVEE source
o\ oy
QR

General MLP

NN
XA

ALK

Y
C

CHA
0//

XX~ XX >
O

EXN
(J—

Wl Weight to neuron | in layer 1
l] from neuron i in layer O

http://neuralnetworksanddeeplearning.com/chap1.html

input layer ¢

1 1 layers
\ source
.\\ '&. A\

General MLP

<

NRCST>
R

Y

AK S
XK >

X%

L .

%

0}’).

CHR
(X
os\W‘

\ Wl Weight to neuron j in layer 1
l] from neuron i in layer O

http://neuralnetworksanddeeplearning.com/chap1.html

input layer ¢

General MLP

hidden layers

| .\\ N SOUrce
0\\‘.‘ 9
\}\S %Ak "(/ outp’)ili_l\aycr
R
KRS K
>
S Zame
“ . \ Wl Weight to neuron j in layer 1
1] from neuron i in layer O
] Oom neuro aye

http://neuralnetworksanddeeplearning.com/chap1.html

General MLP

NNNNNNNNNNNNNNNNNNNNNN

General MLP

Y=t (fn_l (fz ((W + b W2+ bz)---) W + b”)

General MLP

Y=t (fn_l (fz ((W + b W2+ bz)---) W + b”)

v=[o X o X
Shape: (1,n,)

General MLP

Y=t (fn_l (fz ((W + b W2+ bz)---) W + b”)

| I I

¥ = [xo Xy e xn()] Woo Wio 0 Won,
_ | 1 |

Shape: (1,n,) wl = [0 Wi Wi
| | |

WnOO Wl’lol T Wnonl

General MLP

A S I (f1 (xW!+ ') W2+b2)--- W" + b"

| I I

¥ = [xo Xy e xn()] Woo Wio 0 Won,
_ | 1 |

Shape: (1,n,) wl = [0 Wi Wi
| | |

WnOO Wl’lol T Wnonl

Shape: (1, 1)
1. number of neurons in layer O (input)
1, number of neurons in layer 1

YA/ UNIVERSITY of WASHINGTON 24

General MLP

Y=t (fn_l (fz (f1 (xW+ ') W2+ bz)---) W + b”)

| I I

¥ = [XO Xy e an] Woo Wio 0 Won,
_ | 1 |

Shape: (1,n,) wl = [0 Wi Wi
| | |

WnOO Wl’lol T Wnonl

1 |nl 1 0 pl
b = [b() bl an Shape: (1, 1)
Shape: (1,n,) 1. number of neurons in layer O (input)

1, number of neurons in layer 1

YA/ UNIVERSITY of WASHINGTON

24

Parameters of an MLP

e \Weights and biases
e Foreach layer [: nj(n;,_; + 1)
e 1nn,_; weights; n; biases

e With n hidden layers (considering the output as a hidden layer):

n

Z nn,_,+ 1)

=1

Hyper-parameters of an MLP

NNNNNNNNNNNNNNNNNNNNNN

Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Qutput: 1 for binary classification or simple regression, number of labels for classification, ...

Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Qutput: 1 for binary classification or simple regression, number of labels for classification, ...

e Number of hidden layers

YA/ UNIVERSITY of WASHINGTON 26

Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Output: 1 for binary classification or simple regression, number of labels for classification, ...
e Number of hidden layers
e For each hidden layer:

® Size

e Activation function

YA/ UNIVERSITY of WASHINGTON 26

Hyper-parameters of an MLP

e |nput size, output size
e Usually fixed by your problem / dataset
e |nput: image size, vocab size; number of “raw” features in general

e Output: 1 for binary classification or simple regression, number of labels for classification, ...
e Number of hidden layers
e For each hidden layer:

® Size

e Activation function

e Others: initialization, regularization (and associated values), learning rate / training, ...

YA/ UNIVERSITY of WASHINGTON 26

The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

e Empirical drawbacks: Super-exponentially many neurons; hard to discover

e “Deep and narrow” >> “Shallow and wide” (some theoretical analysis)

e In principle allows hierarchical features to be learned

e More well-behaved w/r/t optimization

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

discover
SOource
SIS)

e Empirical d

e "Deep and

e In principle

e Morewell-Le..c..co ot o,

YA/ UNIVERSITY of WASHINGTON 27

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

The Deep in Deep Learning

e The Universal Approximation Theorem says that one hidden layer suffices
for arbitrarily-closely approximating a given function

discover
SOource

e Empirical d

R4

e "Deep and

gimmmmw

&

e In principle

=
P

source

YA/ UNIVERSITY of WASHINGTON 27

SN
0

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

a

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://distill.pub/2017/feature-visualization/
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Activation Functions

® Note: non-linear activation functions are essential

e MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

e Without the non-linearity, would just have several linear transformations

e Composition of linear transformations is also linear!

YA/ UNIVERSITY of WASHINGTON 28

Activation Functions

® Note: non-linear activation functions are essential

e MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

e Without the non-linearity, would just have several linear transformations

e Composition of linear transformations is also linear!

Y=t (fn_l (f2 (f1 (xW+b1) W2 + bz)---) W + b”)

Non-linearity, cont.

NNNNNNNNNNNNNNNNNNNNNN

Non-linearity, cont.

e Recall: XOR was not computable by a
single neuron because the latter can

only compute linearly separable
functions

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.

e Recall: XOR was not computable by a

_ O o
single neuron because the latter can
only compute linearly separable L w2057
functions)

e One perspective: integrating extracted NS
] AN O

features

YA/ UNIVERSITY of WASHINGTON 29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.

e Recall: XOR was not computable by a

. |)
single neuron because the latter can
only compute linearly separable W awe0s)
functions y

e One perspective: integrating extracted R
L A O
features \

Original @ space Learned h space

e An equivalent perspective: 1 []
1 1 0 1 0

e T[ransforming the input space (source; p.
169)

e Thisis a non-linear transformation))
e Space folding intuition more generally ok o . ol o . _
(also GBC sec 6.4.1) — l_‘l I;(‘) i -

Tl hi

YA/ UNIVERSITY of WASHINGTON 29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.

e Recall: XOR was not computable by a

. |)
single neuron because the latter can
only compute linearly separable W awe0s)
functions y

e One perspective: integrating extracted R
L A O
features \

Original @ space Learned h space

e An equivalent perspective: rv—vj rv——j
1 1 0 1 0

e T[ransforming the input space (source; p.
169)

® [hisis a non-linear transformation

e Space folding intuition more generally
(also GBC sec 6.4.1)

YA/ UNIVERSITY of WASHINGTON 29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Activation Functions: Hidden Layer

sigmoid

B

o(x) =

l+e>* e+ 1

Activation Functions: Hidden Layer

sigmoid tanh
B /
6 4 2 0 2 4 & % 4 s 2 a4 0 1 2 3 4 5
e X _ ,—X
o(x) = = tanh(x) = = 20(2x) — 1
l+e™>* e+ 1 e + eX

Activation Functions: Hidden Layer

sigmoid tanh

B

-1

o(x) = 1_ —_° tanh(x) = x_e_x = 20(2x) — 1
l+e* e*+1 eX+e

Problem: derivative “saturates” (nearly 0)
everywhere except near origin

Activation Functions: Hidden Layer

Singid tanh Ll

B

B R(z) =max(0, z)l

6 4 2 O0 p) 4 c s 4 a2 a0 1z a4 s
e X __ X
o(x) = = tanh(x) = = 20(2x) — 1
l+e™>* e+ 1 eX + e=*

Problem: derivative “saturates” (nearly 0)
everywhere except near origin

Activation Functions: Hidden Layer
sigmoid tanh

ReLU

B R(z) =max(0, z)l

1 e~ X_ o
6(x) = — = tanh(x) = ——— = 20(2x) — 1 e Use ReLU by default
l+e™>* e*+1 er + e
e Generalizations:
e Leaky
Problem: derivative “saturates” (nearly 0) e ELU
everywhere except near origin e Softplus
®

Activation Functions: Output Layer

e Depends on the task!

e Regression (continuous output(s)): none!

e Just use final linear transformation

e Binary classification: sigmoid

e Also for multi-label classification

X
e l
e Multi-class classification: softmax softmax(x); = S o
N A
e Terminology: the inputs to a softmax are called logits J

e [there are sometimes other uses of the term, so beware]

YA/ UNIVERSITY of WASHINGTON 31

Mini-batch computation

NNNNNNNNNNNNNNNNNNNNNN

Computing with a Single Input

Y=t (fn_l (fz (fl (xW+ ') W2+ bz)---) W + b”)

| I I

¥ = [XO Xy e xn()] Woo Wio 0 Won,
_ | 1 |

Shape: (1,n,) wl = [0 Wi Wi
| | |

Wno() Wl’lol T Wnonl

n

b' = [b(% bll bl] Shape: (1, 1)

Shape: (1,n,) 1. number of neurons in layer O (input)

1, number of neurons in layer 1
WA/ UNIVERSITY o f WASHINGTON 33

Mini-batch Gradient Descent (from lecture 2)

initialize parameters / build model
for each epoch:

data = shuffle(data)
batches = make batches(data)

for each batch i1in batches:

outputs = model (batch)

loss = loss fn(outputs, true outputs)
compute gradients

update parameters

YA/ UNIVERSITY of WASHINGTON 34

Computing with Mini-batches

e Bad idea:

for each batch i1n batches:
for each datum 1n batch:
outputs = model (datum)
loss = loss fn(outputs, true outputs)
compute gradients
update parameters

Computing with a Batch of Inputs

Computing with a Batch of Inputs

y=1, (fn_l (f2 (L(XW+ b)) W2+ bz)---) W" + b”)

Computing with a Batch of Inputs

y=1, (fn_l (f2 (f1 (XW'+Db') W=+ bz)---) W" + b”)

0 .0 0

X0 Xp e X

0 .1 1

v [*T X Xy
n n n

Xp Xy e X

Shape: (1, ny)
n: batch_size

NNNNNNNNNNNNNNNNNNNNNN

Computing with a Batch of Inputs

y=Ff (fn_l (f2 (fl (XW'+b') W2+b2)---) W”+b”)

1 1 1
Xg Xp e X, Woo Woir *t Won,
0 |] 1 1 1
xl Xl c oo an Wl _ WlO Wll Wlnl
n n n | 1 1
)Cl xl o oo xno Wnoo Wnol ee° WnOnl

Shape: (1, ny)
n: batch_size

Computing with a Batch of Inputs

y=1, (fn_l (f2 (fl (XW'+Db') W=+ bz)---) W" + b”)

| | |
Xg Xp e X, Woo Woir *t Won,
0 .1 1 I I 1
Xp X e Xy | ot = | o Y Win,
n n n 1 | 1
.xl xl ¢ o xno Wnoo Wnol e WnOnl

Shape: (1, ny)

n: batch_size Shape: (”()a ”1)

n,: number of neurons in layer O (input)
1, number of neurons in layer 1 W oniversity o f WASHINGTON

Computing with a Batch of Inputs

y=1, (fn_l (f2 (fl (XW'+Db') W=+ bz)---) W" + b”)

1 1 1
Xg Xp e X, Woo Woir *t Won,
0 1 1 l L. l 1 _ |pl 3l 1
X _ xl Xl c oo an Wl _ WIO Wll Wlnl b — [bo bl c oo bn1]
: ' ' Shape: (1,n,)
n n n 1 1 1 1
Xp Xp e Xy Wpo Wit 0 W | Addedtoeach row of AW

Shape: (1, ny)

n: batch_size Shape: (i’l(), ”1)

n,: number of neurons in layer O (input)
1, number of neurons in layer 1 W onivesiny o washincron 36

Note on mini-batches and shape

Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

YA/ UNIVERSITY of WASHINGTON 37

Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

e In principle, can be higher than 2-dimensional
e |Images: (batch_size, width, height, 3)

e Sequences: (batch_size, seq_len, representation_size)

YA/ UNIVERSITY of WASHINGTON 37

Note on mini-batches and shape

e Most modern neural net libraries (e.g. PyTorch) expect the first dimension of
matrices/tensors to be a batch size

e Produce a sequence of representations, for each item in the batch

e c.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

e In principle, can be higher than 2-dimensional
e |Images: (batch_size, width, height, 3)

e Sequences: (batch_size, seq_len, representation_size)

e [wo comments:
e In your code, annotate every tensor with a comment saying intended shape

e \When debugging, look at shapes early on!!

YA/ UNIVERSITY of WASHINGTON 37

Homework 2

NNNNNNNNNNNNNNNNNNNNNN

Next Time

e Further abstraction: computation graph

e Backpropagation algorithm for computing gradients

e Using forward/backward API for nodes in a comp graph

