Recurrent Neural Networks, |

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld

Today's Plan

e Lasttime:
e Computation graphs + backpropagation

e Deep Averaging Network (DAN)
e Quick notes on edugrad
e Neural Probabilistic Language Model (feed-forward model)

e Additional Training Notes
e Regularization
e Early stopping

e Hyper-parameter searching

e Intro to Recurrent Neural Networks

YA/ UNIVERSITY of WASHINGTON 2

Announcements

e HW2 reference code now available

e Tests: hwX/test_all.py. NB: necessary, but not sufficient, to check correctness
of your code. From command-line, run pytest from your HW directory, with
environment activated.

e Implementing ops in edugrad:

e You can use any numpy operations you want; goal is to understand forward/backward
APl

e https://github.com/shanest/edugrad

e Log: base e, don’t need to do special handling of bad input arguments (like 0)

e Edugrad is installed in the course conda environment, so be sure to activate it

YA/ UNIVERSITY of WASHINGTON 3

https://github.com/shanest/edugrad

Decorators

e (@tensor_op in edugrad code: what is this??
e This converts Operation s into methods on Tensor's

e Handles dynamic graph construction, the ctx magic, etc.

e Python decorator (similar to decorator design pattern) @my _decorator

e Design pattern to extend an object with more functionality fn) »

e Decorators wrap their arguments, add features
® c.g. registering in a central DB

e In python, syntactic sugar: fn(...):

e \With more complicated use cases

e Canonical examples: @classmethod, @staticmethod fn = my_decorator(fn)

YA/ UNIVERSITY of WASHINGTON 4

https://docs.python.org/3/glossary.html#term-decorator
https://en.wikipedia.org/wiki/Decorator_pattern

Decorator Demo

lef printer(method, *args):
fn(xkargs):
output = method(*args)
print(f"Output: {output}")
return fn

@printer
lef add(a, b):
return a + b

add(1, 2)

@tensor_op

def tensor_op(op: Operation) —> Callable[[List[Tensor]], Tensor]:

Takes an operation, and turns it into a callable function on Tensors.

The resulting function implicitly builds the dynamic computation graph,
including populating the Tensors' _backward methods, when called.

def fn(xinputs: List[Tensor], xxkwargs) -> Tensor:
ctx = []
new_tensor = Tensor(
op.forward(ctx, *x[tensor.value for tensor in inputs], *xkwargs),
inputs,
op.__hame__,

def _backward():

grads = op.backward(ctx, new_tensor.grad)

for idx in range(len(inputs)):
inputs[idx].grad += grads[idx]

new_tensor._backward = _backward
return new_tensor

return fn

YA/ UNIVERSITY of WASHINGTON

Recurrent Neural Networks

RNNs: high-level

RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

YA/ UNIVERSITY of WASHINGTON 8

RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step

YA/ UNIVERSITY of WASHINGTON 8

RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step

e Different RNNSs:

e Different operations at each step
e Operation also called “recurrent cell”

e Other architectural considerations (e.g. depth; bidirectionally)

YA/ UNIVERSITY of WASHINGTON 8

Long-distance dependencies, |: number

e Language modeling (fill-in-the-blank)
e The keys

e [he keys on the table

e [he keys next to the book on top of the table

e To get the number on the verb, need to look at the subject, which can be very far
away

e And number can disagree with linearly-close nouns

Selectional Restrictions

e The family moved from the city because they wanted a larger

e The team moved from the city because they wanted a larger

Selectional Restrictions

e The family moved from the city because they wanted a larger house.

e The team moved from the city because they wanted a larger market.

e Need models that can capture long-range dependencies like this.

e N-gram (whether count-based or neural) cannot. E.g., with n=4:

e P(word | “they wanted a larger”)

Steinert-Threlkeld and Szymanik 2019; Olah 2015

YA/ UNIVERSITY of WASHINGTON

12

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Steinert-Threlkeld and Szymanik 2019; Olah 2015

YA/ UNIVERSITY of WASHINGTON

12

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ho hq hy

N — N —— - — N

X0 X1 X;
This class ... Interesting

Steinert-Threlkeld and Szymanik 2019; Olah 2015

YA/ UNIVERSITY of WASHINGTON 12

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

X0

This

class

Interesting

Steinert-Threlkeld and Szymanik 2019; Olah 2015

YA/ UNIVERSITY of WASHINGTON 12

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Simple / Vanilla / EIman RNNs

e Same kind of feed-forward computation we’ve been studying, but:
e X, sequence element at time t

e /1,_: hidden state of the model at previous time t-1

Simple / Vanilla / EIman RNNs

e Same kind of feed-forward computation we’ve been studying, but:
e X, sequence element at time t

e /1,_: hidden state of the model at previous time t-1

Simple/“Vanilla” RNN: h , = tanh(xth + ht—IWh + b)

Training: BPITT

e Backpropagation Through Time
e “Unroll” the network across time-steps

e Apply backprop to the “wide” network
e Each cell has the same parameters

e Gradients sum across time-steps

O MUIti-Variable Chain FUIe In our example: J(t)(g) Apply the multivariable chain rule:
=1
/\ 8J(t) i aJ(t) aWh‘(i)
Wh|(1) Wh|(2) Wh‘(t) oW} i=1 oW, (7) oW,

Q

% t (t)

Qua) % aue® %
) ’ Z—; IWnl
Wh o

source YA/ UNIVERSITY of WASHINGTON

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture05-rnnlm.pdf

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

Power of RNNs

o __TIOVE
T e think
L —_exist

S— -1
break
_____smash

like
L _chase

cat

~—nouse
L_.cat

. dog
—Jmonster
'{_Iion
___dragon
woman

girl
man
___boy

car
~L_.boo
____rock
_sandwich
—cookie
____bread

—plate
glass

i

L 1 ! 1
20 1.5 1.0 0.0

What trends do you notice!

Elman 1990

YA/ UNIVERSITY of WASHINGTON

15

http://www.apple.com

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

Power of RNNs

— 7 | |
e __moVe
T e lhink
L—_exist D.0.-ABS
| —_sleep
break VERBS
_____smash DO-OPT

like

cat

L chase DO-OBLIG

el TIOUSC

—aral

—dog ANIMALS

—JNIONSICr

L ion ANIMATES

___dragon
woman

girl HUMAN

man

___boy

NOUNS

car
—.boo

____rock ,
__sandwich

i

| bread INANIMATES

—_pl
fhs, BREAKABLES
L | | | {
20 1.5 1.0 0.0 0.5

Elman 1990

YA/ UNIVERSITY of WASHINGTON

16

http://www.apple.com

one to one

MLP

one to many

e.g. Image
captioning

Using RNNs

many to one

many to many

many to many

—- —»-
W UNIVERSITY o f WASHINGT 0

one to one

MLP

one to many

e.g. Image
captioning

Using RNNSs

many to one many to many

/

e.g. text classification

many to many

Using RNNs

one to one one to many many to one many to many many to many
! t 1 T t 1t 1 Pt 1
! ! bt bt Pt
MLP ¢.g Image / /
captioning
e.g. text classification e.g. POS tagging, LM O_O

W UNIVERSITY o f WASHINGT ON 17

Using RNNs

one to one one to many many to one many to many many to many
! t 1 T t 1t 1 Pt 1
! ! bt bt Pt
e.g. Image
MLP captioning / seq2seq (later) /
e.g. text classification e.g. POS tagging, LM O_O

W UNIVERSITY o f WASHINGT ON 17

RNN for Text Classification

(Softmax)
N\ /
C)

/ \
C N)

A

RNN

A y \ \

X9) X H(C X3) X)

JM sec 9.2.5

RNNSs for Language Modeling

Next word

Loss

Softmax over
Vocabulary

RNN
Layer(s)

Input

Embeddings

T thIe i Ji]
— log y. — 10g Yhole — log yin

the

|

|

()

T

()

o log Ythe

ground

|

T

()

= log Yground

T

()

4)
> > > >
L A T A A ﬁ)
(@O ¢+ @ - 00) (@O ¢+ @ -+ 00) (@O ¢+ @ - 00) (@O ¢+ @ - 00) (@O *+ © - 00)
))) A A
In a hole Ig the JM sec 9.2.3

YA/ UNIVERSITY of WASHINGTON 19

Two Extensions

e Deep RNNSs:

! f !
e
! f !

! ! !
=000
! ! !
=001
1 o
Cl3<1> \ CB<2>} $<t>

Source: RNN cheat sheet YA/ UNIVERSITY of WASHINGTON 20

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

e Deep RNNSs:

~AZ1> A 2>
I!IIII IIIIII

($<2>

J A J

o
A\

Two Extensions

~A<t>

/ 1 1 1
000010
S 1 1

i 1 ! !
{0
ot r
w000
I T

—
~

B
1
(:B<t>

e Bidirectional RNNSs:

4 D
~<1>
Y

N J

") a)
a<0> |-
- J N _/
. N\
<1>
A\ J

Source: RNN cheat sheet

4 h
AZL2>
Y

_ Y

(R
N Y
4 A
£U<2>

o J

\
AT >
Y
J
t 1
-)
<0>
<+ (1/<_
— _J
A
a)
Y
\
:U<T>
J

YA/ UNIVERSITY of WASHINGTON

20

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

e Deep RNNSs:

~AZ1> A 2>
I!IIII IIIIII

o
A\

($<2>

J A J

B
1
(:B<t>

Two Extensions

~A<t>

/ 1 1 1
000010
S 1 1

i 1 ! !
{0
ot r
a[1]<0> — —>D—>—>
I T

—
~

e Bidirectional RNNSs:

a) 4)
~A]1> AZL2>
Y Y
x Y " J
P 1 P
P — 4—. <+
A A
ﬁ R () 4 \
Forward RNN —»{ @507 |— — —..—
. J J U Y
r N)
<1> <2>
- J " J

Source: RNN cheat sheet

\
AT >
Y
J
t 1
-)
<0>
<+ (1/<_
— _J
A
a)
Y
\
:U<T>
J

YA/ UNIVERSITY of WASHINGTON

20

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:

4 N O R s N
AZ1> A 2> ~ZE> AL 1> ALD> b

! ! t - J y, S Y
‘ A T A T A T
\a,[k]<0>J —’D _’D—"..—’D_’ - ﬁﬁ
1 1 y Backward RNN —» S — — -— a<0>
P
N J
1 1 1 ! 1 t
N
[a[2]<0> —'D_’D_’--._’G—’...
) - N O N O D s R
! ! ! Forward RNN —» ai0> — — DTN
a[1]<0>1—’D_>D_’".—’D_’". . ! b l K g k J
{) ! ! !
! ! ! s N [3 4 N
(x<1>J x<2>J <t> $<1> £U<2> £U<T>
N N - _ v, - J _ J

Source: RNN cheat sheet YA/ UNIVERSITY of WASHINGTON 20

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:

4 N O R s N
AZ1> A 2> ~ZE> AL 1> ALD> b

! ! t N J y, S Y
O Concatenate states —» A T A T N T
\a,[k]<0>J —’D —’D—"..—’D_’ - ﬁ—\
1 1 y Backward RNN —» S — — -— a(<_0>
N J
1 1 1 ! 1 t
N
[a[2]<0> —'D_’D_’--._’G—’.-.
) - N O N O D s R
! ! ! Forward RNN —» ai0> — — DTN
a[1]<0>1—’D_»D—’".—’D_’". . ! k l K g k J
{) ! ! !
! ! ! s N [3 4 N
(x<1>J x<2>J <t> $<1> £U<2> £U<T>
N N - _ v, - J _ J

Source: RNN cheat sheet YA/ UNIVERSITY of WASHINGTON 20

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Batching in RNNs

e Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]

e But what is sequence length??
e “This is the first example </s>": 6

e “This is another </s>": 4

Padding and Masking

e Step 1: pad all sequences in batch to be of the same length (PAD = special token)

e “This is the first example </s>": 6
e “This is another </s> PAD PAD”: 6

e Step 2: build a “mask” (1 = True token, 0 = padding)

1 1 1 1 1 1
1 1T 1 1 0 O
e Step 3: use mask to tell model what to ignore, either

e Select correct final states [classification]

e Multiply losses in tagging tasks [LM]

YA/ UNIVERSITY of WASHINGTON 22

Summary

e RNNs allow for neural processing of sequential data

e In principle, should help models capture long-distance dependencies (e.g.
number agreement, selectional preferences, ...)

e Maintain a state over time
e Repeatedly apply the same weights

® as opposed to n-gram models, which cannot build such dependencies
e Uses: classification, tagging

e EXxtensions: deep, bidirectional

YA/ UNIVERSITY of WASHINGTON 23

Next Time

e Discuss a technical problem in training Vanilla RNNs

e \anishing gradients

e Introduce gating-based RNNs
o LSTMs
e GRUs

e Strengths, weaknesses, differences

YA/ UNIVERSITY of WASHINGTON 24

