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Today's Plan

e Lasttime:
e Computation graphs + backpropagation

e Deep Averaging Network (DAN)
e Quick notes on edugrad
e Neural Probabilistic Language Model (feed-forward model)

e Additional Training Notes
e Regularization
e Early stopping

e Hyper-parameter searching

e Intro to Recurrent Neural Networks
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Announcements

e HW2 reference code now available

e Tests: hwX/test_all.py. NB: necessary, but not sufficient, to check correctness
of your code. From command-line, run pytest from your HW directory, with
environment activated.

e Implementing ops in edugrad:

e You can use any numpy operations you want; goal is to understand forward/backward
APl

e https://github.com/shanest/edugrad

e Log: base e, don’t need to do special handling of bad input arguments (like 0)

e Edugrad is installed in the course conda environment, so be sure to activate it
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https://github.com/shanest/edugrad

Decorators

e (@tensor_op in edugrad code: what is this??
e This converts Operation s into methods on Tensor's

e Handles dynamic graph construction, the ctx magic, etc.

e Python decorator (similar to decorator design pattern) @my _decorator

e Design pattern to extend an object with more functionality fn ) »

e Decorators wrap their arguments, add features
® c.g. registering in a central DB

e In python, syntactic sugar: fn(...):

e \With more complicated use cases

e Canonical examples: @classmethod, @staticmethod fn = my_decorator(fn)
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https://docs.python.org/3/glossary.html#term-decorator
https://en.wikipedia.org/wiki/Decorator_pattern

Decorator Demo

lef printer(method, *args):
fn(xkargs):
output = method(*args)
print(f"Output: {output}")
return fn

@printer
lef add(a, b):
return a + b

add(1, 2)




@tensor_op

def tensor_op(op: Operation) —> Callable[[List[Tensor]], Tensor]:

Takes an operation, and turns it into a callable function on Tensors.

The resulting function implicitly builds the dynamic computation graph,
including populating the Tensors' _backward methods, when called.

def fn(xinputs: List[Tensor], xxkwargs) -> Tensor:
ctx = []
new_tensor = Tensor(
op.forward(ctx, *x[tensor.value for tensor in inputs], *xkwargs),
inputs,
op.__hame__,

def _backward():

grads = op.backward(ctx, new_tensor.grad)

for idx in range(len(inputs)):
inputs[idx].grad += grads[idx]

new_tensor._backward = _backward
return new_tensor

return fn
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Recurrent Neural Networks



RNNs: high-level



RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

YA/ UNIVERSITY of WASHINGTON 8



RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words
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e Applying the same operation at each step
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step

e Different RNNSs:

e Different operations at each step
e Operation also called “recurrent cell”

e Other architectural considerations (e.g. depth; bidirectionally)
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Long-distance dependencies, |: number

e Language modeling (fill-in-the-blank)
e The keys

e [he keys on the table

e [he keys next to the book on top of the table

e To get the number on the verb, need to look at the subject, which can be very far
away

e And number can disagree with linearly-close nouns



Selectional Restrictions

e The family moved from the city because they wanted a larger

e The team moved from the city because they wanted a larger




Selectional Restrictions

e The family moved from the city because they wanted a larger house.

e The team moved from the city because they wanted a larger market.

e Need models that can capture long-range dependencies like this.

e N-gram (whether count-based or neural) cannot. E.g., with n=4:

e P(word | “they wanted a larger”)



Steinert-Threlkeld and Szymanik 2019; Olah 2015
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https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Steinert-Threlkeld and Szymanik 2019; Olah 2015
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https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Simple / Vanilla / EIman RNNs

e Same kind of feed-forward computation we’ve been studying, but:
e X, sequence element at time t

e /1,_: hidden state of the model at previous time t-1



Simple / Vanilla / EIman RNNs

e Same kind of feed-forward computation we’ve been studying, but:
e X, sequence element at time t

e /1,_: hidden state of the model at previous time t-1

Simple/“Vanilla” RNN: h , = tanh(xth + ht—IWh + b)



Training: BPITT

e Backpropagation Through Time
e “Unroll” the network across time-steps

e Apply backprop to the “wide” network
e Each cell has the same parameters

e Gradients sum across time-steps

O MUIti-Variable Chain FUIe In our example: J(t)(g) Apply the multivariable chain rule:
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http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture05-rnnlm.pdf

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

Power of RNNs
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Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

Power of RNNs
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one to one
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e.g. Image
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Using RNNs
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Using RNNs

one to one one to many many to one many to many many to many
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Using RNNs

one to one one to many many to one many to many many to many
! t 1 T t 1t 1 Pt 1
! ! bt bt Pt
e.g. Image
MLP captioning / seq2seq (later) /
e.g. text classification e.g. POS tagging, LM O_O
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RNN for Text Classification
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RNNSs for Language Modeling

Next word

Loss
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Two Extensions

e Deep RNNSs:
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https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

e Deep RNNSs:
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:
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https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Batching in RNNs

e Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]

e But what is sequence length??
e “This is the first example </s>": 6

e “This is another </s>": 4



Padding and Masking

e Step 1: pad all sequences in batch to be of the same length (PAD = special token)

e “This is the first example </s>": 6
e “This is another </s> PAD PAD”: 6

e Step 2: build a “mask” (1 = True token, 0 = padding)

1 1 1 1 1 1
1 1T 1 1 0 O
e Step 3: use mask to tell model what to ignore, either

e Select correct final states [classification]

e Multiply losses in tagging tasks [LM]
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Summary

e RNNs allow for neural processing of sequential data

e In principle, should help models capture long-distance dependencies (e.g.
number agreement, selectional preferences, ...)

e Maintain a state over time
e Repeatedly apply the same weights

® as opposed to n-gram models, which cannot build such dependencies
e Uses: classification, tagging

e EXxtensions: deep, bidirectional
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Next Time

e Discuss a technical problem in training Vanilla RNNs

e \anishing gradients

e Introduce gating-based RNNs
o LSTMs
e GRUs

e Strengths, weaknesses, differences
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