Sequence to Sequence (seq2seq) +
Attention

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld



Announcements

e Patas back! HW3 due tonight; HW4 no late penalty
e Unit tests and grading

e Edugrad, numpy, etc:
e Numpy only inside of backward/forward methods of an Operation
e @tensor_op: your Operations becomes methods that take Tensor arguments
e With Tensors: must use these methods, not numpy

e T[hese operations build the graph, the plumbing for backprop, etc

e Broadcasting/shapes in edugrad (lack thereof :))

e Remember: annotate shapes!! (hw3 ref will have some examples)

e Adagrad:
e Param._grad_hist: this is Gt,i

e Order of operations: first update Gm-, then apply update rule
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Today's Plan

e Last time: RNNSs for sequence processing

e Motivation (long-distance dependencies), Vanilla/Elman, stacked/bidirectional,
classification and LM

e Today:
e \anishing gradient problem for vanilla RNNs
e (ating mechanisms / fancier RNNs to overcome this (LSTM, GRU)
® Sequence-to-sequence tasks/models

e Attention mechanism
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seg2seq: Overview



Sequence to sequence problems

e Many NLP tasks can be construed as sequence-to-sequence problems

e Machine translations: sequence of source lang tokens to sequence of target
lang tokens

e Parsing: “Shane talks.” —> “(S (NP (N Shane)) (VP V talks))”
e Incl semantic parsing (“Shane talks.” -> “de(talking(e) A Agent(e, S))”)

® Summarization

e NB: not the same as tagging, which assigns a label to each position in a
given sequence (POS tagging, language modeling)



Seq2seq vs Tagging
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seq2seq architecture

e [wO components:

e Encoder
e |nput sequence —> vector representation (“context” vector)

e Decoder
e \ector (“context” vector) —> Output sequence

e High-level “API”: encoder/decoder can be different architectures (LSTM,
GRU, Transformer, convolutional, ...)



Training an encoder-decoder RNN
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Inference / Generation

Target Text
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Seq2seq interim summary

e Effectively, a seq2seq model is a conditional language model: the same
kind of language model that we have seen, but conditioned on the context
of the input sequence

|y

P(y|x) = HP()’ilxayq‘)
=1



NMT Evaluation

e “ldeal”. human evaluation (fluency, adequacy, ranking)

e BLEU (BiLingual Evaluation Understudy): roughly, n-gram overlap between
reference translations and machine translations

e Penalizes synonymous translations
e METEOR, BERTScore attempt to alleviate

e Low correlation with human ratings

e chrF++

e Refinement of character n-gram F1 score

e Seems to have better correlations

e In general: still no perfect solution

Source

la verdad, cuya madre es la historia, €émula del tiempo, depdsito de las acciones,
testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds,
witness for the past, example and counsel for the present, and warning for the future.

Candidate 1
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Outstanding Issues in NMT

e Evaluation: automated metrics are all flawed
e "Tangled Up in BLEU”

e Low-resource / unsupervised MT

e Can we build good translation models in the absence of huge amounts of
parallel text?

e Common technique: backtranslation

e http://www.statmt.org/wmt20/unsup_and_very low res/

e http://turing.iimas.unam.mx/americasnip/st.html

e https://www.aclweb.org/anthology/2020.acl-main.560/
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Statistical Machine Translation: Alignment



Statistical Machine Translation (90s-2010s)

e Goal: find best translation y (e.g. English) of source sentence x (e.qg.

French) arg max P(y | x)

Y

e Use Bayes to decompose into two components:

arg max P(x|y)P(y)
Y
e (Core translation model P(xly)

e Language model P(y): produce good / fluent target language text (e.g. English)



Alignment

e Most SMT systems factored through an alignment
e Correspondence between words/phrases in source and target sentence

e Typologically different languages have, e.g., very different word order (see JM
11.1 for more examples)

e Add alignment as a latent variable:

P(x,aly)
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Alignment, example

Ceci n’ est pas une pipe -

This is not a pipe

Ceci n’ est pas une pipe

This
IS
not
a

pipe
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Alignment, example (@&

LCeci nest nos une fufie.
Ceci n’ est pas une pipe -

\N//

This is not a pipe
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SMT Difficulties

e Features for alignment:
e Probability of particular pairs aligning (lexicon / bilingual dictionary)

e Probability of a word aligning to a phrase (in general)

e More generally:
e Huge amounts of feature engineering
e Reliance on human curated resources like dictionaries

e Most of the above are language-pair-specific, have to be repeated

e NMT was one of the first major success stories of neural methods in NLP:

e End-to-end systems, “language-agnostic” models, equal/better performance
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Attention
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seqg2seq architecture: problem
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seq2seq architecture: problem

Decoder can only see info in this one vector
all info about source must be “crammed” into here

\

> —>

|

B

encoder

!

—>

|

C

|

<EOS>

s —> (>

Sutskever et al 2013

|
BN

|
decoder

<EOS>

< —>» >N



https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

seq2seq architecture: problem

Decoder can only see info in this one vector Mooney 2014:"You can’t cram the meaning of a
all info about source must be “crammed” into here whole 7%&!$# sentence into a single $&!#* vector!
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NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to SOUrce
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder—decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder—decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.
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tion. Unlike the traditional statistical machine translation, the neural machine
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Adding Attention

Badhanau et al 2014
Luong et al 2015
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Attention, Generally

e A query g pays attention to some values {v, } based on similarity with
some keys {k,}.

e Dot-product attention: = - k.
g % =4q-K

e = e“f/Zje“f
C = Zjejvj

e In the previous example: encoder hidden states played both the keys and
the values roles.
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e By “solving” the bottleneck issue
e Aids interpretability (maybe)

e A general technique for combining
representations, applications in:

e NMT, parsing, image/video captioning, ...

everything

Why attention?

e Incredibly useful (for performance)
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Why attention?

e Incredibly useful (for performance)
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e “Soft” alignment, just like gates = “soft” masks Vinyals et al 2015
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Attention Is All You Need
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
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