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Announcements
● HW3 ref available

● Cross entropy loss:

● BCE in HW3 similar
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Today’s Plan
● Attention

● Limitations of Recurrent Models

● Transformers: building blocks
● Self-attention
● Encoder architecture
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Limitations of Recurrent Models
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RNNs Unrolling
● Recall: RNNs are “unrolled” across time, same operation at each step

● This has at least two issues:
● Creates “long path lengths” between sequence positions
● Not parallelizable
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Long Path Lengths
● Gating mechanisms help 

RNNs learn long distance 
dependencies, by 
alleviating the vanishing 
gradient problem

● But: still takes a linear 
number of computations 
for one token to influence 
another
● Long-distance 

dependencies are still hard!
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Linear “path length” for 
interaction between tokens



Lack of Parallelizability
● Modern hardware (e.g. 

GPUs) are very good at 
doing independent 
computations in parallel

● RNNs are inherently 
serial:
● Cannot compute future 

time steps without the past

● Bottleneck that makes 
scaling up difficult
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Transformer Architecture
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Paper link 
 
(but see Annotated and  
Illustrated Transformer)

https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/


Key Idea
● Recurrence: not parallelizable, long “path lengths”

● Attention:

● Parallelizable, short path lengths

● Transformer: “replace” recurrence with attention mechanism

● Subtle issues in making this work, which we we will see
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Full Model
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decoder



Transformer Block
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Transformer Block
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Single layer, applied to each position



Transformer Block
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What’s this?

Single layer, applied to each position



Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)
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dk ) V
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Why multiple queries?
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention
● Every (token) position attends to every other position [including self!]
● Caveat: in the encoder, and only by default
● Mask in decoder to attend only to previous positions [next time]
● Used for generation [NMT, LM, etc]
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention
● Every (token) position attends to every other position [including self!]
● Caveat: in the encoder, and only by default
● Mask in decoder to attend only to previous positions [next time]
● Used for generation [NMT, LM, etc]

● So vector at each position is a query
● And a key, and a value
● Linearly transformed, to be different “views” 
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Self-Attention, Details
● Every token attends to every other token

● X: [seq_len, embedding_dim]

● : queries

● : keys

● : values

● Each W is [embedding_dim, embedding_dim] learned matrix

XWq

XWk

XWv
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Self-Attention: Details

● Q = , K = , V = 
● : [embedding_dim, seq_len]

● : [seq_len, seq_len]
● Dot-product of rows of Q with columns of K

●
● Scaled by sq-rt of hidden dimension [see paper for motivation]

● Softmax: along rows, gets the weights 

XWq XWk XWv
KT

QKT

(QKT)ij = qi ⋅ kj
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Attention(Q, K, V) = softmax ( QKT

dk ) V



Self-Attention: Details

● Softmax output: each row has weights

● How much  should pay attention to each 

● Matrix multiplication with : output is [seq_len, embedding_dim]

● Each row: weighted average of the  (rows of V)
● Each row: the weight sum attention value for each query (each input token)

● [NB: a more explicit notation, if you like: https://namedtensor.github.io/]

qi vj

V
vj
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Attention(Q, K, V) = softmax ( QKT

dk ) V

https://namedtensor.github.io/


Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay 
attention to different vectors for 
different reasons

● Multi-headed: several attention 
mechanisms in parallel
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Problem With Self-Attention
● Attention is order-independent
● If we shuffle Q, K, V, we get the same output!
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Representing Order

20
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● Represented via positional 

encodings.
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Representing Order
● Represented via positional 

encodings.

● P: [seq_len, embedding_dim]
● Each row i represents that 

position in the sequence
● Add to word embeddings at 

input layer:
● xi = Ewi

+ Pi

● Can be fixed/pre-defined [see 
right] or entirely learned

20source

http://jalammar.github.io/illustrated-transformer/


Fixed vs Learned Positional Encoding
● Fixed:
● No need to be learned
● Guaranteed to be unique to position
● Generalizes to longer sequence lengths (in theory at least)

● Learned:
● Might learn more useful encodings of position than e.g. sinusoidal
● Can’t extrapolate to longer sequence lengths
● [This has become the default/norm]

● Fancier ways of representing positional info: rotary embeddings, learned bias of 
distance, fixed bias of distance (ALiBi)
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https://ofir.io/train_short_test_long.pdf


Basic Transformer Encoder Block
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Final Ingredients: Residual Connections
● Core idea: add a “skip” connection around 

neural building blocks

● Replace  with 

● Makes training work much better, by smoothing 
out loss surface

● In Transformer: residual connection around 
both self-attention and feed-forward blocks

● Used widely now: FFNNs, CNNs, RNNs, 
Transformers, …

f(x) x + f(x)

23

source

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html


Final Ingredients: Layer Normalization
● Normalizing inputs: subtract mean, divide by standard deviation
● Makes new mean 0, new standard deviation 1
● Widely used in many kinds of statistical modeling [e.g. z-scoring predictors in 

linear regression], including in NNs

● Layer norm: to each row  of a matrix [a batch]:
● Where  is mean,  is std dev

●  are learned scaling parameters [but often omitted entirely]

x
μ σ

γ, β
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LN(x) =
x − μ
σ + ϵ

γ + β

https://arxiv.org/abs/1607.06450


Full Transformer Encoder Block
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Initial WMT Results
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Initial WMT Results
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More on why 
important later



Attention Visualization: Coreference?
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source

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Transformer: Path Lengths + Parallelism

28source (BERT paper)

https://www.aclweb.org/anthology/N19-1423.pdf
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Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between 
tokens: 1
[constant, not linear]

Computation order:

Entire second layer: 1

Entire first layer: 0

Also not linear in 
sequence length! Can 
be parallelized.

https://www.aclweb.org/anthology/N19-1423.pdf


Transformer: Summary
● Entirely feed-forward

● Therefore massively parallelizable

● RNNs are inherently sequential, a parallelization bottleneck

● (Self-)attention everywhere

● Long-term dependencies:

● LSTM: has to maintain representation of early item

● Transformer: very short “path-lengths”
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Next Time
● A deeper look at the decoder block of a Transformer
● Attention masks

● Subword tokenization
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