In-context learning and prompting
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Announcements

e HWA5: almost out, great job!

e HW7 out this afternoon

® Sequence-to-sequence
e Char-level MT

e Implement attention

e Note on MacOS Sequoia environment



Fine-tuning
e How to apply a pretrained LM to data from a new task 2’ = {(x/, y/)}

e Fine-tuning:
e Take pre-trained LM, replace LM “head” with task-specific head
e Supervised learning (either of whole model, or just the head) on &’

e Updates parameters
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In-context learning

e In-context learning:
o X = fprompt(x) , defines a template with slots [X] and [Y]
e e.g. for SST: “Review: [X] Rating: [Y]’

e “if you sometimes like to go to the movies to have fun , wasabi is a good place
to start .” —> “"Review: if you sometimes like to go to the movies to have fun,
wasabi is a good place to start . Rating: ”

e (Concatenate k examples (could be 0!) with y filled in.

o f+ii(x,3) = “Review: if you sometimes like to go to the movies to have fun
wasabi is a good place to start . Rating: 3"

e NB: often use other tokens than the true labels (e.g. “good”)
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In-context learning (cont.)

e Ask the model to generate based on final input, i.e. to sample

Zep1 ~ P ( SN Y5 - - Sl (O yk)’fpr()mpt(xkﬂ))
e NB: possibly a sequence, not a single token.

e Possibly with additional context / “task description” first:
P( - |task-description, fj|(x1, Y1), - - - s ffill (% Yi)s forompt(X+1))

e For classification: define an "answer function” mapping z; ; back into your label
space!

e No parameter updates!
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GPT3 Few-Shot Results

SuperGLUE  BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1  Accuracy Accuracy
Fine-tuned SOTA 39.0 91.0 96.9 93.9 94.8 92.5
Fine-tuned BERT-Large 69.0 717.4 83.6 75.7 70.6 71.7
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0 69.0
WiC WSC MultiRC  MultiRC ReCoRD ReCoRD
Accuracy Accuracy Accuracy Fla Accuracy F1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 49 .4 80.1 30.5 75.4 90.2 91.1

k=32
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GPT3 Few-Shot Results

SuperGLUE  BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1  Accuracy | Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8
Fine-tuned BERT-Large 69.0 717.4 83.6 75.7 70.6
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0
WiC WSC MultiRC  MultiRC ReCoRD fReCoRD
Accuracy Accuracy Accuracy Fla Accuracy
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 49 .4 80.1 30.5 75.4 90.2 91.1

Context — The bet, which won him dinner for four, was regarding the existence and
mass of the top quark, an elementary particle discovered in 1995.
question: The Top Quark is the last of six flavors of quarks predicted by

the standard model theory of particle physics. True or False?

answer.:

Target Completion — False

Figure G.31: Formatted dataset example for RTE
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Prompt sensitivity

o Different choices for fprompt(x)
can lead to drastically different
performance!

e Even just basic format!

e "Prompt engineering”: how to
design and build effective
prompts. More on this later.

Modified separator

Original formatting N ‘ .
Modified spacing between fields
: < >
Passage:<text> Passagc.a text [Pas sage: <text> Answer: <text> ]
Answer:<text> Answer: <text>
Modified separator and spacing
Modified casing . ;
PASSAGE <text> A Passage <text> Answer <text>
ANSWER <text> PASSAGE: <text> :
: ANSWER: <text> N

Task Accuracy e y :

< .................. " ‘A ‘. \ 4 I
o 0-036 Performance Spread Among Plausible Formats 0.804 1

Figure 1: Slight modifications in prompt format templating may lead to significantly different model
performance for a given task. Each <text> represents a different variable-length placeholder to
be replaced with actual data samples. Example shown corresponds to 1-shot LLaMA-2-7B perfor-
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Why/how does ICL work??



Some Mysteries

Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?

Sewon Min!?  Xinxi Lyu!

Mike Lewis’  Hannaneh Hajishirzi

1University of Washington

Ari Holtzman' Mikel Artetxe?
L3 Luke Zettlemoyer'*>
2Meta Al 3 Allen Institute for Al

{sewon,alrope, ahai, hannaneh, lsz}@cs.washington.edu
{artetxe,mikelewis}@meta.com

Abstract

Large language models (LMs) are able to in-
context learn—perform a new task via infer-
ence alone by conditioning on a few input-label
pairs (demonstrations) and making predictions
for new inputs. However, there has been lit-
tle understanding of ~ow the model learns and
which aspects of the demonstrations contribute
to end task performance. In this paper, we
show that ground truth demonstrations are in
fact not required—randomly replacing labels in
the demonstrations barely hurts performance on
a range of classification and multi-choce tasks,
consistently over 12 different models including
GPT-3. Instead, we find that other aspects of
the demonstrations are the key drivers of end
task performance, including the fact that they
provide a few examples of (1) the label space,
(2) the distribution of the input text, and (3) the
overall format of the sequence. Together, our
analysis provides a new way of understanding
how and why in-context learning works, while
opening up new questions about how much can
be learned from large language models through
inference alone.
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Figure 1: Results in classification (top) and multi-choice
tasks (bottom), using three LMs with varying size. Re-
ported on six datasets on which GPT-3 is evaluated; the
channel method is used. See Section 4 for the full results.
In-context learning performance drops only marginally
when labels in the demonstrations are replaced by ran-
dom labels.

is consistent over 12 different models including the
GPT-3 family (Radford et al., 2019; Min et al.,
2021b; Wang and Komatsuzaki, 2021; Artetxe

source
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Some Mysteries

Do Prompt-Based Models Really Understand
the Meaning of Their Prompts?

Albert Webson!? and Ellie Pavlick!

{albert_webson, ellie_pavlick } @brown.edu
'Department of Computer Science, Brown University
?Department of Philosophy, Brown University

Abstract

Recently, a boom of papers has shown ex-
traordinary progress in zero-shot and few-shot
learning with various prompt-based models. It
is commonly argued that prompts help mod-
els to learn faster in the same way that hu-
mans learn faster when provided with task in-
structions expressed in natural language. In
this study, we experiment with over 30 prompt
templates manually written for natural lan-
guage inference (NLI). We find that models
can learn just as fast with many prompts that
are intentionally irrelevant or even pathologi-
cally misleading as they do with instructively
“good” prompts. Further, such patterns hold

source

arbitrary dimensions of a one-hot vector. In con-
trast, suppose a human is given a prompt such as:
Given that “no weapons of mass destruction found
in Iraq yet.”, is it definitely correct that “weapons
of mass destruction found in Iraq.”?' Then it would
be no surprise that they are able to perform the task
more accurately and without needing many exam-
ples to figure out what the task is.

Similarly, reformatting NLP tasks with prompts
such as the underlined text above has dramatically
improved zero-shot and few-shot performance over
traditional fine-tuned models (Schick and Schiitze,
2021b; Le Scao and Rush, 2021; Sanh et al., 2021;

Wei et al., 2021). Such results naturally give rise to
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Category Examples
: : {prem} Are we justified in saying that “{hypo}”?
imstructive Suppose {prem} Can we infer that “{hypo}”?
misleading- {prem} Can that be paraphrased as: “{hypo}”?
moderate {prem} Are there lots of similar words in “{hypo}”?
misleading- {prem} is the sentiment positive? {hypo}
extreme {prem} is this a sports news? {hypo}
: {prem} If bonito flakes boil more than a few seconds
irrelevant ) )

the stock becomes too strong. "{hypo}"?
Tl {premise} {hypothesis}

{hypothesis} {premise}

Table 1: Example templates for NLI.
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Linear Regression Case Study

Published as a conference paper at ICLR 2023

WHAT LEARNING ALGORITHM IS IN-CONTEXT LEARN-
ING? INVESTIGATIONS WITH LINEAR MODELS

Ekin AKyiirek!'>:¢ Dale Schuurmans' Jacob Andreas*?> Tengyu Ma*!:3:® Denny Zhou*!

1Google Research  2MIT CSAIL 2 Stanford University  *collaborative advising

ABSTRACT

Neural sequence models, especially transformers, exhibit a remarkable capacity
for in-context learning. They can construct new predictors from sequences of
labeled examples (z, f(z)) presented in the input without further parameter up-
dates. We investigate the hypothesis that transformer-based in-context learners
implement standard learning algorithms implicitly, by encoding smaller models
in their activations, and updating these implicit models as new examples appear
in the context. Using linear regression as a prototypical problem, we offer three
sources of evidence for this hypothesis. First, we prove by construction that trans-
formers can implement learning algorithms for linear models based on gradient
descent and closed-form ridge regression. Second, we show that trained in-context
learners closely match the predictors computed by gradient descent, ridge regres-
sion, and exact least-squares regression, transitioning between different predictors
as transformer depth and dataset noise vary, and converging to Bayesian estima-
tors for large widths and depths. Third, we present preliminary evidence that
in-context learners share algorithmic features with these predictors: learners’ late
layers non-linearly encode weight vectors and moment matrices. These results
suggest that in-context learning is understandable in algorithmic terms, and that
(at least in the linear case) learners may rediscover standard estimation algorithms.

source
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Figure 1: Fit between ICL and standard learning algorithms: We plot (dimension normalized)
SPD and ILWD values between textbook algorithms and ICL on noiseless linear regression with
d = 8. GD(«) denotes one step of batch gradient descent and SGD(«) denotes one pass of stochas-
tic gradient descent with learning rate . Ridge()\) denotes Ridge regression with regularization
parameter A\. Under both evaluations, in-context learners agree closely with ordinary least squares,
and are significantly less well approximated by other solutions to the linear regression problem.
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Induction Heads

e Induction head = attention

head which:

e Matches a prefix

e “Copies” the attended to token
o [A]B]...[A]=(B]

e Analogical/fuzzy version -> ICL

o [A*][B] ..

. [A] = [B]

Prefix matching

v

[ She ][ owns ]‘ vintage ’ ] cars ‘[

| v ) (Careams | (o ) [Towning | ([oemage ) (7GR

Copying

source

MODELS WITH MORE THAN ONE LAYER HAVE AN
ABRUPT IMPROVEMENT IN IN-CONTEXT LEARNING

ONE LAYER
(ATTENTION-ONLY)

1INg okens

TWO LAYER
(ATTENTION-ONLY)

INDUCTION HEADS FORM IN PHASE CHANGE

Each line is an attention head, scored by the “prefix matching” evaluation introduced below.

ONE LAYER
(ATTENTION-ONLY)

1ning |

0.4 -

TWO LAYER
(ATTENTION-ONLY)

lapsed Training

One-layer model

has no induction heads.

Models with more than one layer

THREE LAYER

(ATTENTION-ONLY)

11N

—_ 1

THREE LAYER
(ATTENTION-ONLY)

[~

have induction heads form during phase change.

We highlight the

“phase change”
period of training in plots to
make visual comparision
between plots easier. The
highlighted region is
selected for each model
based on the derivative of
in-context learning.

The highlighted

“phase change”

portion of L
training is the

same area highlighted in
previous plots. It is selected

based on the derivative of
the in-context score.
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Induction

Induction Heads as an Essential Mechanism for Pattern Matching in
In-context Learning

Joy Crosbie*
ILLC
University of Amsterdam
joy.m.crosbie@gmail.com

Abstract

Large language models (LLMs) have shown a
remarkable ability to learn and perform com-
plex tasks through in-context learning (ICL).
However, a comprehensive understanding of its
internal mechanisms is still lacking. This paper
explores the role of induction heads in a few-
shot ICL setting. We analyse two state-of-the-
art models, Llama-3-8B and InternL.M2-20B
on abstract pattern recognition and NLP tasks.
Our results show that even a minimal ablation
of induction heads leads to ICL performance
decreases of up to ~32% for abstract pattern
recognition tasks, bringing the performance
close to random. For NLP tasks, this ablation
substantially decreases the model’s ability to
benefit from examples, bringing few-shot ICL
performance close to that of zero-shot prompts.
We further use attention knockout to disable
specific induction patterns, and present fine-
grained evidence for the role that the induction
mechanism plays in ICL.

source

Ekaterina Shutova
ILLC
University of Amsterdam
e.shutova@uva.nl

Von Oswald et al., 2023), suggesting that ICL func-
tions as an implicit form of fine-tuning at inference
time. Other works investigated factors influencing
ICL, showing that it is driven by the distributions
of the training data (Chan et al., 2022) and scales
with model size, revealing new abilities at certain
parameter thresholds (Brown et al., 2020; Wei et al.,
2022). During inference, the properties of demon-
stration samples also affect ICL performance , with
aspects such as the label space, input distribution
and input-label pairing playing a crucial role (Min
et al., 2022; Webson and Pavlick, 2022). While this
work identified interesting properties of ICL and
effective ICL prompting strategies, a comprehen-
sive understanding of its operational mechanisms
within the models is still lacking.

Our paper aims to fill this gap, by directly investi-
gating the internal model computations that enable
ICL. Our work is inspired by recent research in the
field of mechanistic interpretability, which aims to
reverse engineer the "algorithm" by which Trans-
former models process information (Geva et al.,

Heads

Llama-3-8B
Task Shot  Full 1% ind. 1% ind. 1% rnd. 3% ind. 3% ind. 3% rnd.
model heads pattern heads heads pattern heads

Repetition 5 673 61.9(-64) 625(-48) 649(-24) 50.0(-17.3) 53.2(-14.1) 62.6(-4.7)

10 913 59.7(-31.6) 65.3(-26.0) 859 (-54) 51.5(-39.8) 58.7(-32.6) 79.7(-11.6)

Recursion 5 67.8 63.0(-4.8) 615(-6.3) 66.1(-1.7) 52.0(-15.8) 55.1(-12.7) 68.0(+0.2)

10 91.5 67.9(-23.6) 68.7(-22.8) 86.5(-5.0) 529 (-38.6) 589 (-32.6) 84.6(-6.9)

Centre-embedding 5 588 549(39) 55.0(3.8) 572(16) 49.1(-9.7) 505(-83) 56.4(-2.4)
10 80.4 53.0(-274) 56.5(-23.9) 74.6(-5.8) 50.7(-29.7) 52.3(-28.1) 71.5(-8.9)

WordSeq 1 (binary) 5 83.1 72.1(-11.0) 71.8(-11.3) 82.1(-1.0) 51.6(-31.5) 569 (-26.2) 78.8(-4.3)
10 9.4  96.2(-3.2) 97.3(2.1) 99.3(-0.1) 69.4(-30.0) 82.2(-17.2) 98.3(-1.1)

WordSeq 2 (binary) 5 779 654 (-12.5) 65.2(-12.7) 76.8 (-1.1) 52.0(-25.9) 55.7(-22.2) 72.4(-5.5)
10 994 949 (-45) 964(-30) 98.8(-0.6) 67.2(-32.2) 81.1(-18.3) 97.7(-1.7)

WordSeq 1 (4-way) 20 783 55.2(-23.1) 59.8(-18.5) 76.5(-1.8) 40.8(-37.5) 45.2(-33.1) 71.4(-6.9)
WordSeq 2 (4-way) 20 81.3 55.9(-254) 59.8(-21.5) 76.0(-5.3) 42.3(-39.0) 47.5(-33.8) 68.6 (-12.7)
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Prompting Strategies
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“Chain of Thought”

Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

NS

/C Model Input \ /C Model Input

do they have? j

Model Output

do they have? J

A: The answer is 27. x

source

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of\
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Model Output )

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. ¢/
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“Chain of Thought”

Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team H a. n d -W ritte n !
{jasonwei,dennyzhou}@google.com
For k=8 examples

Standard Prompting Chain-of-Thought Prompting
/C Model Input \ /-C Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
j do they have?
M ) )
odel Output Model Output
. . A: The cafeteria had 23 apples originally. They used
A: Th 27.
e answer is 27. 3§ ) 20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. ¢/

source
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“Chain of Thought

Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang

Brian Ichter Fei Xia

Dale Schuurmans

Ed H. Chi

Maarten Bosma

Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Standard Prompting

/C Model Input \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have? j

Chain-of-Thought Prompting

.y
KC Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. ¢/

Model Output Model Output
. . A: The cafeteria had 23 apples originally. They used
A: Th 27. x
e answeris ) 20 to make lunch. So they had 23 - 20 = 3. They

source

do they have?
\_ _J

Hand-written!
For k=8 examples

—e— Standard prompting
—o— Chain-of-thought prompting
- - = Prior supervised best
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Model scale (# parameters in billions)
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“Let’s think step by step”

Large Language Models are Zero-Shot Reasoners

Takeshi Kojima
The University of Tokyo

t.kojima@weblab.t.u-tokyo.ac. jp

Shixiang Shane Gu
Google Research, Brain Team

Machel Reid Yutaka Matsuo Yusuke Iwasawa
Google Research™ The University of Tokyo The University of Tokyo

(a) Few-shot

&oger has 5 tennis balls. He buys 2 more cans of ter@

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

N /

(c) Zero-shot

6 A juggler can juggle 16 balls. Half of the balls are golf balQ
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

o J

(Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
W&. So there are 8/ 2 = 4 blue golf balls. The answer is 4. .//

(d) Zero-shot-CoT (Ours)

ﬁ): A juggler can juggle 16 balls. Half of the balls are golf balls\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf

balls. That means that there are 8 golf balls. Half of the golf balls
Qre blue. That means that there are 4 blue golf balls. v/ /
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“Let’s think step by step”

Large Language Models are Zero-Shot Reasoners

[1st prompt]
Reasoning Extraction

Takeshi Kojima
The University of Tokyo

t.kojima@weblab.t.u-tokyo.ac. jp

Machel Reid
Google Research™

(a) Few-shot

&oger has 5 tennis balls. He buys 2 more cans of ter@

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

N /

(c) Zero-shot

6 A juggler can juggle 16 balls. Half of the balls are golf balQ
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

Yutaka Matsuo
The University of Tokyo

Shixiang Shane Gu
Google Research, Brain Team

Yusuke Iwasawa
The University of Tokyo

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf

o J

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
W&. So there are 8/ 2 = 4 blue golf balls. The answer is 4. .//

(d) Zero-shot-CoT (Ours)

ﬁ): A juggler can juggle 16 balls. Half of the balls are golf balls\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls

Q: On average Joe throws 25 punches per
minute. A fight lasts 5 rounds of 3 minutes. How
many punches did he throw?

A: Let's think step by step.

N

LLM

N

In one minute, Joe throws 25 punches.
In three minutes, Joe throws 3 * 25 = 75 punches.
In five rounds, Joe throws 5 * 75 = 375 punches.

Qre blue. That means that there are 4 blue golf balls. v/ /

[2nd prompt]
Answer Extraction

m: On average Joe throws 25 punches per \
minute. A fight lasts 5 rounds of 3 = --
A: Let's think step by step.

In one minute, Joe throws 25 punches. - - +In five

rounds, Joe throws 5 * 75 = 375 punches. .
\Therefore, the answer (arabic numerals) is /

2

LLM

L

| 375. |
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“Let’s think step by step”

Large Language Models are Zero-Shot Reasoners

Takeshi Kojima
The University of Tokyo
t.kojima@weblab.t.u-tokyo.ac. jp

Machel Reid
Google Research™

(a) Few-shot

&oger has 5 tennis balls. He buys 2 more cans of te@

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

N /

(c) Zero-shot

6 A juggler can juggle 16 balls. Half of the balls are golf bal@
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

o J

Yutaka Matsuo
The University of Tokyo

Shixiang Shane Gu
Google Research, Brain Team

Yusuke Iwasawa
The University of Tokyo

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf

[1st prompt]
Reasoning Extraction

[2nd prompt]
Answer Extraction

Q: On average Joe throws 25 punches per
minute. A fight lasts 5 rounds of 3 minutes. How L
many punches did he throw?

. minute. A fight lasts 5 rounds of 3 = --
A: Let's think step by step.

f): On average Joe throws 25 punches per

W

MultiArith GSMB8K

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
We. So there are 8/ 2 = 4 blue golf balls. The answer is 4. .//

(d) Zero-shot-CoT (Ours)

ﬁ): A juggler can juggle 16 balls. Half of the balls are golf balls\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf

Zero-Shot 17.7 10.4
Few-Shot (2 samples) 33.7 15.6
Few-Shot (8 samples) 33.8 15.6
Zero-Shot-CoT 78.7 40.7
Few-Shot-CoT (2 samples) 34.8 41.3
Few-Shot-CoT (4 samples : First) (*1) 89.2 -
Few-Shot-CoT (4 samples : Second) (*1) 90.5 -
Few-Shot-CoT (8 samples) 93.0 48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2) 92.8 51.5
Finetuned GPT-3 175B [Wei et al.,[2022] : 33
Finetuned GPT-3 175B + verifier [Wei et al.,| 2022] - 55
PalLM 540B: Zero-Shot 25.5 12.5
PalLM 540B: Zero-Shot-CoT 66.1 43.0
PalLM 540B: Zero-Shot-CoT + self consistency 89.0 70.1
PalLM 540B: Few-Shot [Wei et al.,|2022] - 17.9
PalLM 540B: Few-Shot-Co e1 et al., 2022 - 56.9
PalLM 540B: Few-Shot-CoT + self consistency ﬂWang et al., 2022] - 74.4

balls. That means that there are 8 golf balls. Half of the golf balls
Qre blue. That means that there are 4 blue golf balls. v/ J
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More examples and resources

Self-consistency

Tree of thoughts
Self-ask
STaR

A survey of several: https://www.promptingguide.ai/techniques



https://openreview.net/forum?id=1PL1NIMMrw
https://dl.acm.org/doi/10.5555/3666122.3666639
https://aclanthology.org/2023.findings-emnlp.378/
https://arxiv.org/abs/2203.14465
https://www.promptingguide.ai/techniques

Searching for Prompts

e Can we do something more principled, i.e. search for prompts
automatically instead of hand-engineering?

e Discrete search:

e AutoPrompt

e DSPy: “Programming—not prompting—LMSs”

e Continuous search / prompts (not necessarily interpretable!):

e Prefix tuning

e Prompt tuning



https://aclanthology.org/2020.emnlp-main.346/
https://dspy.ai/
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/2021.emnlp-main.243/

Resources

e “Pre-train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing”

e Paper: https://arxiv.org/abs/2107.13586

e Companion (updated) website: http://pretrain.nlpedia.ai/

e https://www.promptingguide.ai/

e A Survey on In-context Learning: https://aclanthology.org/2024.emnlp-
main.64/



https://arxiv.org/abs/2107.13586
http://pretrain.nlpedia.ai/
https://www.promptingguide.ai/
https://aclanthology.org/2024.emnlp-main.64/
https://aclanthology.org/2024.emnlp-main.64/

Summary

e In-context learning uses prompts to ask models to solve many different
tasks, without updating parameters
e Sensitive to many choices:
e Prompt template
e [ask description

e Exemplars/in-context examples

e Today: high-level overview of some of what’s known about how and why
this method works to the extent that it does, pointers to more info.



