Summary / Review

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld



Announcements

e Course evaluations open only until Friday June 6 (more later)

e https://uw.iasystem.org/survey/307454

e If you haven’t used or want to retroactively use your free late assignment, let us know ASAP!

e HWO: prompting and in-context learning. Due June 9.

e Mainly: all the choices / scaffolding for actually using ICL for a task/dataset (SST) + base vs
instruction-tuned model

e OLMo models: stored in our dropbox folder, so that there’s one copy instead of each downloading
(see args.hf home stuff in olmo.py)

e No unit tests, because there’s no “right answer” to the coding portion: room for creativity!

e Other hyper-parameters we haven’t mentioned: various generation ones (sampling, top_k, top_p,
etc), how to choose the in-context examples (get k examples), even more prompting strategies,
.... Feel free to play around more on your ownt!
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Today's Plan

e Survey of what we covered in the class
e (Core progression
e (Guest lectures

e Assignments
e Some pointers to what’s next

e Question time
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Learning Objectives

e Provide hands-on experience with building neural networks and using
them for NLP tasks
e Theoretical understanding of building blocks

e Computation graphs + gradient descent

e Forward/backward AP|
e Chain rule for computing gradients [backpropagation]

e \Various network architectures; their structure and biases
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Topics Covered



Getting Started

e History

e (Gradient descent optimization

e Regularization, mini-batches, etc.
e \Word vectors / word2vec

e Main tasks: classification (sentiment analysis), language modeling
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Neural Networks: Foundations

e Neural networks: intro

e EXxpressive power / limitations
e Computation graph abstraction

e Backpropagation



XOR Network

| _ and and and
N / 20 - Qand = © (Wor “dor TW ood %nand T b )

s
= o | [9or Ynand] 2 nd + paNd

W

nand

or nand and
Wp W) Wor

or inand
or . .nand '+'h7 b ] and

Wg o Wq Whand

4+ band

YA/ UNIVERSITY of WASHINGTON 10



Computing XOR (not linearly-separable)



Backpropagation Example

f(x;a,b) = (ax + b)?
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e Forward pass:

e Compute value given
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e Backward pass:

e Compute parents’
gradients given children’s
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Example: RelL,U

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(@, value)
ctx.append(new_val)
return new val

@staticmethoad

def backward(ctx, grad_output):

value = ctx[-1]

return [(value > 0).astype(float) *x grad_output]

YA/ UNIVERSITY of WASHINGTON 14



Example: RelL,U

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(@, value)
ctx.append(new_val)
return new val

@staticmethod Save and retrieve the input value!
def backward(ctx, grad_output):

value = ctx[-1]

return [(value > 0).astype(float) *x grad_output]

YA/ UNIVERSITY of WASHINGTON 14



Example: RelL,U

@tensor_op
class relu(Operation):
@staticmethod
def forward(ctx, value):
new_val = np.maximum(@, value)
ctx.append(new_val)
return new val

@staticmethod Save and retrieve the input value!
def backward(ctx, grad_output):

value = ctx[-1]

return [(value > 0).astype(float) *x grad_output]

local gradient times upstream
grad i e nt YA/ UNIVERSITY of WASHINGTON 14



Example: RelL,U

@tensor_op

class relu(Operation):
@staticmethod
def forward(ctx, value):

new_val = np.maximum(@, value)

ctx.append(new_val)
return new val

@staticmethod Save and retrieve the input value!
def backward(ctx, grad_output):

value = ctx[-1]
return [(value > 0).astype(float) * grad_output] NB: list, one downstream gradient
per input (in this case, one)

local gradient times upstream
grad i e nt YA/ UNIVERSITY of WASHINGTON 14



Neural Networks, |

e Feed-forward networks

e Fixed size: average, fixed window of prep tokens

e Recurrent neural networks: sequence processors
e \anishing gradients, gated variants (LSTM)

e Encoder-decoder / seg2seq architecture and tasks
e Attention mechanism
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Model Architecture, One Input

softmax
ho = f(Wa - hy + bs)
Word embeddings: hi = f(Wy-av+ b)) «—— flavW' + b')
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Neural LM Architecture

i-th output = P(w, = i| context)
Bengio et al 2003
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Bengio et al 2003
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Neural LM Architecture

i-th output = P(w;, = i| context)

Bengio et al 2003
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RNN for Text Classification
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RNNSs for Language Modeling

Next word
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Two Extensions

e Deep RNNSs:
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e Deep RNNSs:
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Two Extensions
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LSTMs

Steinert-Threlkeld and Szymanik 2019; Olah 2015
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LSTMs

Element-wise multiplication:

O: erase
|: retain Add new values to memory

Cl‘ =~fl‘®Ct—1 +ll‘®6t

0, € [0,1]™: which cells to output

I, € [0,1]™: which cells to write to candidate” / new values
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Training an encoder-decoder RNN

Decoder
A
~ N
gold
Ilego Ia bru1a verde </|S> ANSWers
Vs
Total loss is the average 1 L
cross-entropy loss per L = — Z L, per-word
target word: T i—1 loss
ft
nﬂ.ua (o ) (i) S0 gmax
A A
hidden
g N 5 — g g layer(s)
@0 - 0::00 @©@0::0::00  (©0+-9::00  (©0::0::00 embedding
layer
the green W|tch arrlved <S> llego la bruja verde
N S/
Y
Encoder

JM | 1.3.1 WV UNIVERSITY of WASHINGTON 272



Alignment, example (@&

LCeci nest nos une fufie.

L

Ceci n’ est pas une pipe

This
IS
not

pipe




Alignment, example (@&

LCeci nest nos une fufie.
Ceci n’ est pas une pipe -

Ceci n’ est pas une pipe

This
IS
not
a

pipe




Alignment, example

Ceci n’ est pas une pipe -

This is not a pipe

Ceci n’ est pas une pipe

This
IS
not
a

pipe

YA/ UNIVERSITY of WASHINGTON 23



Alignment, example (@&

LCeci nest nos une fufie.
Ceci n’ est pas une pipe -

\N//

This is not a pipe

Ceci n’ est pas une pipe

This
IS
not
a

pipe




Adding Attention

Badhanau et al 2014
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Neural Networks, ||

e [ransformers

e (Core architecture

e Pre-training + Fine-tuning Paradigm

e Interpretablility / analysis
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Lack of Parallelizability

e Modern hardware (e.g.

GPUs) are very good at

doing Iindependent }[k]<o>}q qq...~~
1 1 1

computations in parallel

Number of computation
steps required: linear in
sequence length

e RNNSs are inherently

: : :
serial: {a[2l<o> ~—»—»...~~...
e Cannot compute future R !
time steps without the past (a[1]<0> ~@—»~...—»
1 1
e Bottleneck that makes (xﬂ; Pb
scaling up difficult ) O
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Students who ... enjoy
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Transformer: Path Lengths + Parallelism
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Transformer: Path Lengths + Parallelism
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o [constant, not linear]
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Transformer: Path Lengths + Parallelism

Computation order:

Entire second layer: 1

Also not linear In
sequence length! Can
be parallelized.
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Decoder: Masking Out the Future

OK': total attention scores

mask;: = — J >
/ O otherwise

MaskedAttention(Q, K, V) = softmax ( C
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Schematically

(o) () .. (o ) (oo | [r) . (o (oo (). [ [sep]][m.._

Masked Sentence A Masked Sentence B Question Paragraph
. 2
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning
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INnitial Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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BERT (Ours)

Comparison

OpenAl GPT
() .

Trm Trm

Source: BERT paper



https://arxiv.org/pdf/1810.04805.pdf

Multilingual Pre-training

e One other main dimension: mono- vs multi-lingual pre-training

e Roughly: concatenate (in fancy way) corpora from many languages, then do the
same kind of pre-training

e [More in C.M. Downey guest lecture]

Encoder-only Decoder-only Encoder-decoder

T BT 1) A BERT, RoBERTa, XLNet, ALBERT, ...

BLOOM (HF BigScience),
XGLM

Multilingual mBERT, XLM(-R), ... mBART, MASS, mT5
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https://huggingface.co/bigscience/bloom
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1.51

-1.51

Cell dynamics for a syntax unit

1.51 1.5+
ét C~t

| | | | | | | -15{ | | | | | | -151 | | | | | | |

The boy gently and kindly greets the The boy near the car greets the The Dboy that watches the dog greets the
(a) 2Adv (b) nounPP (c) subject relative

1.5 -

—-1.5 - | | , | | | | | | | | |
The boy that watches the dog that watches the cat greets the
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Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

[CLS]
It

[CLS] [CLS]
It It

[CLS]
It

goes -goes declined declined
on -on to to
to- -to discussv discuss
plug plug itsc\\L~ its
at a plans~\ -plans
few few for for

diversified. \\| diversified upgrading upgrading
Fidelity )/ \\| ~ Fidelity its \\ | its
funds/\\ \§ -funds current current

product
line

A[SEP]

Examples

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

[CLS] [CLS]
The The
[CLS] [CLS]
The The 45-year-old 45-year-old
) ) former former
complicated - complicated
lanquage lanauage General General
9 g . guag Electric Electric
in in Co A\ _Co
the the .\ .
executive\ executive
huge huge . \ :
figures. figures
new new -\ )
It It
law - will will
has. has be\ be
muddied- muddied . .
easier easier
the the . )
fiaht fiaht this this
9 9 time time
[SEP] [SEP]

Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent

with with
Kim Kim joining joining
today today peace peace
as as talks. talks
she she between /-between
got got Israel Israel
some some and and
expert expert the | the
opinions opinions Palestinians Palestinians
on on : :
the the The . The
damage damage negotiations: ‘negotiations
to to are. -are
her ‘her
home home
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(performance improves if fine-tuned on this challenge set)
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GPT3

e Same approach: pure

Transformer decoder trained on
LM

e Scale: 175B params

e Data size: ~500billion tokens,
majority from filtered Common
Crawl

e Few-shot “fine-tuning” paradigm:

e Prompt with a few examples, ask
to continue

e No parameter updates

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt

YA/ UNIVERSITY of WASHINGTON
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Some Mysteries

Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?

Sewon Min!?  Xinxi Lyu!

Mike Lewis’  Hannaneh Hajishirzi

1University of Washington

Ari Holtzman' Mikel Artetxe?
L3 Luke Zettlemoyer'*>
2Meta Al 3 Allen Institute for Al

{sewon,alrope, ahai, hannaneh, lsz}@cs.washington.edu
{artetxe,mikelewis}@meta.com

Abstract

Large language models (LMs) are able to in-
context learn—perform a new task via infer-
ence alone by conditioning on a few input-label
pairs (demonstrations) and making predictions
for new inputs. However, there has been lit-
tle understanding of ~ow the model learns and
which aspects of the demonstrations contribute
to end task performance. In this paper, we
show that ground truth demonstrations are in
fact not required—randomly replacing labels in
the demonstrations barely hurts performance on
a range of classification and multi-choce tasks,
consistently over 12 different models including
GPT-3. Instead, we find that other aspects of
the demonstrations are the key drivers of end
task performance, including the fact that they
provide a few examples of (1) the label space,
(2) the distribution of the input text, and (3) the
overall format of the sequence. Together, our
analysis provides a new way of understanding
how and why in-context learning works, while
opening up new questions about how much can
be learned from large language models through
inference alone.

Classification

(=]
(%]

60 No Demos Demos w/ gold labels Demos w/ random labels
—~55
X
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—
S 40
- 35
30
5" MetalCL (774M) GPT] (6B) GPT-3 (175B)
75 Multi-choice
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&
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—
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&}
<45
40
" MetalCL (774M) GPT] (6B) GPT-3 (175B)

Figure 1: Results in classification (top) and multi-choice
tasks (bottom), using three LMs with varying size. Re-
ported on six datasets on which GPT-3 is evaluated; the
channel method is used. See Section 4 for the full results.
In-context learning performance drops only marginally
when labels in the demonstrations are replaced by ran-
dom labels.

is consistent over 12 different models including the
GPT-3 family (Radford et al., 2019; Min et al.,
2021b; Wang and Komatsuzaki, 2021; Artetxe

source
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https://aclanthology.org/2022.emnlp-main.759/

From GPT to ChatGPT

GPT Assistant training pipeline

Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

Raw internet Demonstrations o Comparisons o Prompts a
text trillions of words |deal Assistant responses, g 100K -1M comparisons b ~T10K-100K prompts et
low-quality, large quantity ~10-100K (prompt, response) written by contractors written by contractors

written by contractors low quantity, high quality low quantity, high quality

low quantity, high quality

J v 7 9

Language modeling Language modeling Binary classification Reinforcement Learning
Algorithm predict the next token predict the next token predict rewards consistent w generate tokens that maximize
preferences the reward

0 init ° init 0 o init from SFT
from from use RM

Base model SFT model RM model RL model

1000s of GPUs 1-100 GPUs 1-100 GPUs 1-100 GPUs sSsource

months of training days of training days of training days of training
ex: GPT, LLaMA, PaLM ex: Vicuna-13B ex: ChatGPT, Claude

can deploy this model can deploy this model can deploy this model
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https://karpathy.ai/stateofgpt.pdf

From GPT to ChatGPT

GPT Assistant training pipeline

Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

Raw internet Demonstrations o Comparisons o Prompts @
text trillions of words |deal Assistant responses, g 100K -1M comparisons b ~T10K-100K prompts et

low-quality, large quantity ~10-100K (prompt, response) written by contractors written by contractors
written by contractors low quantity, high quality low quantity, high quality

low quantity, high quality

J v 7 9

Language modeling Language modeling Binary classification Reinforcement Learning
Algorithm predict the next token predict the next token predict rewards consistent w generate tokens that maximize
preferences the reward

0 G ’ init Q init 0 0 init from SFT
from from use RM

Base model SFT model RM model RL model

1000s of GPUs 1-100 GPUs 1-100 GPUs 1-100 GPUs sSsource

months of training days of training days of training days of training
ex: GPT, LLaMA, PaLM ex: Vicuna-13B ex: ChatGPT, Claude

can deploy this model can deploy this model can deploy this model
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https://karpathy.ai/stateofgpt.pdf

Algorithm

From GPT to ChatGPT

GPT Assistant training pipeline

Pretraining

Raw internet
text trillions of words

low-quality, large quantity

Language modeling
predict the next token

Base model

1000s of GPUs
months of training
ex: GPT, LLaMA, PalLM

can deploy this model

€

Supervised Finetuning

Demonstrations o
|deal Assistant responses, g
~10-100K (prompt, response)
written by contractors

low quantity, high quality

9

Language modeling
predict the next token

init
from Q
SFT model

1-100 GPUs
days of training
ex: Vicuna-13B

can deploy this model

“Post-training”

Reward Modeling Reinforcement Learning

Comparisons o Prompts
100K -1M comparisons = ~10K-100K prompts

written by contractors written by contractors

low quantity, high quality low quantity, high quality

Binary classification Reinforcement Learning
predict rewards consistent w generate tokens that maximize

preferences the reward

init 0 0 init from SFT
from use RM
RM model RL model

1-100 GPUs 1-100 GPUs
days of training days of training
ex: ChatGPT, Claude

can deploy this model

source
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RLHF: Reinforcement Learning

e Take a pretrained LM

e Prompt it, generate response

e Feed (prompt, response) to reward model RM

e Use that reward to update LM

e This is reinforcement learning with the RM playing the role of

external environment (provider of rewards)

PO M) = -

3P M( 1260 m

> RM(x,y) — flog

PiMO X0 M)

P M(V1%; Opretrained)

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from e
P Write a story

the dataset. about frogs

|

Y
The policy .

enerates 058

g ./OMO
an output. \}52{/

|

Y

Once upon a time...

7
The reward model o
caIcuI;:es a ./'.)?7{\.
reward for

\x-S

the output.

|

Y
The reward is
used to update rk
the policy
using PPO.
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https://docs.google.com/document/d/1nv5QA3MRdjlpmUdTcMlhc6SPTSj54LAv1NebnAXaiHk/edit?usp=sharing

Special Topics
e Angie McMillan-Major: societal impacts

e C.M. Downey: Multilingual NLP



Assignments

e 1:Vocabulary + Data Statement

2

© 0O N o O &~ O

Word2Vec (raw numpy)

. Computation graphs (word2vec in edugrad)

. Deep Averaging Network classifier (edugrad)
. Feed-forward language model (edugrad)

: RNN text classifier + language model

. Seg2Seq + Attention [translation]

. Pre-trained transformer classifier

: Prompting and in-context learning

YA/ UNIVERSITY of WASHINGTON
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What's Next?
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Learning Outcomes

e One way of operationalizing the goal: you can hopefully now read many/
most new papers at NLP conferences and understand what they’re doing

e EXxpressions like “we pre-trained a bi-directional LSTM language model on
various tasks and then fine-tuned on a standard suite” are now parseable

e And with deeper / more hands-on familiarity with the models and their

architectures, you are in a position to assess new developments as they come
(and contribute to them as well!)
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Topics Not Covered

e Full suite of "tips and tricks” for training
e e.g. learning rate schedules

e Best methods for hyper parameter tuning

e Other architectures sometimes used: convolutional networks, tree-based
RNNs, state-space models

e Wide variety of NLP tasks: parsing, QA, toxic language detection, etc.
e (Generation: wide range of decoding strategies, evaluation

e N.B.: you are now well-positioned to read and learn about all of these on
your own!
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Where to Learn More

e Where to learn more?
e Read papers and chase references when confused

e CMU'’s course has lots of online materials: http://www.phontron.com/class/
nn4nlp2021/

e Advanced NLP: https://www.phontron.com/class/anlp-fall2024/

e Stanford CS224U (pre-recorded videos) http://web.stanford.edu/class/cs224u/
e And CS224N (live lectures) http://web.stanford.edu/class/cs224n/

e ACL Anthology: https://www.aclweb.org/anthology/ [more and more videos
too]

e Semantic Scholar / arXiv sanity similar paper searches
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General Question Time
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Wrapping Up
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Course Evaluations

e Course evals are open now through June 6
e https://uw.iasystem.org/survey/307454

e Please do fill them out as soon as possible!
e E.g. right now :)

e Help improve the course for future iterations!
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Thank You!

e |'ve learned a lot from you all this quarter!

e Hopefully you're in a better place with regard to neural methods in NLP
than when the course started.

e And congrats to everyone for handling such a workload amidst all of the
chaos in the wider world. Very awe-inspiring.

e S0: thank you, and have a great summer / future!



