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Today's Plan

Brief general introduction
Potted History of Deep Learning
Potted History of Models in NLP

Course information / logistics



What is deep learning for NLP*

e Language is an amazingly flexible system for communicating complex

information. ALPHABETS, SENTENCES. WORDS
e Novel expressions

e Arbitrarily complex

e Systematic generalization

e Prime example of a symbolic system INFORMATIONEVERYWHERE

e How do we enable computers to understand and process language”

e T[raditional approach: by manipulating symbols
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What is deep learning for NLP*

e Application of neural networks
specifically to language data and

tasks WORDS GETAVECTOR. DOCS GET
i A VECTOR

e Discrete symbols are replaced by
continuous vectors

e Large models build “deep”
(hopefully hierarchically structured)
representations of text

e But: can they successfully mimic
human language understanding?



“‘Early” Success: Neural Machine Translation
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https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
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What This Course Is and Is Not

e Provide a firm theoretical understanding of how to apply deep learning methods to
natural language tasks

e From the ground up, progressing in complexity

e We will apply different kinds of models to interesting linguistic tasks, but this course is
not simply:
e How to use the latest libraries (though we will)
e Full end-to-end application development
e By understanding the theory behind and building blocks of progressively complex
systems, you will be able to:

e Process new developments, diagnose / debug perplexing errors, understand why things
work the way they do (in the good and the bad case)
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A Potted History of NNs



The first artificial neural network: 1943

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LLOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FrRoM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO
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Turing Award: 2018
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A.M. TURING AWARD WINNERS BY...

ALPHABETICAL LISTING YEAR OF THE AWARD RESEARCH SUBJECT

GEOFFREY HINTON AND YANN LECUN TO DELIVER
TURING LECTURE AT FCRC 2019
Yoshua Bengio June 23, 5:15 - 6:30 P.M., Symphony Hall

We are pleased to announce that Geoffrey Hinton and Yann LeCun
will deliver the Turing Lecture at FCRC 2019. Hinton's talk, "The
Deep Learning Revolution," and LeCun's talk, "The Deep Learning
Revolution: The Sequel," will be presented June 23rd from
5:15-6:30pm in Symphony Hall, Phoenix, Arizona.

No registration or tickets necessary to attend.

View the Livestream

Geoffrey E Hinton FATHERS OF THE DEEP LEARNING REVOLUTION
RECEIVE ACM A.M. TURING AWARD

Bengio, Hinton, and LeCun Ushered in Major
Breakthroughs in Artificial Intelligence

ACM named Yoshua Bengio, Geoffrey Hinton, and Yann

LeCun recipients of the 2018 ACM A.M. Turing Award for
conceptual and engineering breakthroughs that have made deep
neural networks a critical component of computing. Bengio is
Professor at the University of Montreal and Scientific Director at
Mila, Quebec’s Artificial Intelligence Institute; Hinton is VP and
Yann LeCun Engineering Fellow of Google, Chief Scientific Adviser of The Vector
Institute, and University Professor Emeritus at the University of
Toronto; and LeCun is Professor at New York University and VP and
Chief AI Scientist at Facebook.

Working independently and together, Hinton, LeCun and Bengio
developed conceptual foundations for the field, identified surprising
phenomena through experiments, and contributed engineering
advances that demonstrated the practical advantages of deep neural
networks. In recent years, deep learning methods have been
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Perceptron (1958
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https://en.wikipedia.org/wiki/Perceptron#/media/File:Mark_I_perceptron.jpeg

SSSSSS

Perceptron (1958)

f(X)={1 w-X+b>0

0 otherwise


https://en.wikipedia.org/wiki/Perceptron#/media/File:Mark_I_perceptron.jpeg

Perceptron (1958)

Il w-x+b>0
0 otherwise

f(X) =

“the embryo of an electronic
computer that [the Navy] expects
will be able to walk, talk, see, write,
reproduce itself and be conscious of
its existence.”

—New York Times

source
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Perceptrons (1969)

e Limitative results on functions computable by the
basic perceptron

e Famous example (we’ll return to it later):

e EXxclusive disjunction (XOR) is not computable

Perceptrons

e Other examples that are uncomputable assuming
local connectivity

YA/ UNIVERSITY of WASHINGTON 13



Al Winter
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Al Winter

e Reaction to the results:
e The approach of learning perceptrons for data cannot deliver on the promises
e Funding from e.g. government agencies dried up significantly

e Community lost interest in the approach

YA/ UNIVERSITY of WASHINGTON 14



Al Winter

e Reaction to the results:
e The approach of learning perceptrons for data cannot deliver on the promises
e Funding from e.g. government agencies dried up significantly

e Community lost interest in the approach

e \ery unfortunate:

e Already known from McCulloch and Pitts that any boolean function can be
computed by “deeper” networks of perceptrons

e Negative consequences of the results were significantly over-blown

YA/ UNIVERSITY of WASHINGTON 14



Deeper Backpropagation (1986
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Deeper Backpropagation (1986

asl Al =iz e Multi-layer networks, trained by backpropagation, applied to
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Deeper Backpropagation (1986)

| ot ey e Multi-layer networks, trained by backpropagation, applied to

PARALLEL DJSTR:BUTEf) : cognitive tasks

PROCE??S'NG e “Efficient applications of the chain rule based on dynamic

SHIGme F,H P programming began to appear in the 1960s and 1970s, mostly
2 At TR et 2 P T for control applications (Kelley, 1960; Bryson and Denham,
1961; Dreyfus, 1962; Bryson and Ho, 1969, Dreyfus, 1973) ....
The idea was finally developed in practice after being
independently rediscovered in different ways (LeCun, 1985;
Parker, 1985; Rumelhart et al., 1986a). The book Parallel
Distributed Processing presented the results of some of the
first successful experiments with back-propagation in a
chapter (Rumelhart et al., 1986b) that contributed greatly to
the popularization of back-propagation and initiated a very

DAVID/ € RUMELHART JAMES L MuéLELkAND

SN0 e R RSRACHOROIGE. [T active period of research in multilayer neural networks.”
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Successful Engineering Application (1989)

e Convolutional networks (“LeNet”, after Yann
LeCun) applied to recognizing hand-written
RESEARCH d ig itS

e MNIST dataset

“ ro‘t'

answer: 0

o Still useful for setting up pipelines, testing
simple baselines, eftc.
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e Deployed for automatic reading of mailing
original website addresses, check amounts, etc.



http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/lenet/
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ImageNet (ILSVRC) results (2012

ImageNet competition results
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ImageNet (ILSVRC) results (2012)

ImageNet competition results
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ILSVRC 2012: runner-up

Fisher based features + Multi class linear classifiers
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http://image-net.org/challenges/LSVRC/2012/isi.pdf

ILSVRC 2012: winner
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

University of Toronto
ilya@cs.utoronto.ca

Ilya Sutskever

Geoffrey E. Hinton

University of Toronto

hinton@cs.utoronto.ca

NeurlPS 2012 paper
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

ILSVRC 2012: winner
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2012-now

e \Widespread adoption of deep neural networks across a range of domains /
tasks

e |Image processing of various kinds
e Reinforcement learning (e.g. AlphaGo/AlphaZero, ...)
e NLP!

YA/ UNIVERSITY of WASHINGTON 20



2012-now

e \Widespread adoption of deep neural networks across a range of domains /
tasks

e |Image processing of various kinds
e Reinforcement learning (e.g. AlphaGo/AlphaZero, ...)
e NLP!

e \What happened?
e Better learning algorithms / training regimes
e Larger and larger, standardized datasets

e Compute! GPUs, now dedicated hardware (TPUSs)

YA/ UNIVERSITY of WASHINGTON 20



Compute in Deep Learning

Two Distinct Eras of Compute Usage in Training AI Systems
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log-scale!!
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® Some areas are an ‘arms
race’ between e.g.
Google, Facebook,
OpenAl, MS, Baidu, ...



Caveat Emptor

® Some areas are an ‘arms
race’ between e.g.
Google, Facebook,
OpenAl, MS, Baidu, ...
e Hugely expensive
e Carbon emissions

e Monetarily
e Inequitable access
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Caveat Emptor

Energy and Policy Considerations for Deep Learning in NLP

e Some areas are an ‘arms

) Emma Strubell Ananya Ganesh Andrew McCallum
race betwe e n e " g ! College of Information and Computer Sciences
University of Massachusetts Amherst

GOOgle, FacebOOk, {strubell, aganesh, mccallum}@cs.umass.edu
OpenAl, MS, Baidu, ...

Abstract Consumption CO-e (Ibs)

. Al 1, 1 , S 1984
e Hugely expensive e g s s s . e b NYGSSE o

ogy for training neural networks has ushered

in a new generation of large networks trained American life, avg, 1 year 36,156
- - on abundant data. These models have ob- Car, avg incl. fuel, 1 lifetime 126,000
‘ C a. r bo n e m I S S I O n S tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve- Training one model (GPU)
. ments depend on the availability of exception- NLP pipeline (parsing, SRL) 39
‘ M O n et a rl Iy ally large computational resources that neces- w/ tuning & experiments 78,468
sitate similarly substantial energy consump- Transformer (big) 192
tion. As a result these models are costly to
w/ neural arch. search 626,155

. train and develop, both financially, due to the

. I n e q U Ita b I e acce S S cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-

bon footprint required to fuel modern tensor

Table 1: Estimated CO5 emissions from training com-
mon NLP models, compared to familiar consumption. !
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Caveat Emptor

Energy and Policy Considerations for Deep Learning in NLP

e Some areas are an ‘arms

) Emma Strubell Ananya Ganesh Andrew McCallum
race betwe e n e " g ! College of Information and Computer Sciences
University of Massachusetts Amherst

GOOgle, FacebOOk, {strubell, aganesh, mccallum}@cs.umass.edu
OpenAl, MS, Baidu, ...

Green Al

Consumption CO-e (Ibs)
' Roy Schwartz*¢  Jesse Dodge*¥®* Noah A. Smith®Y  Oren Etzioni® Air travel, 1 person, NY<+SF 1984
. H ugely eXpenSIVe Human life, avg, 1 year 11,023
¢ Allen Institute for Al, Seattle, Washington, USA éanrle::arilnlge’fszlg’ 11 lz'fe;irme 1;2’(1)(5)(6)
O C arbo N emissions * Carnegie Mellon University, Pittsburgh, Pennsylvania, USA » VS TR T ’
¥ University of Washington, Seattle, Washington, USA Training one model (GPU)
. NLP pipeline (parsing, SRL) 39
O M on eta Il Iy July 2019 w/ tuning & experiments 78,468
Transformer (big) 192
‘ I n . t bI w/ neural arch. search 626,155
eq u I a e acce SS Abstract Table 1: Estimated CO5 emissions from training com-

mon NLP models, compared to familiar consumption. !

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]). Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along-
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing,
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is
to make Al both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green Al is an emerging focus at the Allen Institute for AL
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Potted History of Models in NLP



Four Broad “Eras”

e Four very general phases in types of models dominant in NLP:
® 100% rule-based systems [1960s - ]

e Machine learning, | [mid-80s - mid-90s]
e Decision trees, naive bayes, etc

e Log-linear (i.e. maxent) models [mid-90s - mid-2010s]

e Neural networks [2013 - now]

e NB: _all_ of these are still used in applications in every area!

e They all have different strengths and weaknesses
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Early NLP Systems (1960s-1990s)

e SHRDLU, e.g.:

PICK UP A BIG RED BLOCK.

I
Person: Pick up a big red block. |
Computer: OK. 4:&?/’
Person: Grasp the pyramid.
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. .‘i:;f .
Person (changing their mind): Find a block which 1is '
taller than the one you are holding and put i1t into the
box.
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS
TALLER THAN THE ONE I AM HOLDING.
Computer: OK.
Person: What does the box contain?
Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.
Person: What 1s the pyramid supported by?
Computer: THE BOX.

4
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Early NLP Systems (1960s-1990s)

e 100% rule-based, hand-written algorithms
e Lots of energy in ontology development / knowledge representation

e EXxhibit many core features of human linguistic competence:
e Compositional generalization

e Abstract representations of meaning
e Fully “interpretable”, because fully engineered

e But:

e Brittle, no graceful degradation, domain-specific



ML | (80s-90s)

e Increase in compute power, availability of larger corpora for parameter
estimation

e Generally, generative models (i.e. models of joint distribution P(x, y))
e N-grams, Naive Bayes, HMMs, PCFGs, ...

e Parameter estimation via counting = very simple training
e Generally relies on heavy use of feature engineering

e Still work surprisingly well! Always try them first.



Log-linear models

e Aka maximum entropy (maxent), multinomial classifiers, softmay, ...

e Discriminative models (i.e. of P(y| X))

P(y|x) xe
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e e.g. Klein et al 2003 on Named Entity Recognition: Xy 03 014 018 006 0
TAGS
. . . PTAG:IN -0.40 0.24 0.16 0.08 -0.08
O Welg ht for class PER for feature CU RWORD .GraCe *0.03 CTAG:NNP 109 045 026 043 047
NTAG:NNP 0.05 -0.19 0.18 -0.12 0.08
W . ht f I PER f f. (@ G” 4 PTAG-CTAG:IN-NNP 0 0.14 -0.03 001 -0.10
- O 5 CTAG-NTAG:NNP-NNP -0.11 -0.05 0 -0.38 -0.54
e Weight for class or prefix “<G”: 0.
. PTYPE:x:2 -0.07 -0.15 0.35 0.18 -0.31
] CTYPE:X -2.02 046 0.19 0.57 0.80
. Welg htS fOr CTAG ] N N P NTYPE:X):{ -0.22 -042 -0.19 0.29 0.54
PTYPE-CTYPE:x:2-Xx -0.20 0.08 0.10 0.10 -0.09
CTYPE-NTYPE: Xx-Xx 0.55 -0.13 -0.55 -0.13 0.26
PTYPE-CTYPE-NTYPE:x:2-Xx-Xx 0.10 0.37 0.10 0.12 -0.69
WORDS/TYPES
PWORD-CTYPE:at-Xx -0.21 0.57 -0.21 041 -0.56
. . CTYPE-NWORD:Xx-Road -0.01 0.27 -0.01 -0.23 -0.03
. STATES
. Featu re e ng I nee rl ng . PSTATE:O 291 -0.92 -0.72 -0.58 -0.70
PPSTATE-PSTATE:O-O 1.14 -0.60 -0.08 043 -0.04
. WORDS/STATES
E PSTATE-CWORD:O-Grace -0.01 0 0 -0.02 0.03
‘ XpenSIVe TAGS/STATES
PSTATE-PTAG-CTAG:O-IN-NNP 0.12 0.59 -0.29 -0.28 -0.14
PPSTATE-PPTAG-PSTATE-PTAG- 0.01 -0.03 -0.31 0.31 0.01
O InCOmplete CTAG:O-NN-O-IN-NNP
TYPES/STATES
PSTATE-CTYPE:O-Xx -1.13 0.37 -0.12 0.20 0.68
— PSTATE-NTYPE:O-X -0.69 -03 0.29 0.39 0.30
e Sparse [= wasted compute as well] P AT PTYeE Crvssox2xx | 030 08y 930 930 o
PPSTATE-PPTYPE-PSTATE- -0.22 -0.04 -0.04 -0.06 0.22
PTYPE-CTYPE:O-x-O-x:2-Xx
Total: -1.40 2.68 -1.74 -0.19 -0.58
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https://www.aclweb.org/anthology/W03-0428.pdf

Neural Networks

e Key idea:
e No feature engineering

e Have a larger model learn which features are useful
e [but can be combined with feature extraction as well]

e "End-to-end” learning paradigm:

raw text —— — OUtPUt
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Neural Networks

e Cons [to recur throughout course]: - **SPENDING FOURS

—

WEEKS TRAINING A

e “Black box™: MODEL™
e How do we know what the model has learned? e
e How can we trust it in deployment? | |

e Often learns to solve a dataset, not a task; may be very 4, N
different from our linguistic competence -

e Larger and larger compute needs [equity, environmental costs]

e lLarger and larger data needs
e Documentation debt
e Privacy concerns
e Amplifying biases

YA/ UNIVERSITY of WASHINGTON 31



Neural Networks

e Cons [to recur throughout course]:

e “Black box™:

e How do we know what the model has learnad?

e How can we trust it in deployment?

e (Often learns to solve a dataset, not
different from our linguistic compete

e Larger and larger compute needs [ec

e lLarger and larger data needs
e Documentation debt
e Privacy concerns
e Amplifying biases

On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? §

Emily M. Bender”

ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major
aymm@uw.edu
University of Washington
Seattle, WA, USA

ABSTRACT

The past 3 years of work in NLP have been characterized by the
development and deployment of ever larger language models, es-
pecially for English. BERT, its variants, GPT-2/3, and others, most
recently Switch-C, have pushed the boundaries of the possible both
through architectural innovations and through sheer size. Using
these pretrained models and the methodology of fine-tuning them
for specific tasks, researchers have extended the state of the art
on a wide array of tasks as measured by leaderboards on specific
benchmarks for English. In this paper, we take a step back and ask:

Timnit Gebru®
timnit@blackinai.org
Black in Al
Palo Alto, CA, USA

Shmargaret Shmitchell

shmargaret.shmitchell@gmail.com
The Aether

alone, we have seen the emergence of BERT and its variants [39,

70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most
recently Switch-C [43], with institutions seemingly competing to
produce ever larger LMs. While investigating properties of LMs and
how they change with size holds scientific interest, and large LMs
have shown improvements on various tasks (§2), we ask whether
enough thought has been put into the potential risks associated
with developing them and strategies to mitigate these risks.

We first consider environmental risks. Echoing a line of recent

nnnnn
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https://dl.acm.org/doi/10.1145/3442188.3445922

Course Information / Overview
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Learning Objectives

e Provide hands-on experience with building neural networks and using
them for NLP tasks
e Theoretical understanding of building blocks

e Computation graphs + gradient descent

e Forward/backward AP|
e Chain rule for computing gradients [backpropagation]

e \Various network architectures; their structure and biases
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Content

e Model architectures [in computation graph paradigm]:
e Feed-forward networks
e Recurrent networks

e [ransformers

e Primary tasks:
e Language modeling
e Text classification [sentiment analysis in particular]

® [ranslation

e Pre-training + fine-tuning, in-context learning and prompting, interpretability/
analysis
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Content, cont.

e Special topics:
e |Low-resource / multilingual NLP
e Ethics, fairness, limitations

e [Future directions



Course web page

e C(Course page: https://www.shane.st/teaching/574/spr25/

e C(Canvas: https://canvas.uw.edu/courses/1801656
e Lecture recording
e Assignment submission / grading

e Discussion!
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Communication
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Communication

e (Contacting teaching staff:
e If you prefer, you can use your Canvas inbox for all course-related emails:
e [f you do send email, please include LING574 in your subject line of email to us.

e \We will respond within 24 hours, but only during “business hours” during the week.
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e (Contacting teaching staff:
e If you prefer, you can use your Canvas inbox for all course-related emails:
e [f you do send email, please include LING574 in your subject line of email to us.
e \We will respond within 24 hours, but only during “business hours” during the week.

e If you do not check Canvas often, please remember to set Account: Notifications in Canvas: e.g.,

“‘Notify me right away”, “send daily summary”.
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e If you prefer, you can use your Canvas inbox for all course-related emails:
e [f you do send email, please include LING574 in your subject line of email to us.
e \We will respond within 24 hours, but only during “business hours” during the week.

e If you do not check Canvas often, please remember to set Account: Notifications in Canvas: e.g.,

“‘Notify me right away”, “send daily summary”.
e (Canvas discussions:
e All content and logistics questions

e If you have the question, someone else does too. Someone else besides the teaching staff
might also have the answer.
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Communication

e (Contacting teaching staff:
e If you prefer, you can use your Canvas inbox for all course-related emails:
e [f you do send email, please include LING574 in your subject line of email to us.
e \We will respond within 24 hours, but only during “business hours” during the week.

e If you do not check Canvas often, please remember to set Account: Notifications in Canvas: e.g.,

“‘Notify me right away”, “send daily summary”.
e (Canvas discussions:
e All content and logistics questions

e If you have the question, someone else does too. Someone else besides the teaching staff
might also have the answer.

e We will use Canvas:Announcement for important messages and reminders.
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Office hours
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Office hours

e Shane:
e Email: shanest@uw.edu

e Office hours:
* Monday 3-5pm
« GUG 415K
* https://washington.zoom.us/my/shanest
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e Saiya Karamali:
= Email: karamali@uw.edu

= Office hours:
e IBD

TA office hours


mailto:karamali@uw.edu

Homework assignments
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Homework assignments

e Due date: every Thurs at 11:59pm unless specified otherwise.

e The submission area closes two days after the due date.

e Late penalty:
® 1% for the 1st hour
e 10% for the 1st 24 hours
e 20% for the 1st 48 hours

e Your code must run, and will be tested, on patas.
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Homework Submission

e For each assignment, submit two files through Canvas:
e A note file: readme.txt or readme.pdf
e A gzipped tar file that includes everything: hwX.tar.gz
cd hwX/ # suppose hwX is your dir that includes all the files
tar -czvf hw.tar.gz *

e Before submitting, run check_hwX.sh to check the tar file: e.qg.,
/dropbox/24-25/574/hw1/check_hw1.sh hw1.tar.gz
e check_hwX.sh checks only the existence of files, not the format or content of the files.

e For each shell script submitted, you also need to submit the source code and binary code: see
574/nwX/submit-file-list
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Rubric

e Standard portion: 25 points

2 points: hw.tar.gz submitted

2 points: readme.[txtlpdf] submitted

6 points: all files and folders are present in the expected locations
10 points: program runs to completion

5 points: output of program on patas matches submitted output

e Assignment-specific portion: 75 points
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Regrading requests

e You can request regrading for:
® wrong submission or missing files: show the timestamp
e crashed code that can be easily fixed (e.g., wrong version of compiler)
e output files that are not produced on patas

e At most two requests for the course.

e 10% penalty for the part that is being regraded.

e [orregrading and any other grade-related issues: you must contact the TA within a week
after the grade is posted.
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Final grade

e Grade:

e Assignments: 100% (lowest score is removed)
e Bonus for participation: up to 2%
e The percentage is then mapped to final grade.

e No midterm or final exams
e (Grades in Canvas:(Grades

e TA feedback returned through Canvas:Assignments
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Further Notes

e If you do not have one already: request a patas account ASAP!
e Usually 24-48 hour turnaround time

e https://cldb.ling.washington.edu/live/accountrequest-form.php

e You can just put “575” for the course

e Shared policies for 570-572, 574, detailing most of the above: https://
chimpanzee.ling.washington.edu/cims/information-for-clms-students/57x-
course-policies/



https://cldb.ling.washington.edu/live/accountrequest-form.php
https://chimpanzee.ling.washington.edu/clms/information-for-clms-students/57x-course-policies/
https://chimpanzee.ling.washington.edu/clms/information-for-clms-students/57x-course-policies/
https://chimpanzee.ling.washington.edu/clms/information-for-clms-students/57x-course-policies/

Assignment Overview

e Assignments 1-5: FFNNs for LM/classification from the ground up

e Implemented in edugrad

e Minimal Implementation of PyTorch API

e 6-7: RNNs for LM + classification
e Attention and NMT

e Transformers, fine-tuning, prompting


https://github.com/shanest/edugrad

Next Time

e WITF is a word vector?

e How do we train them?

e (Crash course in gradient descent

e Establishing notation for the rest of the course
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Thanks! Looking forward to a great quarter!



