
Neural Network Introduction
LING 574 Deep Learning for NLP

Shane Steinert-Threlkeld

1

Announcements
● HW1 due tomorrow night, upload readme and hw1.tar.gz to Canvas
● NB: two separate files!
● Do not put readme inside of tar.gz; no “nested” structure inside tarball either
● Run check_hw1.sh

● indices_to_tokens (and in general): no error handling

● You can/should use Vocabulary.from_text_files to build your vocab object
● Factory design pattern allows for different initialization signatures in Python
● E.g. from_csv in pandas, from_pretrained in huggingface (later this course)

● Note on *args and **kwargs
● https://book.pythontips.com/en/latest/args_and_kwargs.html

2

https://book.pythontips.com/en/latest/args_and_kwargs.html

*args and **kwargs

3

*args and **kwargs

4

Plan for Today
● Last time:
● Prediction-based word vectors
● Skip-gram with negative sampling

● Today: intro to feed-forward neural networks
● Basic computation + expressive power
● Multilayer perceptrons
● Mini-batches

5

Computation: Basic Example

6

Artificial Neuron

7
https://github.com/shanest/nn-tutorial

https://github.com/shanest/nn-tutorial

Activation Function: Sigmoid

8

σ(x) =
1

1 + e−x
=

ex

ex + 1

Computing a Boolean function

9

Computing a Boolean function

9

p q a

Computing a Boolean function

9

p q a

1 1 1

Computing a Boolean function

9

p q a

1 1 1

1 0 0

Computing a Boolean function

9

p q a

1 1 1

1 0 0

0 1 0

Computing a Boolean function

9

p q a

1 1 1

1 0 0

0 1 0

0 0 0

Computing ‘and’

10

The XOR problem

11

The XOR problem

11XOR is not linearly separable

Computing XOR

12

Computing XOR

12

Exercise: show that
NAND behaves as described.

Computing XOR

13

Key Ideas
● Hidden layers compute high-level / abstract features of the input
● Via training, will learn which features are helpful for a given task
● Caveat: doesn’t always learn much more than shallow features

● Doing so increases the expressive power of a neural network
● Strictly more functions can be computed with hidden layers than without

14

Expressive Power

15

Expressive Power
● Neural networks with one hidden layer are universal function approximators

15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let be continuous and . Then there is a one-hidden-layer
neural network with sigmoid activation such that for all

.

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m

15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let be continuous and . Then there is a one-hidden-layer
neural network with sigmoid activation such that for all

.

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m

● Generalizations (diff activation functions, less bounded, etc.) exist.

15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let be continuous and . Then there is a one-hidden-layer
neural network with sigmoid activation such that for all

.

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m

● Generalizations (diff activation functions, less bounded, etc.) exist.

● But:
● Size of the hidden layer is exponential in m
● How does one find/learn such a good approximation?

15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let be continuous and . Then there is a one-hidden-layer
neural network with sigmoid activation such that for all

.

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m

● Generalizations (diff activation functions, less bounded, etc.) exist.

● But:
● Size of the hidden layer is exponential in m
● How does one find/learn such a good approximation?

● Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let be continuous and . Then there is a one-hidden-layer
neural network with sigmoid activation such that for all

.

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m

● Generalizations (diff activation functions, less bounded, etc.) exist.

● But:
● Size of the hidden layer is exponential in m
● How does one find/learn such a good approximation?

● Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

● See also GBC 6.4.1 for more references, generalizations, discussion

15

http://neuralnetworksanddeeplearning.com/chap4.html
https://www.deeplearningbook.org/contents/mlp.html

Feed-forward networks 
aka Multi-layer perceptrons (MLP)

16

XOR Network

17

XOR Network

17

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

XOR Network

17

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

XOR Network

18

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

XOR Network

18

aor = σ (wor
p ⋅ ap + wor

q ⋅ aq + bor)

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

XOR Network

18

aor = σ (wor
p ⋅ ap + wor

q ⋅ aq + bor)
anand = σ (wnand

p ⋅ ap + wnand
q ⋅ aq + bnand)

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

XOR Network

19

[aor anand] = σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

XOR Network

20

aand = σ σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]
wand

or

wand
nand

+ band

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

Generalizing

21

aand = σ σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]
wand

or

wand
nand

+ band

Generalizing

21

̂y = f2 (f1 (xW1 + b1) W2 + b2)

aand = σ σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]
wand

or

wand
nand

+ band

Generalizing

21

̂y = f2 (f1 (xW1 + b1) W2 + b2)
̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

aand = σ σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]
wand

or

wand
nand

+ band

Some terminology
● Our XOR network is a feed-forward neural network with one hidden layer
● Aka a multi-layer perceptron (MLP)

● Input nodes: 2; output nodes: 1

● Activation function: sigmoid

22

General MLP

23

source

w1
ij

Weight to neuron j in layer 1  
from neuron i in layer 0

http://neuralnetworksanddeeplearning.com/chap1.html

General MLP

23

source

W1
w1

ij
Weight to neuron j in layer 1  

from neuron i in layer 0

http://neuralnetworksanddeeplearning.com/chap1.html

General MLP

23

source

W1
w1

ij
Weight to neuron j in layer 1  

from neuron i in layer 0

http://neuralnetworksanddeeplearning.com/chap1.html

General MLP

24

General MLP

24

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

General MLP

24

x = [x0 x1 ⋯ xn0−1]
Shape: (1,n0)

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

General MLP

24

W1 =

w1
00 w1

01 ⋯ w1
0n1−1

w1
10 w1

11 ⋯ w1
1n1−1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1−1

x = [x0 x1 ⋯ xn0−1]
Shape: (1,n0)

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

General MLP

24

W1 =

w1
00 w1

01 ⋯ w1
0n1−1

w1
10 w1

11 ⋯ w1
1n1−1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1−1

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n0, n1)
n0
n1

x = [x0 x1 ⋯ xn0−1]
Shape: (1,n0)

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

General MLP

24

W1 =

w1
00 w1

01 ⋯ w1
0n1−1

w1
10 w1

11 ⋯ w1
1n1−1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1−1

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n0, n1)
n0
n1

x = [x0 x1 ⋯ xn0−1]
Shape: (1,n0)

b1 = [b1
0 b1

1 ⋯ b1
n1−1]

Shape: (1,n1)

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

Parameters of an MLP
● Weights and biases
● For each layer :

● weights; biases

● With n hidden layers (considering the output as a hidden layer):

l nl(nl−1 + 1)
nlnl−1 nl

25

n

∑
i=1

ni(ni−1 + 1)

Hyper-parameters of an MLP

26

Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …

26

Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …

● Number of hidden layers

26

Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …

● Number of hidden layers

● For each hidden layer:

● Size

● Activation function

26

Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …

● Number of hidden layers

● For each hidden layer:

● Size

● Activation function

● Others: initialization, regularization (and associated values), learning rate / training, …

26

The Deep in Deep Learning
● The Universal Approximation Theorem says that one hidden layer suffices

for arbitrarily-closely approximating a given function

● Empirical drawbacks: Super-exponentially many neurons; hard to discover

● “Deep and narrow” >> “Shallow and wide” (some theoretical analysis)
● In principle allows hierarchical features to be learned
● More well-behaved w/r/t optimization

27

https://papers.nips.cc/paper_files/paper/2014/hash/fa6f2a469cc4d61a92d96e74617c3d2a-Abstract.html

The Deep in Deep Learning
● The Universal Approximation Theorem says that one hidden layer suffices

for arbitrarily-closely approximating a given function

● Empirical drawbacks: Super-exponentially many neurons; hard to discover

● “Deep and narrow” >> “Shallow and wide” (some theoretical analysis)
● In principle allows hierarchical features to be learned
● More well-behaved w/r/t optimization

27

source

https://papers.nips.cc/paper_files/paper/2014/hash/fa6f2a469cc4d61a92d96e74617c3d2a-Abstract.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

The Deep in Deep Learning
● The Universal Approximation Theorem says that one hidden layer suffices

for arbitrarily-closely approximating a given function

● Empirical drawbacks: Super-exponentially many neurons; hard to discover

● “Deep and narrow” >> “Shallow and wide” (some theoretical analysis)
● In principle allows hierarchical features to be learned
● More well-behaved w/r/t optimization

27

source

source

https://papers.nips.cc/paper_files/paper/2014/hash/fa6f2a469cc4d61a92d96e74617c3d2a-Abstract.html
https://distill.pub/2017/feature-visualization/
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Activation Functions
● Note: non-linear activation functions are essential

● MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

● Without the non-linearity, would just have several linear transformations
● Composition of linear transformations is also linear!

28

Activation Functions
● Note: non-linear activation functions are essential

● MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

● Without the non-linearity, would just have several linear transformations
● Composition of linear transformations is also linear!

28

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

Non-linearity, cont.

29

Non-linearity, cont.
● Recall: XOR was not computable by a

single neuron because the latter can
only compute linearly separable
functions

29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.
● Recall: XOR was not computable by a

single neuron because the latter can
only compute linearly separable
functions

● One perspective: integrating extracted
features

29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.
● Recall: XOR was not computable by a

single neuron because the latter can
only compute linearly separable
functions

● One perspective: integrating extracted
features

● An equivalent perspective:
● Transforming the input space (source; p.

169)
● This is a non-linear transformation
● Space folding intuition more generally

(also GBC sec 6.4.1)

29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Non-linearity, cont.
● Recall: XOR was not computable by a

single neuron because the latter can
only compute linearly separable
functions

● One perspective: integrating extracted
features

● An equivalent perspective:
● Transforming the input space (source; p.

169)
● This is a non-linear transformation
● Space folding intuition more generally

(also GBC sec 6.4.1)

29

https://www.deeplearningbook.org/contents/mlp.html
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Activation Functions: Hidden Layer

30

σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid

Activation Functions: Hidden Layer

30

σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid tanh

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x) − 1

Activation Functions: Hidden Layer

30

σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid tanh

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x) − 1

Problem: derivative “saturates” (nearly 0)
everywhere except near origin

Activation Functions: Hidden Layer

30

σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid tanh

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x) − 1

Problem: derivative “saturates” (nearly 0)
everywhere except near origin

Activation Functions: Hidden Layer

30

σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid tanh

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x) − 1

Problem: derivative “saturates” (nearly 0)
everywhere except near origin

● Use ReLU by default

● Generalizations:
● Leaky
● ELU
● GELU
● Softplus
● …

Activation Functions: Output Layer
● Depends on the task!

● Regression (continuous output(s)): none!
● Just use final linear transformation

● Binary classification: sigmoid
● Also for multi-label classification

● Multi-class classification: softmax
● Terminology: the inputs to a softmax are called logits
● [there are sometimes other uses of the term, so beware]

31

softmax(x)i =
exi

∑j exj

Mini-batch computation

32

Computing with a Single Input

33

W1 =

w1
00 w1

01 ⋯ w1
0n1−1

w1
10 w1

11 ⋯ w1
1n1−1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1−1

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n0, n1)
n0
n1

x = [x0 x1 ⋯ xn0−1]
Shape: (1,n0)

b1 = [b1
0 b1

1 ⋯ b1
n1−1]

Shape: (1,n1)

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

Mini-batch Gradient Descent (from lecture 2)

34

initialize parameters / build model

for each epoch:

data = shuffle(data)
batches = make_batches(data)

for each batch in batches:

outputs = model(batch)
loss = loss_fn(outputs, true_outputs)
compute gradients
update parameters

Computing with Mini-batches
● Bad idea:

35

for each batch in batches:
for each datum in batch:
outputs = model(datum)
loss = loss_fn(outputs, true_outputs)
compute gradients

update parameters

Computing with a Batch of Inputs

36

Computing with a Batch of Inputs

36

̂y = fn (fn−1 (⋯f2 (f1 (XW1 + b1) W2 + b2)⋯) Wn + bn)

Computing with a Batch of Inputs

36

̂y = fn (fn−1 (⋯f2 (f1 (XW1 + b1) W2 + b2)⋯) Wn + bn)

X =

x0
0 x0

1 … x0
n0

x0
1 x1

1 … x1
n0

⋮ ⋮ ⋱ ⋮
xn

1 xn
1 … xn

n0

Shape:
: batch_size

(n, n0)
n

Computing with a Batch of Inputs

36

̂y = fn (fn−1 (⋯f2 (f1 (XW1 + b1) W2 + b2)⋯) Wn + bn)

W1 =

w1
00 w1

01 ⋯ w1
0n1

w1
10 w1

11 ⋯ w1
1n1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1

X =

x0
0 x0

1 … x0
n0

x0
1 x1

1 … x1
n0

⋮ ⋮ ⋱ ⋮
xn

1 xn
1 … xn

n0

Shape:
: batch_size

(n, n0)
n

Computing with a Batch of Inputs

36

̂y = fn (fn−1 (⋯f2 (f1 (XW1 + b1) W2 + b2)⋯) Wn + bn)

W1 =

w1
00 w1

01 ⋯ w1
0n1

w1
10 w1

11 ⋯ w1
1n1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n0, n1)
n0
n1

X =

x0
0 x0

1 … x0
n0

x0
1 x1

1 … x1
n0

⋮ ⋮ ⋱ ⋮
xn

1 xn
1 … xn

n0

Shape:
: batch_size

(n, n0)
n

Computing with a Batch of Inputs

36

̂y = fn (fn−1 (⋯f2 (f1 (XW1 + b1) W2 + b2)⋯) Wn + bn)

W1 =

w1
00 w1

01 ⋯ w1
0n1

w1
10 w1

11 ⋯ w1
1n1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n0, n1)
n0
n1

X =

x0
0 x0

1 … x0
n0

x0
1 x1

1 … x1
n0

⋮ ⋮ ⋱ ⋮
xn

1 xn
1 … xn

n0

Shape:
: batch_size

(n, n0)
n

b1 = [b1
0 b1

1 … b1
n1]

Shape:
Added to each row of

(1,n1)
XW1

Note on mini-batches and shape

37

Note on mini-batches and shape
● Most modern neural net libraries (e.g. PyTorch) expect the first dimension of

matrices/tensors to be a batch size
● Produce a sequence of representations, for each item in the batch
● e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

37

Note on mini-batches and shape
● Most modern neural net libraries (e.g. PyTorch) expect the first dimension of

matrices/tensors to be a batch size
● Produce a sequence of representations, for each item in the batch
● e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

● In principle, can be higher than 2-dimensional
● Images: (batch_size, width, height, 3)
● Sequences: (batch_size, seq_len, representation_size)

37

Note on mini-batches and shape
● Most modern neural net libraries (e.g. PyTorch) expect the first dimension of

matrices/tensors to be a batch size
● Produce a sequence of representations, for each item in the batch
● e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

● In principle, can be higher than 2-dimensional
● Images: (batch_size, width, height, 3)
● Sequences: (batch_size, seq_len, representation_size)

● Two comments:
● In your code, annotate every tensor with a comment saying intended shape
● When debugging, look at shapes early on!!

37

Next Time
● Further abstraction: computation graph

● Backpropagation algorithm for computing gradients
● Using forward/backward API for nodes in a comp graph

38

