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Announcements
● HW1 due tomorrow night, upload readme and hw1.tar.gz to Canvas
● NB: two separate files!
● Do not put readme inside of tar.gz; no “nested” structure inside tarball either
● Run check_hw1.sh

● indices_to_tokens (and in general): no error handling

● You can/should use Vocabulary.from_text_files to build your vocab object
● Factory design pattern allows for different initialization signatures in Python
● E.g. from_csv in pandas, from_pretrained in huggingface (later this course)

● Note on *args and **kwargs
● https://book.pythontips.com/en/latest/args_and_kwargs.html 
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Plan for Today
● Last time:
● Prediction-based word vectors
● Skip-gram with negative sampling

● Today: intro to feed-forward neural networks
● Basic computation + expressive power
● Multilayer perceptrons
● Mini-batches

5



Computation: Basic Example
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Artificial Neuron
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Activation Function: Sigmoid
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Computing a Boolean function
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Computing ‘and’
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The XOR problem
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The XOR problem

11XOR is not linearly separable



Computing XOR
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Computing XOR
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Exercise: show that  
NAND behaves as described.



Computing XOR

13



Key Ideas
● Hidden layers compute high-level / abstract features of the input
● Via training, will learn which features are helpful for a given task
● Caveat: doesn’t always learn much more than shallow features

● Doing so increases the expressive power of a neural network
● Strictly more functions can be computed with hidden layers than without
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Expressive Power
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Expressive Power
● Neural networks with one hidden layer are universal function approximators
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● Generalizations (diff activation functions, less bounded, etc.) exist.

● But:
● Size of the hidden layer is exponential in m
● How does one find/learn such a good approximation?

● Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html 

● See also GBC 6.4.1 for more references, generalizations, discussion
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Feed-forward networks 
aka Multi-layer perceptrons (MLP)
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Some terminology
● Our XOR network is a feed-forward neural network with one hidden layer 
● Aka a multi-layer perceptron (MLP)

● Input nodes: 2; output nodes: 1

● Activation function: sigmoid
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General MLP
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Parameters of an MLP
● Weights and biases
● For each layer : 

●  weights;  biases

● With n hidden layers (considering the output as a hidden layer):

l nl(nl−1 + 1)
nlnl−1 nl

25

n

∑
i=1

ni(ni−1 + 1)



Hyper-parameters of an MLP
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Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …
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Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …

● Number of hidden layers

● For each hidden layer:

● Size

● Activation function

● Others: initialization, regularization (and associated values), learning rate / training, …
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The Deep in Deep Learning
● The Universal Approximation Theorem says that one hidden layer suffices 

for arbitrarily-closely approximating a given function

● Empirical drawbacks: Super-exponentially many neurons; hard to discover

● “Deep and narrow” >> “Shallow and wide” (some theoretical analysis)
● In principle allows hierarchical features to be learned
● More well-behaved w/r/t optimization

27
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Activation Functions
● Note: non-linear activation functions are essential

● MLP: linear transformation, followed by a point-wise non-linearity, repeated 
several times over

● Without the non-linearity, would just have several linear transformations
● Composition of linear transformations is also linear!
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Non-linearity, cont.
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Non-linearity, cont.
● Recall: XOR was not computable by a 

single neuron because the latter can 
only compute linearly separable 
functions

● One perspective: integrating extracted 
features

● An equivalent perspective:
● Transforming the input space (source; p. 

169)
● This is a non-linear transformation
● Space folding intuition more generally 

(also GBC sec 6.4.1)
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Activation Functions: Hidden Layer
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σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid tanh

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x) − 1

Problem: derivative “saturates” (nearly 0) 
everywhere except near origin

● Use ReLU by default

● Generalizations:
● Leaky
● ELU
● GELU
● Softplus
● …



Activation Functions: Output Layer
● Depends on the task!

● Regression (continuous output(s)): none!
● Just use final linear transformation 

● Binary classification: sigmoid
● Also for multi-label classification

● Multi-class classification: softmax
● Terminology: the inputs to a softmax are called logits
● [there are sometimes other uses of the term, so beware]

31

softmax(x)i =
exi

∑j exj



Mini-batch computation
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Computing with a Single Input
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Mini-batch Gradient Descent (from lecture 2)
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initialize parameters / build model

for each epoch:

data = shuffle(data)
batches = make_batches(data)

for each batch in batches:

outputs = model(batch)
loss = loss_fn(outputs, true_outputs)
compute gradients
update parameters



Computing with Mini-batches
● Bad idea:
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for each batch in batches:
for each datum in batch:
outputs = model(datum)
loss = loss_fn(outputs, true_outputs)
compute gradients

update parameters



Computing with a Batch of Inputs
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Note on mini-batches and shape
● Most modern neural net libraries (e.g. PyTorch) expect the first dimension of 

matrices/tensors to be a batch size
● Produce a sequence of representations, for each item in the batch
● e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)
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Note on mini-batches and shape
● Most modern neural net libraries (e.g. PyTorch) expect the first dimension of 

matrices/tensors to be a batch size
● Produce a sequence of representations, for each item in the batch
● e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

● In principle, can be higher than 2-dimensional
● Images: (batch_size, width, height, 3)
● Sequences: (batch_size, seq_len, representation_size)

● Two comments:
● In your code, annotate every tensor with a comment saying intended shape
● When debugging, look at shapes early on!!
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Next Time
● Further abstraction: computation graph

● Backpropagation algorithm for computing gradients
● Using forward/backward API for nodes in a comp graph
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