
Computation Graphs + Backpropagation
LING 574 Deep Learning for NLP

Shane Steinert-Threlkeld

1



Announcements
● HW1 reference code made available in hw1/ref in our dropbox

● HW2’s vocabulary.py is a symlink to vocabulary.py in hw1/ref
● You can symbolic link to it from your directory to use:
● `ln -s /mnt/dropbox/24-25/574/hw1/ref/vocabulary.py 

vocabulary.py`

● Notation:
●  and fixed  typo in PDF

● : natural logarithm (base , aka )

● Office hours ending at 4:45 today

Ww E
log e ln

2



Today’s Plan
● Finish neural network intro [activation functions, batch computation, …]

● Computation graph abstraction

● Backpropagation
● “Calculus on computation graphs”

● Forward/backward API

3



Computation Graphs

4



What is a computation graph?
● The “descriptive” language of deep learning frameworks
● e.g. TensorFlow, PyTorch

● Essentially, “parse trees” of mathematical expressions
● Captures dependence between sub-expressions

● Two types of computation:
● Forward: compute outputs given inputs
● Backward: compute gradients

5



Computation Graph Example

6

f(x; a, b) = (ax + b)2

a x

× b

+

( ⋅ )2



Forward Pass
● Compute output(s) given inputs
● Inputs: leaf nodes; need values
● Outputs: those with no children

● Forward computation:
● Loop over nodes in topological order [i.e. children after parents]
● Compute value of a node given values of its parent nodes

7



Computation Graph Example

8

a x

× b

+

( ⋅ )2

f(x; a, b) = (ax + b)2



Computation Graph Example

8

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2

f(x; a, b) = (ax + b)2



Computation Graph Example

8

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
3

f(x; a, b) = (ax + b)2



Computation Graph Example

8

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
3

5

f(x; a, b) = (ax + b)2



Computation Graph Example

8

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
3

5

25

f(x; a, b) = (ax + b)2



Nodes in a Graph
● Node: a Tensor value
● e.g. numpy ndarray; n-dimensional array of values
● Scalar, vector, matrix, …

● Edge: function argument
● The value of a node is a function of the values of its parents

● For forward: node computes its value based on its parents’ values

9



SGNS as a Graph

10

Ww Cc

⋅

σ

P(1 |w, c) = σ (Ww ⋅ Cc)



Hidden Layer Graph

11

̂y = f(xW + b)

x W

matmul b

+

f



Backpropagation

12



So what?
● So far, this is just fancy re-writing of basic mathematical computation

● The real victory of the graph abstraction comes in computing derivatives

● Backpropagation:
● A dynamic programming algorithm on computation graphs that allows the 

gradient of an output to be computed with respect to every node in the graph

13



Computing Derivatives

14

f(x; a, b) = (ax + b)2

a x

× b

+

( ⋅ )2



Computing Derivatives

14

f(x; a, b) = (ax + b)2

a x

× b

+

( ⋅ )2 ∂f
∂x

=
∂f

∂(ax + b)
∂(ax + b)

∂x
= 2(ax + b)a

∂f
∂a

= 2(ax + b)x

∂f
∂b

= 2(ax + b)



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂(c + b)

∂b
= 10



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂(c + b)

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂(c + b)

∂c
= 10



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂(c + b)

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂(c + b)

∂c
= 10

∂e
∂x

=
∂e
∂c

∂c
∂x

= 10a = 30



Backpropagation Example

15

a x

× b

+

( ⋅ )2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂(c + b)

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂(c + b)

∂c
= 10

∂e
∂x

=
∂e
∂c

∂c
∂x

= 10a = 30
∂e
∂a

=
∂e
∂c

∂c
∂a

= 10x = 10



Backpropagation
● Initialize gradient to 1 for given output node 
● [NB: assuming that this output node is a scalar]

● Loop over nodes in graph in reversed topological order [i.e. children come 
before parents]
● Compute gradient of output node w/r/t this node, in terms of gradients w/r/t this 

node’s children
● [i.e. apply the chain rule!]

f

16



Backpropagation Algorithm

17

From Tensor class in edugrad

https://github.com/shanest/edugrad


Backpropagation Algorithm

17

From Tensor class in edugrad

Local gradient + chain rule application

https://github.com/shanest/edugrad


Why back-propagation?
● Extremely efficient method 

for computing all gradients
● Compute once
● Store and re-use redundant 

computation
● Whence a form of dynamic 

programming

● Traverse each edge once, 
instead of once per 
dependency path

a x

× b

+

( ⋅ )2



Why back-propagation?
● Extremely efficient method 

for computing all gradients
● Compute once
● Store and re-use redundant 

computation
● Whence a form of dynamic 

programming

● Traverse each edge once, 
instead of once per 
dependency path

a x

× b

+

( ⋅ )2



Why back-propagation?
● Extremely efficient method 

for computing all gradients
● Compute once
● Store and re-use redundant 

computation
● Whence a form of dynamic 

programming

● Traverse each edge once, 
instead of once per 
dependency path

a x

× b

+

( ⋅ )2



Why back-propagation?
● Extremely efficient method 

for computing all gradients
● Compute once
● Store and re-use redundant 

computation
● Whence a form of dynamic 

programming

● Traverse each edge once, 
instead of once per 
dependency path

a x

× b

+

( ⋅ )2



Why back-propagation?
● Extremely efficient method 

for computing all gradients
● Compute once
● Store and re-use redundant 

computation
● Whence a form of dynamic 

programming

● Traverse each edge once, 
instead of once per 
dependency path

a x

× b

+

( ⋅ )2



Forward/backward API

19



Nodes in Computational Graph
● Forward pass:
● Compute value given 

parents’ values

● Backward pass:
● Compute parents’ 

gradients given children’s

20



Nodes in Computational Graph
● Forward pass:
● Compute value given 

parents’ values

● Backward pass:
● Compute parents’ 

gradients given children’s

20

h = g(a, b)

a

b

h



Nodes in Computational Graph
● Forward pass:
● Compute value given 

parents’ values

● Backward pass:
● Compute parents’ 

gradients given children’s

20

h = g(a, b)

a

b

h

∂L
∂h



Nodes in Computational Graph
● Forward pass:
● Compute value given 

parents’ values

● Backward pass:
● Compute parents’ 

gradients given children’s

20

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b



Nodes in Computational Graph
● Forward pass:
● Compute value given 

parents’ values

● Backward pass:
● Compute parents’ 

gradients given children’s

20

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

∂L
∂a

=
∂L
∂h

∂h
∂a

∂L
∂b

=
∂L
∂h

∂h
∂b



Nodes in Computational Graph
● Forward pass:
● Compute value given 

parents’ values

● Backward pass:
● Compute parents’ 

gradients given children’s

20

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

∂L
∂a

=
∂L
∂h

∂h
∂a

∂L
∂b

=
∂L
∂h

∂h
∂b

Upstream 
gradient

Local 
gradient

Downstream 
gradient



Forward/Backward API

21

From my edugrad mini-
library, which you will 
use :)

https://github.com/shanest/edugrad


Example: Addition

22

∂L
∂a

∂L
∂b



Example: ReLU

23

ReLU(x) = max(0,x)

class relu(Operation):
def forward(ctx, x):
return np.maximum(0, x)

def backward(ctx, grad_output):



Example: ReLU

23

ReLU(x) = max(0,x)

class relu(Operation):
def forward(ctx, x):
return np.maximum(0, x)

def backward(ctx, grad_output):



Example: ReLU

23

ReLU(x) = max(0,x)

∂R
∂x

= {1 x > 0
0 otherwise

class relu(Operation):
def forward(ctx, x):
return np.maximum(0, x)

def backward(ctx, grad_output):



Example: ReLU

23

ReLU(x) = max(0,x)

∂R
∂x

= {1 x > 0
0 otherwise

class relu(Operation):
def forward(ctx, x):
return np.maximum(0, x)

def backward(ctx, grad_output):

🤔🤔🤔 where’s x???



Example: ReLU

24



Example: ReLU

24

Save and retrieve the input value!



Example: ReLU

24

Save and retrieve the input value!

local gradient upstream 
gradient

times



Example: ReLU

24

Save and retrieve the input value!

local gradient upstream 
gradient

times

NB: list, one downstream gradient 
per input (in this case, one) 



Adding Gradients with Multiple Outputs

25

x

…

…
ℒ

f

g



Adding Gradients with Multiple Outputs

25

x

…

…
ℒ

f

g



Adding Gradients with Multiple Outputs

25

x

…

…
ℒ

f

g



Adding Gradients with Multiple Outputs

25

x

…

…
ℒ

f

g

+



Adding Gradients with Multiple Outputs

25

x

…

…
ℒ

f

g

+

∂ℒ
∂x

=
∂ℒ
∂f

∂f
∂x

+
∂ℒ
∂g

∂g
∂x

Multivariable chain rule:



Adding Gradients with Multiple Outputs

26

f(x) = x2 × 3x Live demo and/or exercise!



Adding Gradients with Multiple Outputs

27



Adding Gradients with Multiple Outputs

27

Adding over paths handled implicitly in auto-grad libraries; 
more power to the forward/backward API



Schematic of Graph for Training

28

model

x θ

ℒ

y



Two Modes of Graph Construction

29

● Static (e.g. TensorFlow <2.x)

● First: define entire graph structure

● Then: pass in inputs, execute nodes

● [session.run, feed_dicts, oh my!]

● Dynamic (e.g. PyTorch, TensorFlow 2.x)

● The graph is defined dynamically in the forward pass

● E.g. operators on Tensors store the links to their input Tensors, thus 
building a graph



Training Loop
● Define (now, dynamically) computation graph, get backprop “automatically”

30



Training Loop
● Define (now, dynamically) computation graph, get backprop “automatically”

30



Training Loop
● Define (now, dynamically) computation graph, get backprop “automatically”

30

Backprop the loss!



Training Loop
● Define (now, dynamically) computation graph, get backprop “automatically”

30

Backprop the loss!

Update the parameters



Training Loop
● Define (now, dynamically) computation graph, get backprop “automatically”

30

Backprop the loss!

Update the parameters

Yes, you should 
understand backdrop!

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b


More Resources
● Debugging:
● Symbolic gradient computation; 
● Shapes! Gradients should be same shape as values [b/c scalar outputs]

● Computing vector/matrix derivatives
● Work with small toy examples, compute for a single element, generalize
● https://web.archive.org/web/20240324092041/http://cs231n.stanford.edu/

vecDerivs.pdf 
● http://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf 

f(x + h) − f(x − h)/2h

31

https://web.archive.org/web/20240324092041/http://cs231n.stanford.edu/vecDerivs.pdf
https://web.archive.org/web/20240324092041/http://cs231n.stanford.edu/vecDerivs.pdf
http://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf


Next Time
● Feed-forward models for:
● Classification: Deep Averaging Network
● Language Modeling

● Training tips and tricks

32


