
FFNNs for Classification and Language
Modeling

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld

1

Announcements
● Remote development (e.g. in VSCode): use
dryas.ling.washington.edu instead of patas

● HW2 files: updated some old file references, should work now

● HW2 written: be detailed, e.g. explain your steps (helps with partial credit)

● : is a single integer index, of a negative sampled context word

● HW1: great job! data statements: hard to do :) b/c not well-documented.
Tracing all the way back to data curation reveals that all the reviews are
from only 4 critics O_O

∇Cc−i
LCE c−i

2

Note on Random Seeds
● In word2vec.py / util.py:

● Random seed:
● Behavior of pseudo-random number generators is

determined by their “seed” value
● If not specified, determined by e.g. # of seconds since 1970
● Same seed —> same (non-random) behavior

● Sources of randomness in DL: shuffling the data each
epoch, parameter initialization, negative sampling, …

● Very important for reproducibility!
● In general, run on several seeds and report means / std’s

3

Random Seeds and Reproducibility

4

Deep

Random Seeds, cont
● Ideally: “randomly generate” seeds, but save/store them!

● Random seed is not a hyper-parameter! (Some discussions in these threads.)

5source

https://twitter.com/milesaturpin/status/1251218514272301057
https://vega.github.io/editor/#/url/vega-lite/N4KABGBEC2CGBOBrSAuKAbAlgOwKaQBpwpdsBjAewBMcBzVMUCCSADweEgBcBPAB3xpIARwCusbF0xdYUgG74CUAGaZc6KgzaQAvkWZQeHbv0FQxEqTPmKVajVsqjJhKFfRnso9Oh3E9xNzSHloAYvC4YqRkPGAUymAAOpAAzri4VAAUrACUyXHYYADi0gAWogBGhIFc8BIpyhTw0AwA2sQQnMroslykbZBOLgC6AQacAO44VBQTbZwUfFrwswD6XtAVuPCukKrqmkK7sCla7DqjxMP6UFNUXKUMAJwADC83kKW4mLSlXAwAZjeHyoslgHA6UDksHQolwpzQTAMUCG-zQ7WRzAAHC8sQBGG6YgBsRKxRMJyLxACYAQTIQYAKwAdgZFIMABYmey2cx2Qz3vTmNSsTyIOyiQDRWA8QCqVL8VKnrSpVT2SLBRAgQLMRA8UTuRqwESmVKiXLDU9WYa8Uz1TqwAynlKAeTrS9XfannadU8PTqZVb7arnX7Md7MXingb7aHKeHkQDoz6nRak2HzUHJda6fa8YGdcHDbGDHrnSn7eLneyqfnMSypey08iqRmdSbDS6paXsyqc-7y-6+xGs-b44ymwZi7yVc6G-LTQvDeztTqJ8wqSvMRuu12h8i12L2xWu63MZuE3PDYXczOO12jwXLzGd3ei12B5ja8ip7rT-un-6t7HoaY7MA+EYvF+BhYo2XZEh+zYHtKI4+ouQYAcSUrnoyu7gcieEGChEZYfOV4vp6cFdqBupIUC25XgRzAAghHKUUWSHUUaDZQdiDYcV2PG6l2RHIthQoYaJUqMRAP5gCJhEkWRhpiUJS7kY+hqCXJUpaUhe4GCpYCGfJ4lKTeZmAdain2oZ+nMMZEmTlJ1k6g5ykuWe6mee5FneTZHmST5-lqSBAUGV5zYReFVlLixQp-iW0nSlF05Ba5KUQIZWmcQlYFhcwWm2flEAtjpQE6gCJkQFpdmZeVfkaeZQZxRAWItQ6ZYqklSVFb5gX2rp9XIlpuV1TFwFNel1pVWASXtZxskjTNslIVlZUhehr4DUN0XBXtOqyQtzl9QYo1gGdF07alm0TY1d1bldYqPedz1JWdhkfcVRlfbZSUjc9n1pQ9QP9fdlIZdKSGlYaPVoQdP06YZUNw5iM2AzdYMlmxk1bu1q1fe9EPo-6SWybZhMg7tU37Q1qPPbV31bTqhVfQzDNnTNDP45T9mzjzJUI-zXFC5dQvE8DOPIu14ug7T4PjdTln2mjgs07L6sGNLAPa0LM0U8rquKxGHP04bmJITVfP2rDG2Y7zCsS0b34Q1p7UMzLVNy1jtte0KWti0TVtK8HvtjWr45m-L4emZLp069HqkY6HjMJynIcazH-pabJ7uR6xJ2Z8RQu50zyce-bqfl2Hg5ffq61J1HTua4HDsZ4n6fQQTLcG63ntt2nReVxD+tNwVefruPT294X-dVwPjd0yLk-z33q9MY5Fd29V3NDwHe+7wf8M+-3O9byvM9rwL++j9Xg83+ft+z8vJeH2XXfX8nZ1c6zy9z71qdsyDova2v9QHT0ft7V+-cR6fx-h-J+4CH5INPm-YucCoGX2QUA-uL975-2XnpBkKshYoIQRgi+m9k6kMwfg+BND37kIgZQsheDn7oNYXQ5hmDAGaTAanGBkVOHVQYffMm3dRH3gIXwjhjDkpCJemg+Rc8v7-wqtI1Bsi54200eowRDdIH30TJxVRVC2GIORsXYht0NEyNsTYx2ydjEQ1wcnKx992bPxcXouxC9vH2JwV4gxd9gl+JYcnHhOjEG0Njlw2Jmpl41moXEpBJiwnIicUo3R9DFGyI8SQrJyTAmFPEf47h-t9HJOiT47JACSlpJqR3Ce1ozosyiXUhpsCcnVIoUw3pciKl9IEUE-urTU5iK6aUypBTBnTJSfXRpfSqmTMWbMpZ9SmkAL0qbTJOzcmi0iTElZQtLbNPlGdJkkZBTDEhH4CAfgdBAA/view

Today’s Plan
● Deep Averaging Networks for text classification

● Neural Probabilistic Language Model

● Additional Training Notes
● Regularization
● Early stopping
● Hyper-parameter searching

● HW3 / edugrad / PyTorch

6

Deep Averaging Networks

7

8

https://www.aclweb.org/anthology/P15-1162/

Deep, Unordered, Classification

9

Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

9

Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

● Unordered:
● Text is represented as a “bag of words”
● No notion of syntactic order

9

Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

● Unordered:
● Text is represented as a “bag of words”
● No notion of syntactic order

● Classification:
● Applied to several classification tasks, including SST
● Via softmax layer

9

Model Architecture, One Input

10

Model Architecture, One Input

10

f(avW1 + b1)

Model Architecture, One Input

10

f(avW1 + b1)Word embeddings:
Pre-trained or learned

Hyper-parameters

11

Hyper-parameters
● Embedding dimension

11

Hyper-parameters
● Embedding dimension

● Number of hidden layers

11

Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:
● Activation function
● Hidden dimension size

11

Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:
● Activation function
● Hidden dimension size

● Exercise: find the values for these hyper-parameters in the paper

11

Note on Embedding Layer
● Let be the integer index of word

● One-hot vector (t=4):

● For an embedding matrix of shape [vocab_size, embedding_dimension]
and the embedding for t:

● NB: direct look-up is faster than matrix multiplication, but the latter
generalizes in useful ways that we will see soon

t w
wt = [0 0 0 1 ⋯ 0]

E
Et

12

Et = wtE

Batched Computation in DAN
● We saw how to pass one piece of text through the DAN

● How can we leverage larger batch sizes and their advantages?
● “Predator is a masterpiece”
● “Parasite won Best Picture for 2019”

● What issues here?

● Different lengths —> different number of embeddings —> different input
size (intuitively)
● But we need a matrix of shape [batch_size, representation_size] for inputs

13

Batching with Bag of Words
● Bag of words representation:
● {word1: 3, word36: 1, word651: 1, …}

● Let s be a sentence with words occurring times:

● Bag of words vector:

● For every sentence, the vectors have the same size: [vocab_size]
● So they can be stacked into a matrix, of shape [batch_size, vocab_size]
● Divide each row by length of that sentence to get average of embeddings

ti counti bags := {ti : counti}

vecs := [3 0 ⋯ 1 ⋯ 1 ⋯]

vecs

14

vecsE =
len(s)

∑
i=0

Esi
= ∑

t∈s

counttEt

Output and Loss for Classification

15

logits = hiddenW + b
̂y = probs = softmax(logits)

Output and Loss for Classification

15

logits = hiddenW + b
̂y = probs = softmax(logits)

ℓCE(̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

Output and Loss for Classification

15

logits = hiddenW + b
̂y = probs = softmax(logits)

ℓCE(̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

One hot for true class label

Results

16

Results

16

“Rivals syntactic
methods”

Error Analysis

17

Two Additional “Tricks”
● Word dropout
● A type of regularization [more later]

● Adagrad optimizer

18

Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

19

Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

19

vecs = [20110]
masks = [01110]

vecs ⊙ masks = [00110]

Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

19

vecs = [20110]
masks = [01110]

vecs ⊙ masks = [00110]

Generated randomly
for each sentence

Adagrad
● “Adaptive Gradients”
● Key idea: adjust the learning rate per parameter
● Frequent features —> more updates
● Adagrad will make the learning rate smaller for those

20

Adagrad

21

● Let

● SGD:

● Adagrad:

gt,i := ∇θt,i
ℒ

θt+1,i = θt,i − αgt,i

θt+1,i = θt,i −
α

Gt,i + ϵ
gt,i

Gt,i =
t

∑
k=0

g2
k,i

Adagrad
● Pros:
● “Balances” parameter importance
● Less manual tuning of learning rate needed (0.01 default)

● Cons:
● increases monotonically, so step-size always gets smaller

● Newer optimizers try to have the pros without the cons

● Resources:
● Original paper (veeery math-y): https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
● Overview of optimizers: https://www.ruder.io/optimizing-gradient-descent/

Gt,i

22

https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.ruder.io/optimizing-gradient-descent/

Unordered Models in the Large LM Era
● Last paper: “Deep Unordered Composition Rivals Syntactic Methods for

Text Classification” —2015

● From ~April 2021:

23

https://aclanthology.org/2021.emnlp-main.230/
https://aclanthology.org/2021.emnlp-main.230/

Unordered Models in the Large LM Era
● Last paper: “Deep Unordered Composition Rivals Syntactic Methods for

Text Classification” —2015

● From ~April 2021:

23

https://aclanthology.org/2021.emnlp-main.230/
https://aclanthology.org/2021.emnlp-main.230/

Unordered Models in the Large LM Era

24

Unordered Models in the Large LM Era
● “We observed overwhelmingly that MLM’s success is most likely not

[emphasis added] due to its ability to discover syntactic and semantic
mechanisms necessary for a traditional language processing pipeline.
Instead, our experiments suggest that MLM’s success can be mostly
explained by it having learned higher-order distributional statistics that
make for a useful prior for subsequent fine-tuning.”

25

Neural Probabilistic Language Model

26

Language Modeling
● A language model parametrized by computes

● Typically (though we’ll see variations):

● E.g. of labeled data: “Today is the sixth day of 574.” —>
● (<s>, Today)
● (<s> Today, is)
● (<s> Today is, the)
● (<s> Today is the, sixth)

θ

27

Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)

N-gram LMs
● Dominant approach for a long time uses n-grams:

● Estimate the probabilities by counting in a corpus
● Fancy variants (back-off, smoothing, etc)

● Some problems:
● Huge number of parameters:
● Doesn’t generalize to unseen n-grams

≈ |V |n

28

Pθ(wi |w1, …, wi−1) ≈ Pθ(wi |wi−1, wi−2, …, wi−n)

Neural LM
● Core idea behind the Neural Probabilistic LM
● Make n-gram assumption
● But: learn word embeddings
● “N-gram of word vectors”
● Probabilities: represented by a neural network, not counts

29

Pros of Neural LM
● Number of parameters:
● Significantly lower, thanks to “low”-dimensional embeddings

● Generalization: embeddings enable generalizing to similar words

30

Neural LM Architecture

31

Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

31

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

31

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

31

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

31

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

probabilities = softmax(hiddenW2 + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

More Detailed Diagram of Architecture

32

JM sec 7.7

NOTE: this diagram
omits biases

Output and Loss
● Softmax + cross-entropy
● Essentially, language modeling is |V|-way classification
● Each word in the vocabulary is a class

33

Evaluation of LMs
● Extrinsic: use in other NLP systems

● Intrinsic: intuitively, want probability of a test
corpus

● Perplexity: inverse probability, weighted by
size of corpus
● NB: lower is better!
● Only comparable w/ same vocab

34

PP(W) = P(w1w2⋯wN)−1/N

= N
1

P(w1w2⋯wN)

= N
1

∏N
i=0 P(wi |w1, …, wi−1)

= 2− 1
N ∑N

i=0 log P(wi|w1,…,wi−1)

Results

35

More Complete Picture of This Model

36source (NAACL ’21)

https://aclanthology.org/2021.naacl-main.407/

Additional Training Notes:  
Regularization and Hyper-Parameters

37

Overfitting
● Over-fitting: model too closely mimics the training data
● Therefore, cannot generalize well

● Common when models are “over-parameterized”
● E.g. fitting a high-degree polynomial
● Neural models are typically over-parameterized

● Key questions:
● How to detect overfitting?
● How to prevent it?

38

Train, Dev, Test Set Splits
● Split total data into three chunks: train, dev (aka valid), test
● Common: 70/15/15, 80/10/10%

● Train: used for individual model training, as we’ve seen so far

● Dev/valid:
● Evaluation during training
● Hyper-parameter tuning
● Model selection

● Test:
● Final evaluation; DO NOT TOUCH otherwise

39

Early stopping

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

40

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

40

source

Overfitting

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Regularization
● NNs are often overparameterized,

so regularization helps

● L1/L2:

● Dropout:
● During training, randomly turn off X%

of neurons in each layer
● (Don’t do this during testing/predicting)
● Batch Normalization / Layer Norm
● NB: batch size 🤯

41

ℒ′ (θ, y) = ℒ(θ, y) + λ∥θ∥2

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=H1oyRlYgg

Hyper-parameters
● In addition to the model architecture ones mentioned earlier

● Optimizer: SGD, Adam, Adagrad, RMSProp, ….
● Optimizer-specific hyper-parameters: learning rate, alpha, beta, …
● NB: backprop computes gradients; optimizer uses them to update parameters

● Regularization: L1/L2, Dropout, BN, …
● regularizer-specific ones: e.g. dropout rate

● Batch size

● Number of epochs to train for
● Early stopping criterion (e.g. patience)

42

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all

possible combinations thereof

● Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

43

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all

possible combinations thereof

● Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

43

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Craft/Art of Deep Learning

44

https://xkcd.com/1838/

https://xkcd.com/1838/

Some Practical Pointers
● Hyper-parameter tuning and the like are not the focus of this course

● For some helpful hand-on advice about training NNs from scratch,
debugging under “silent failures”, etc:
● http://karpathy.github.io/2019/04/25/recipe/

45

http://karpathy.github.io/2019/04/25/recipe/

Hyper-parameter Tuning

46

h/t CM Downey

https://cmdowney88.github.io/

