FFNNs for Classification and Language
Modeling

LING 574 Deep Learning for NLP
Shane Steinert-Threlkeld



Announcements

e Remote development (e.g. in VSCode): use
dryvas.ling.washington.edu instead of patas

o HW?2 files: updated some old file references, should work now

e HW2 written: be detailed, e.g. explain your steps (helps with partial credit)
o VCC_iLCE: c_; is a single integer index, of a negative sampled context word
e HW1: great job! data statements: hard to do :) b/c not well-documented.

Tracing all the way back to data curation reveals that all the reviews are
from only 4 critics O_O



Note on Random Seeds

e In word2vec.py / util.py:

# set random seed

e Random seed: util.set_seed(args.seed)
e Behavior of pseudo-random number generators is def set_seed(seed: int) —> None:
determined by their “seed” value """Sets various random seeds. """

. . _ random. seed(seed)
e |f not specified, determined by e.g. # of seconds since 1970

np.random.seed(seed)

e Same seed —> same (non-random) behavior

e Sources of randomness in DL: shuffling the data each
epoch, parameter initialization, negative sampling, ...

e Very important for reproducibility!

e In general, run on several seeds and report means / std’s
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Random Seeds and Reproducibility

Just try a different random seed ]

Programmers: You can't just rerun your program
without changing it and expect it to work

Dee
Ro-i-niuoapmont Learning Practitioners:




Random Seeds, cont

e Ideally: “randomly generate” seeds, but save/store them!

e Random seed is not a hyper-parameter! (Some discussions in these threads.)
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https://vega.github.io/editor/#/url/vega-lite/N4KABGBEC2CGBOBrSAuKAbAlgOwKaQBpwpdsBjAewBMcBzVMUCCSADweEgBcBPAB3xpIARwCusbF0xdYUgG74CUAGaZc6KgzaQAvkWZQeHbv0FQxEqTPmKVajVsqjJhKFfRnso9Oh3E9xNzSHloAYvC4YqRkPGAUymAAOpAAzri4VAAUrACUyXHYYADi0gAWogBGhIFc8BIpyhTw0AwA2sQQnMroslykbZBOLgC6AQacAO44VBQTbZwUfFrwswD6XtAVuPCukKrqmkK7sCla7DqjxMP6UFNUXKUMAJwADC83kKW4mLSlXAwAZjeHyoslgHA6UDksHQolwpzQTAMUCG-zQ7WRzAAHC8sQBGG6YgBsRKxRMJyLxACYAQTIQYAKwAdgZFIMABYmey2cx2Qz3vTmNSsTyIOyiQDRWA8QCqVL8VKnrSpVT2SLBRAgQLMRA8UTuRqwESmVKiXLDU9WYa8Uz1TqwAynlKAeTrS9XfannadU8PTqZVb7arnX7Md7MXingb7aHKeHkQDoz6nRak2HzUHJda6fa8YGdcHDbGDHrnSn7eLneyqfnMSypey08iqRmdSbDS6paXsyqc-7y-6+xGs-b44ymwZi7yVc6G-LTQvDeztTqJ8wqSvMRuu12h8i12L2xWu63MZuE3PDYXczOO12jwXLzGd3ei12B5ja8ip7rT-un-6t7HoaY7MA+EYvF+BhYo2XZEh+zYHtKI4+ouQYAcSUrnoyu7gcieEGChEZYfOV4vp6cFdqBupIUC25XgRzAAghHKUUWSHUUaDZQdiDYcV2PG6l2RHIthQoYaJUqMRAP5gCJhEkWRhpiUJS7kY+hqCXJUpaUhe4GCpYCGfJ4lKTeZmAdain2oZ+nMMZEmTlJ1k6g5ykuWe6mee5FneTZHmST5-lqSBAUGV5zYReFVlLixQp-iW0nSlF05Ba5KUQIZWmcQlYFhcwWm2flEAtjpQE6gCJkQFpdmZeVfkaeZQZxRAWItQ6ZYqklSVFb5gX2rp9XIlpuV1TFwFNel1pVWASXtZxskjTNslIVlZUhehr4DUN0XBXtOqyQtzl9QYo1gGdF07alm0TY1d1bldYqPedz1JWdhkfcVRlfbZSUjc9n1pQ9QP9fdlIZdKSGlYaPVoQdP06YZUNw5iM2AzdYMlmxk1bu1q1fe9EPo-6SWybZhMg7tU37Q1qPPbV31bTqhVfQzDNnTNDP45T9mzjzJUI-zXFC5dQvE8DOPIu14ug7T4PjdTln2mjgs07L6sGNLAPa0LM0U8rquKxGHP04bmJITVfP2rDG2Y7zCsS0b34Q1p7UMzLVNy1jtte0KWti0TVtK8HvtjWr45m-L4emZLp069HqkY6HjMJynIcazH-pabJ7uR6xJ2Z8RQu50zyce-bqfl2Hg5ffq61J1HTua4HDsZ4n6fQQTLcG63ntt2nReVxD+tNwVefruPT294X-dVwPjd0yLk-z33q9MY5Fd29V3NDwHe+7wf8M+-3O9byvM9rwL++j9Xg83+ft+z8vJeH2XXfX8nZ1c6zy9z71qdsyDova2v9QHT0ft7V+-cR6fx-h-J+4CH5INPm-YucCoGX2QUA-uL975-2XnpBkKshYoIQRgi+m9k6kMwfg+BND37kIgZQsheDn7oNYXQ5hmDAGaTAanGBkVOHVQYffMm3dRH3gIXwjhjDkpCJemg+Rc8v7-wqtI1Bsi54200eowRDdIH30TJxVRVC2GIORsXYht0NEyNsTYx2ydjEQ1wcnKx992bPxcXouxC9vH2JwV4gxd9gl+JYcnHhOjEG0Njlw2Jmpl41moXEpBJiwnIicUo3R9DFGyI8SQrJyTAmFPEf47h-t9HJOiT47JACSlpJqR3Ce1ozosyiXUhpsCcnVIoUw3pciKl9IEUE-urTU5iK6aUypBTBnTJSfXRpfSqmTMWbMpZ9SmkAL0qbTJOzcmi0iTElZQtLbNPlGdJkkZBTDEhH4CAfgdBAA/view

Today's Plan

e Deep Averaging Networks for text classification
e Neural Probabllistic Language Model

e Additional Training Notes
e Regularization
e Early stopping

e Hyper-parameter searching

e HW3 /edugrad / PyTorch



Deep Averaging Networks



Deep Unordered Composition Rivals Syntactic Methods
for Text Classification

Mohit Iyyer,! Varun Manjunatha,' Jordan Boyd-Graber,” Hal Daumé III'
'University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science

{miyyer, varunm, hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu

Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-

Fal

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).
However, there 1s a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products

YA/ UNIVERSITY of WASHINGTON


https://www.aclweb.org/anthology/P15-1162/

Deep, Unordered, Classification
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Deep, Unordered, Classification

e Deep:

e One or more hidden layers in a neural network

e Unordered:
e Textis represented as a “bag of words”

e No notion of syntactic order

e (Classification:
e Applied to several classification tasks, including SST

e \ia softmax layer



Model Architecture, One Input

softmax
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Model Architecture, One Input

softmax

4
— Cq
aw =) 7
e 1=1
Predator is a masterpiece

C1 C2 C3 C4

NNNNNNNNNNNNNNNNNNNNNN



Model Architecture, One Input

softmax
ho = f(Wa - hy + bs)
Word embeddings: hi = f(Wy-av+ b)) «—— flavW' + b')
Pre-trained or learned )
av =) F
i—1
Predator is a masterpiece
C1 Co C3 C4



Hyper-parameters
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Hyper-parameters

e Embedding dimension
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Hyper-parameters

e Embedding dimension

e Number of hidden layers



Hyper-parameters
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Hyper-parameters

e Embedding dimension
e Number of hidden layers

e For each layer:
e Activation function

e Hidden dimension size

e EXxercise: find the values for these hyper-parameters in the paper



Note on Embedding Layer

Let 7 be the integer index of word w

One-hot vector (t=4):w,=[0 0 0 1 --- O]

For £ an embedding matrix of shape [vocab_size, embedding_dimension]
and £, the embedding for t:

L, =w/L

NB: direct look-up Is faster than matrix multiplication, but the latter
generalizes in useful ways that we will see soon



Batched Computation in DAN

e \We saw how to pass one piece of text through the DAN

e How can we leverage larger batch sizes and their advantages?
e “Predator is a masterpiece”

e “Parasite won Best Picture for 2019”
e \What issues here?

e Different lengths —> different number of embeddings —> different input
size (intuitively)

e But we need a matrix of shape [batch_size, representation_size] for inputs



Batching with Bag of Words

e Bag of words representation:
e {wordl: 3, word36: 1, word651: 1, ...}

e Let sbe a sentence with words ; occurring count; times: bag := {f; : count;|

e Bag of words vector:vec, :=[3 O -« 1 -« 1 -]
lengs)
vec,L = 2 Ly = Z count;k,
=0 res

e For every sentence, the vec, vectors have the same size: [vocab_size]
e S0 they can be stacked into a matrix, of shape [batch_size, vocab_size]

e Divide each row by length of that sentence to get average of embeddings

YA/ UNIVERSITY of WASHINGTON 14



Output and Loss for Classification

logits = hiddenW + b
y = probs = softmax(logits)



Output and Loss for Classification

logits = hiddenW + b
y = probs = softmax(logits)

iclasses|
Coe(y,y) = — Z yilogy;
i=0



Output and Loss for Classification

logits = hiddenW + b
y = probs = softmax(logits)

iclasses|
Coe(y,y) = — Z yilogy;
=0

/

One hot for true class label



Results

Model RT SST
fine
DAN-ROOT — 46.9
DAN-RAND 77.3 454
DAN 80.3 47.7
NBOW-RAND 76.2 4273
NBOW 79.0 43.6
BiNB — 41.9
NBSVM-bi 79.4 —
RecNN™ 77.7 43.2
RecNTN™ —  45.7
DRecNN — 49.8
TreeLSTM — 50.6

YA/ UNIVERSITY of WASHINGTON

16



Results

Model RT SST
fine
DAN-ROOT — 46.9
DAN-RAND 77.3 454
DAN 80.3 47.7
NBOW-RAND 76.2 4273
NBOW 79.0 436
BiNB — 41.9
NBSVM-bi 79.4 —
RecNN™ 77.7 43.2
RecNTN™ — 45.7
DRecNN — 49.8
TreeLSTM — 50.6

T

“Rivals syntactic

methods”

YA/ UNIVERSITY of WASHINGTON

16



Error Analysis

Sentence N DRecNN  Ground Truth
a (BUSy) movie that’s @GP merely @nWatchable, but also - - -
unlistenable

if you’re @i6b a prepubescent girl, you’ll be laughing at negative negative negative
britney) spears) movie-starring debut whenever it does @9

have you impatiently §quinting at your watch

blessed with immense (physical prowess he may well be, but  positive  neutral negative
@hola is simply @6b an actor

who knows what exactly godard is on about in this film, but  positive  positive positive
his ‘words and images do @’ have to ‘add up to ‘mesmerize

you.

it’s so (good that its relentless, (polished wit can withstand negative  positive positive
@b only nepd school (productions, but even (oliver (parker s

movie adaptation

too Bad, but thanks to some lovely comedic moments and negative  negative positive
several fine performances, it’s @i6b a fotal 10ss

this movie was b (good negative  negative negative
this movie was good positive  positive positive
this movie was 62@ megative negative negative
the movie was @ob . - negative pOSitiVC J UNIVERSITY of WASHINGTON 17




Two Additional “Tricks”

e \Word dropout

e Atype of reqularization [more later]

e Adagrad optimizer



Word Dropout

e For each input sequence, flip VI coins with probabillity p

e If the i'th coin lands tails, set embedding for w; to all Os for this example



Word Dropout

e For each input sequence, flip VI coins with probabillity p

e If the i'th coin lands tails, set embedding for w; to all Os for this example

vec, = [20110]
mask, = [01110]
vec, ® mask, = [00110]



Word Dropout

e For each input sequence, flip VI coins with probabillity p

e If the i'th coin lands tails, set embedding for w; to all Os for this example

vec, = [20110]
mask, = [01110]+——

vec, ® mask, = [00110]

Generated randomly
for each sentence



Adagrad

e “Adaptive Gradients”
e Key idea: adjust the learning rate per parameter
e Frequent features —> more updates

e Adagrad will make the learning rate smaller for those
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o Lotg, ;:=Vy 2L
e SGD:0,,,,=0,;,—ag,;
e Adagrad: Ht+1 ;= Hl‘,i -

Adagrad



Adagrad

® Pros:
e “Balances” parameter importance

e |Less manual tuning of learning rate needed (0.01 default)

e Cons:

e G, ;Increases monotonically, so step-size always gets smaller
e Newer optimizers try to have the pros without the cons

e Resources:
e Original paper (veeery math-y): https://imlir.org/papers/volumeil2/duchiiia/duchiiia.pdf

e Overview of optimizers: https://www.ruder.io/optimizing-gradient-descent/
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Unordered Models in the Large LM Era

e Last paper: “Deep Unordered Composition Rivals Syntactic Methods for
Text Classification” —2015

: _ Masked Language Modeling and the Distributional Hypothesis:
e From NAp rl 2021: Order Word Matters Pre-training for Little

Koustuv Sinha'! Robin Jia' Dieuwke Hupkes' Joelle Pineau'*

Adina Williams" Douwe Kiela'
" Facebook AI Research; ¥ McGill University / Montreal Institute of Learning Algorithms
{koustuvs,adinawilliams,dkiela}@fb.com

Abstract NLP pipeline” (Tenney et al., 2019), suggesting
that it has learned “the kind of abstractions that we
intuitively believe are important for representing
natural language” rather than “simply modeling
complex co-occurrence statistics” (ibid., p. 1).

A possible explanation for the impressive per-
formance of masked language model (MLM)
pre-training is that such models have learned
to represent the syntactic structures prevalent

in classical NLP pipelines. In this paper, we In this work, we try to uncover how much of
propose a different explanation: MLMs suc- MLM’s success comes from simple distributional
ceed on downstream tasks almost entirely due information, as opposed to “the types of syntac-

to their ability to model higher-order word
co-occurrence statistics. To demonstrate this,
we pre-train MLMs on sentences with ran-
domlv shuffled word order. and show that

tic and semantic abstractions traditionally believed
necessary for language processing” (Tenney et al.,
2019; Manning et al., 2020). We disentangle these
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Unordered Models in the Large LM Era

e Last paper: “Deep Unordered Composition Rivals Syntactic Methods for
Text Classification” —2015

: _ Masked Language Modeling and the Distributional Hypothesis:
e From NAp rl 2021: Order Word Matters Pre-training for Little

Koustuv Sinha'*  Robin Jia' Dieuwke Hupkes' Joelle Pineau'*

Adina Williams" Douwe Kiela'
" Facebook AI Research; ¥ McGill University / Montreal Institute of Learning Algorithms
{koustuvs,adinawilliams,dkiela}@fb.com

Abstract NLP pipeline” (Tenney et al., 2019), suggesting
that it has learned “the kind of abstractions that we
intuitively believe are important for representing
natural language” rather than “simply modeling
complex co-occurrence statistics” (ibid., p. 1).

A possible explanation for the impressive per-
formance of masked language model (MLM)
pre-training is that such models have learned
to represent the syntactic structures prevalent
in classical NLP pipelines. In this paper, we In this work, we try to uncover how much of
propose a different explanation: MLMs suc- MLM’s success comes from simple distributional
ceed on downstream tasks almost entirely due information, as opposed to “the types of syntac-
to their ability to model higher-order word tic and semantic abstractions traditionally believed
co-occurrence statistics. To demonstrate this, necessary for language processing” (Tenney et al.,

we pre-train MLMs on sentences with ran- . : :
domlv shuffled word order. and show that 2019; Manning et al., 2020). We disentangle these
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Unordered Models in the Large LM Era

e “We observed overwhelmingly that MLM’s success is most likely not
[emphasis added] due to its ability to discover syntactic and semantic
mechanisms necessary for a traditional language processing pipeline.
Instead, our experiments suggest that MLM'’s success can be mostly
explained by it having learned higher-order distributional statistics that
make for a useful prior for subsequent fine-tuning.”



Neural Probabilistic Language Model



Language Modeling

e Alanguage model parametrized by @ computes Py(wy, ..., w,)
e Typically (though we'll see variations):  Py(wy, ..., w, ) = HPQ(Wi Wi, W)
l

e E.g. of labeled data: “Today is the sixth day of 574.” —>

e (<s>, Today)

(

e (<s> Today, is)
(<s> Today is, the)
(

e (<s> Today is the, sixth)

YA/ UNIVERSITY of WASHINGTON 27



N-gram LMs

e Dominant approach for a long time uses n-grams:
P(w:\wy,....w_) & P w:\w._i,w._o, ..., w;_)

e Estimate the probabilities by counting in a corpus

e Fancy variants (back-off, smoothing, etc)

® Some problems:
e Huge number of parameters: ~ | V|"

e Doesn’t generalize to unseen n-grams

YA/ UNIVERSITY of WASHINGTON 28



Neural LM

e Core idea behind the Neural Probabilistic LM
e Make n-gram assumption
e But: learn word embeddings
e “N-gram of word vectors”

e Probabillities: represented by a neural network, not counts

YA/ UNIVERSITY of WASHINGTON 29



Pros of Neural LM

e Number of parameters:

e Significantly lower, thanks to “low”-dimensional embeddings

e (Generalization: embeddings enable generalizing to similar words

The cat is walking in the bedroom
to A dog was running in a room
and likewise to The cat is running in a room
A dog 1s walking in a bedroom
The dog was walking in the room

WA/ UNIVERSITY of WASHINGTON 30



Neural LM Architecture

i-th output = P(w, = i| context)
Bengio et al 2003

l softmax

1
tanh !
I

C(Wt—n+

(ee . o)

Table ~.
look—up
in C

shared parameters
across words

index for w;_,, 11 index for w;_» index for w;_
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Bengio et al 2003

Neural LM Architecture

i-th output = P(w, = i| context)

l softmax

C(Wt—n+

(ee . o)

Table ~.
look—up
in C

index for w;_,, 11

most| computation here

tanh

shared parameters
across words

index for w;_» index for w;_

w,: one-hot vector
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Neural LM Architecture

i-th output = P(w;, = i| context)
Bengio et al 2003

l softmax
o0

/ / most| computation here \

1
tanh !
I

C(Wt—n+
e o embeddings = concat(w,_C,w,_,C, ..., w;,_(,41,C)
Table |~ . o7
look—up [ memsmmmmmmmmmmmm shared -I;gl;elr-xieters
in C across words

N
index for w;_,, 11 index for w;_» index for w;_ WT: one- h Ot ve CtO I
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Neural LM Architecture

i-th output = P(w;, = i| context)
Bengio et al 2003

l softmax
o0

/ / most| computation here \

hidden = tanh(embeddingsW! + b!)

embeddings = concat(w,_C,w,_,C, ..., w;,_(,41,C)

Table ~.. ~. Matrix C 7
!oog—up shared parameters
1n across words
N
index for w;_,, 11 index for w;_» index for w;_ WT: one- h Ot ve CtO I
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Neural LM Architecture

i-th output = P(w;, = i| context)

Bengio et al 2003
l softmax o . o o
see (X —— _eee ) probabilities = softmax(hiddenW= + bH~)
/l / ! most| computation here t \
/ / \
/ / \

hidden = tanh(embeddingsW! + b!)

I
I
I
I \
I
1
\

C(Wt—n+
e o embeddings = concat(w,_C,w,_,C, ..., w;,_(,41,C)
Table ~..
look_up ----------------------
ac | hared parantes
index for w;_,, 11 index for w;_» index for w;_ Wt: one- hOt VeCtO I
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More Detailed Diagram of Architecture

> .

[ L =—log P(fish | for, all, the) J
f
p(aardvarkl ) p(dol ) p(fish]...) p(zebra|
! !

Output layer K: > @ @ @2 b
softmax '\\ . )
Hidden layer ‘\><®< @@ dth

Projection layer
embeddings
Input layer  |V|x1 [CG--@sees0 TeleIerx TYote)

IV[x1

NOTE: this diagram
omits biases

“--3--- E 1s shared

across words

[
;
one-hot vectors 00---1\+ 00 00 0 f1 00 :
“for” = index “all” = index “the” = index 1
word 9925 ord 45180 :
o b : JM sec 7.7
AN "’ -
-| and thanks[ for all the | fish [-3
J
Vi3 Wt Wi-1 Wi
ﬁ
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Output and Loss

e Softmax + cross-entropy
e Essentially, language modeling is |VI-way classification

e Each word in the vocabulary is a class



Evaluation of LMs

e EXxtrinsic: use in other NLP systems

e Intrinsic: intuitively, want probability of a test

COrpus PP(W) = P(W1W2“‘WN)_1/N
® P_erplexity: iInverse probabillity, weighted by 1
size of corpus — N
e NB: lower is better! \ P(wiwy---wy)
e Only comparable w/ same vocab 1

N

\ HZOP(Wi‘Wl, "”Wi—l)

N
— 2—% 0 log P(w;|wy,....w;_;)
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Results

n C h | m | direct | mix | train. | valid. | test.
MLP1 S 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0|60 | yes no 201 327 | 310
MLP4 S 0|60 | yes | yes 286 | 272
MLP5 S 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS 3 50 | 30 | yes yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 | no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 | 200 354 | 340
class-based back-off | 3 | 500 326 | 312
class-based back-off | 3 | 1000 335 | 319
class-based back-off | 3 | 2000 343 | 326
class-based back-off | 4 | 500 327 | 312
class-based back-off | 5 | 500 327 | 312

YA/ UNIVERSITY of WASHINGTON
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More Complete Picture of This Model

Revisiting Simple Neural Probabilistic Language Models

Simeng Sun and Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst
{simengsun, miyyer}@cs.umass.edu

P (Adaptive)
Abstract Predict: years «— Softms
Recent progress in language modeling has Linear

A

been driven not only by advances in neural ar-

chitectures, but also through hardware and op- SddIATNOI

timization improvements. In this paper, we re- The drought had F::ve:rd

visit the neural probabilistic language model - r g Y

(NPLM) of Bengio et al. (2003), which sim- ! ~

ply concatenates word embeddings within a

fixed window and passes the result through a concaienate  Jasted . now  for  ten million
feed-forward network to predict the next word.

When scaled up to modern hardware, this Figure 1: A modernized version of the neural proba-
model (despite its many limitations) performs bilistic language model of Bengio et al. (2003), which
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Additional Training Notes:
Regularization and Hyper-Parameters



Overfitting

e Over-fitting: model too closely mimics the training data

e Therefore, cannot generalize well

e Common when models are “over-parameterized”
e E.g. fitting a high-degree polynomial

e Neural models are typically over-parameterized

e Key questions:

e How to detect overfitting?

e How to prevent it?

15

10
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Train, Dev, Test Set Splits

e Split total data into three chunks: train, dev (aka valid), test
e Common: 70/15/15, 80/10/10%

e Train: used for individual model training, as we’'ve seen so far

e Dev/valid:
e Evaluation during training
e Hyper-parameter tuning

e Model selection

e J[est:
e Final evaluation; DO NOT TOUCH otherwise
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Early stopping

SSSSSS
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https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping

e One: Pick # of epochs, hope for no overfitting

source

NNNNNNNNNNNNNNNNNNNNNN


https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

source
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https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

Error
Tl

: Validation error

L |
I I
| |
: ! _
| y T'raining error source
k —p k Steps
return this model stop
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Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

Error
Tl

- Overfitting

: Validation error

L |
! !
! |
. ! _ '
| y I'raining error source
k—p k Steps
return this model stop
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Regularization

e NNs are often overparameterizedq,

SO regularization helps

o L1/L2: Z'(0.y) = L6, y) + 1|02

e Dropout:

e During training, randomly turn off X%

of neurons in each layer

e (Don’t do this during testing/predicting)

e Batch Normalization / Layer Norm

e NB: batch size &

Input: Values of x over a mini-batch: B = {z1._.,};
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

Un — % Zm: T; // mini-batch mean
1 ZT:nl

0g — 7Z_;(:z:z — uB)° // mini-batch variance

T; < \3;0;3 /—T—Be // normalize

y; < vZ; + f = BN, 5(x;) // scale and shift

YA/ UNIVERSITY of WASHINGTON
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http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=H1oyRlYgg

Hyper-parameters

e In addition to the model architecture ones mentioned earlier

e Optimizer: SGD, Adam, Adagrad, RMSProp, ....

e Optimizer-specific hyper-parameters: learning rate, alpha, beta, ...

e NB: backprop computes gradients; optimizer uses them to update parameters

e Regularization: L1/L2, Dropout, BN, ...

® regularizer-specific ones: e.g. dropout rate
e Batch size
e Number of epochs to train for

e Early stopping criterion (e.g. patience)
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A note on hyper-parameter tuning

e Grid search: specify range of values for each hyper-parameter, try all
possible combinations thereof

e Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

Bergstra and Bengio 2012



http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

A note on hyper-parameter tuning

e Grid search: specify range of values for each hyper-parameter, try all
possible combinations thereof

e Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

Grid Layout Random Layout

4

Bergstra and Bengio 2012

Unimportant parameter
Unimportant parameter

Important parameter Important parameter
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Craft/Art of Deep Learning

!

‘ |
WHAT IF THE ANSWERS ARE. LWJRONG? /

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

JUaT STiR THE PILE

UNTIL

THEY START LOOKING RIGHT

https://xkcd.com/1838/
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Some Practical Pointers

e Hyper-parameter tuning and the like are not the focus of this course

e For some helpful hand-on advice about training NNs from scratch,
debugging under “silent failures”, etc:

e http://karpathy.qgithub.io/2019/04/25/recipe/



http://karpathy.github.io/2019/04/25/recipe/

Hyper-parameter Tuning

It’s done.

h/t CM Downey



https://cmdowney88.github.io/

