
Recurrent Neural Networks, I
LING 574 Deep Learning for NLP

Shane Steinert-Threlkeld

1

Today’s Plan
● Last time:
● Computation graphs + backpropagation
● Deep Averaging Network (DAN)

● Quick notes on edugrad

● Neural Probabilistic Language Model (feed-forward model)

● Additional Training Notes
● Regularization
● Early stopping
● Hyper-parameter searching

● Intro to Recurrent Neural Networks

2

Announcements
● HW2 reference code now available

● Run time: variable b/c lots of factors, but ~1-3hrs. Develop with toy data.

● Tests: hwX/test_all.py. NB: necessary, but not sufficient, to check correctness
of your code. From command-line, run `pytest` from your HW directory, with
environment activated.

● Implementing ops in edugrad:
● You can use any numpy operations you want; goal is to understand forward/backward

API
● https://github.com/shanest/edugrad
● Log: base e, don’t need to do special handling of bad input arguments (like 0)

3

https://github.com/shanest/edugrad

Decorators
● @tensor_op in edugrad code: what is this??
● This converts Operations into methods on Tensors
● Handles dynamic graph construction, the `ctx` magic, etc.

● Python decorator (similar to decorator design pattern)
● Design pattern to extend an object with more functionality
● Decorators wrap their arguments, add features
● e.g. registering in a central DB

● In python, syntactic sugar:
● With more complicated use cases

● Canonical examples: @classmethod, @staticmethod

4

https://docs.python.org/3/glossary.html#term-decorator
https://en.wikipedia.org/wiki/Decorator_pattern

Decorator Demo

5

@tensor_op

6

Recurrent Neural Networks

7

RNNs: high-level

8

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

8

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

8

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

● Different RNNs:
● Different operations at each step
● Operation also called “recurrent cell”
● Other architectural considerations (e.g. depth; bidirectionally)

8

Long-distance dependencies, I: number
● Language modeling (fill-in-the-blank)
● The keys ____
● The keys on the table ____
● The keys next to the book on top of the table ____
● To get the number on the verb, need to look at the subject, which can be very far

away
● And number can disagree with linearly-close nouns

9

Selectional Restrictions
● The family moved from the city because they wanted a larger ____.

● The team moved from the city because they wanted a larger ____.

10

Selectional Restrictions
● The family moved from the city because they wanted a larger house.

● The team moved from the city because they wanted a larger market.

● Need models that can capture long-range dependencies like this.

● N-gram (whether count-based or neural) cannot. E.g., with n=4:
● P(word | “they wanted a larger”)

11

RNNs

12

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

12

Steinert-Threlkeld and Szymanik 2019; Olah 2015

ht = f(xt, ht−1)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

12

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

12

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Linear +
softmax

Linear +
softmax

Linear +
softmax

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Simple / Vanilla / Elman RNNs
● Same kind of feed-forward computation we’ve been studying, but:
● : sequence element at time t

● : hidden state of the model at previous time t-1
xt
ht−1

13

Simple / Vanilla / Elman RNNs
● Same kind of feed-forward computation we’ve been studying, but:
● : sequence element at time t

● : hidden state of the model at previous time t-1
xt
ht−1

13

Simple/“Vanilla” RNN: ht = tanh(xtWx + ht−1Wh + b)

Training: BPTT
● Backpropagation Through Time

● “Unroll” the network across time-steps

● Apply backprop to the “wide” network
● Each cell has the same parameters
● Gradients sum across time-steps
● Multi-variable chain rule

14source

http://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

Power of RNNs

15

Elman 1990

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

What trends do you notice?

http://www.apple.com

Power of RNNs

16

Elman 1990

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

http://www.apple.com

Using RNNs

17

MLP e.g. image
captioning

Using RNNs

17

MLP

e.g. text classification

e.g. image
captioning

Using RNNs

17

MLP

e.g. text classification e.g. POS tagging, LM 😱

e.g. image
captioning

Using RNNs

17

MLP seq2seq (later)

e.g. text classification e.g. POS tagging, LM 😱

e.g. image
captioning

RNN for Text Classification

18

JM sec 8.3.2

RNNs for Language Modeling

19

JM sec 8.2.2

Two Extensions
● Deep RNNs:

20Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Batching in RNNs
● Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]

● But what is sequence length??
● “This is the first example </s>”: 6
● “This is another </s>”: 4

21

Padding and Masking
● Step 1: pad all sequences in batch to be of the same length (PAD = special token)
● “This is the first example </s>”: 6
● “This is another </s> PAD PAD”: 6

● Step 2: build a “mask” (1 = True token, 0 = padding)

● Step 3: use mask to tell model what to ignore, either
● Select correct final states [classification]
● Multiply losses in tagging tasks [LM]

22

[1 1 1 1 1 1
1 1 1 1 0 0]

Summary
● RNNs allow for neural processing of sequential data

● In principle, should help models capture long-distance dependencies (e.g.
number agreement, selectional preferences, …)
● Maintain a state over time
● Repeatedly apply the same weights
● as opposed to n-gram models, which cannot build such dependencies

● Uses: classification, tagging

● Extensions: deep, bidirectional

23

Next Time
● Discuss a technical problem in training Vanilla RNNs
● Vanishing gradients

● Introduce gating-based RNNs
● LSTMs
● GRUs
● Strengths, weaknesses, differences

24

