
Language Models
LING575 Analyzing Neural Language Models

Shane Steinert-Threlkeld
April 5 2021

1

Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape

2

Reminders
● Group formation due tonight
● Canvas discussion thread for people looking for a group
● Enter groups in the Google Doc linked from hw1 page

3

Some Fun with CLIP

4

● One vision-and-language model [as asked about last time]: https://openai.com/blog/clip/

● Text-based adversarial attacks:

https://openai.com/blog/clip/
https://openai.com/blog/multimodal-neurons/

Some Fun with CLIP

4

● One vision-and-language model [as asked about last time]: https://openai.com/blog/clip/

● Text-based adversarial attacks:

https://openai.com/blog/clip/
https://openai.com/blog/multimodal-neurons/
https://twitter.com/glouppe/status/1377684407792902145

Some Fun with CLIP
● And the sea

shanty “music
video” I
mentioned:
● https://

janellecshane.sub
stack.com/p/sea-
shanty-surrealism

5

https://janellecshane.substack.com/p/sea-shanty-surrealism
https://janellecshane.substack.com/p/sea-shanty-surrealism
https://janellecshane.substack.com/p/sea-shanty-surrealism
https://janellecshane.substack.com/p/sea-shanty-surrealism

Recap
● Transfer learning: pre-train on one task, ‘transfer’ to new task

● For NLP: language modeling [unannotated data]

● Current state-of-the-art involves very large-scale pre-training

● To understand what such models learn, we need to know a bit about what
they are and how they build representations

6

What is a language model?
● A language model parametrized by computes

● Typically:

● E.g. of labeled data: “Today is the first day of 575.” —>
● (<s>, Today)
● (<s> Today, is)
● (<s> Today is, the)
● (<s> Today is the, first)

θ

7

Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)

Parameters of Variation
● Model architecture:
● Feed-forward, Recurrent (w/ sub-types), Transformer-based
● # parameters, #FLOPS per forward / backward pass

● Tokenization + token representation

● Pre-training variant:
● Pure LM
● Masked LM (plus …)
● Replaced token detection
● …

● Training procedure
● data source, size, shuffled at any level?, …

● Often hard to make direct comparisons! (Though see Clark et al 2020)

8

https://openreview.net/forum?id=r1xMH1BtvB

The earliest (?) neural LM

9

Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

The earliest (?) neural LM

9

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

The earliest (?) neural LM

9

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

The earliest (?) neural LM

9

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1embeddings + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

The earliest (?) neural LM

9

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1embeddings + b1)

probabilities = softmax(W2hidden + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Some (but not all) details

10

Some (but not all) details
● Loss (the standard one): cross-entropy. In the classification/LM case:

10

L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)

Some (but not all) details
● Loss (the standard one): cross-entropy. In the classification/LM case:

10

L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)

Some (but not all) details
● Loss (the standard one): cross-entropy. In the classification/LM case:

10

L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)

Some (but not all) details
● Loss (the standard one): cross-entropy. In the classification/LM case:

● Training data: Brown corpus (~1M tokens; |V| approx 14.5k after removing
rare words), and AP news (~14M tokens; |V| approx 18k)

10

L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)

Some (but not all) details
● Loss (the standard one): cross-entropy. In the classification/LM case:

● Training data: Brown corpus (~1M tokens; |V| approx 14.5k after removing
rare words), and AP news (~14M tokens; |V| approx 18k)

10

L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)

Some (but not all) details
● Loss (the standard one): cross-entropy. In the classification/LM case:

● Training data: Brown corpus (~1M tokens; |V| approx 14.5k after removing
rare words), and AP news (~14M tokens; |V| approx 18k)

● Primary result: NNLM significantly better test-set perplexity than most
sophisticated n-gram LMs

10

L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)

Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape

11

Recurrent Neural Networks

12

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous LM: fixed sized window of previous words

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

13

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

ht = f(xt, ht−1)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

ht = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

Linear +
softmax

Linear +
softmax

Linear +
softmax

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs
● Long Short-Term Memory (Hochreiter and Schmidhuber 1997)

● The gold standard / default RNN
● If someone says “RNN” now, they almost always mean “LSTM”

● Originally: to solve the vanishing/exploding gradient problem for RNNs

15

https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735

LSTMs

16

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

LSTMs

16

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

🤔🤔🤷🤮

LSTMs

16

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

🤔🤔🤷🤮

● Key innovation:
●
● : a memory cell

● Reading/writing (smooth)
controlled by gates
● : forget gate

● : input gate

● : output gate

ct, ht = f(xt, ct−1, ht−1)
ct

ft
it
ot

LSTMs

17Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

Element-wise multiplication:
0: erase
1: retain

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

Element-wise multiplication:
0: erase
1: retain

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values

Add new values to memory

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

17

Element-wise multiplication:
0: erase
1: retain

: which cells to outputot ∈ [0,1]m

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Fun with LSTM (character) LMs
● “The Unreasonable Effectiveness of RNNs”

(Karpathy 2015):  
http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

18

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Some LSTM LMs
● Jozefowicz et al 2016 (“Exploring the Limits of Language Modeling”)
● https://github.com/tensorflow/models/tree/master/research/lm_1b

● Gulordava et al 2018 (“Colorless Recurrent Neural Networks Dream
Hierarchically”)
● Fairly easy to use, lots of analysis work using either their pre-trained LM and/or

their protocol
● https://github.com/facebookresearch/colorlessgreenRNNs

19

https://arxiv.org/abs/1602.02410
https://github.com/tensorflow/models/tree/master/research/lm_1b
https://www.aclweb.org/anthology/N18-1108/
https://github.com/facebookresearch/colorlessgreenRNNs

Two Extensions
● Deep RNNs:

20Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

ELMo (Embeddings from Language Models)
Peters et al NAACL 2018

21

https://www.aclweb.org/anthology/N18-1202/

ELMo (Embeddings from Language Models)
Peters et al NAACL 2018

21

https://www.aclweb.org/anthology/N18-1202/

ELMo

22

ELMo

22

ELMo Model

23Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf

ELMo Model

23Source: BERT paper

4096-d hidden state
512d projection

https://arxiv.org/pdf/1810.04805.pdf

ELMo Model

23Source: BERT paper

4096-d hidden state
512d projection

+

residual connection

https://arxiv.org/pdf/1810.04805.pdf

ELMo Model

23Source: BERT paper

4096-d hidden state
512d projection

+

residual connection

char CNN

c l a s s

https://arxiv.org/pdf/1810.04805.pdf

ELMo Model

23Source: BERT paper

4096-d hidden state
512d projection

+

residual connection

char CNN

c l a s s
Helps with rare / new words (no OOV)

https://arxiv.org/pdf/1810.04805.pdf

ELMo Training
● 10 epochs on 1B Word Benchmark

● NB: not SOTA perplexity even at time of publishing
● See “Exploring the Limits of Language Modeling” paper

● Regularization:
● Dropout
● L2 norm

24

https://opensource.google/projects/lm-benchmark
http://jmlr.org/papers/v15/srivastava14a.html

Transferring ELMo

25

Source: BERT paper

+

char CNN

c l a s s

https://arxiv.org/pdf/1810.04805.pdf

Transferring ELMo

25

Source: BERT paper

+

char CNN

c l a s s

https://arxiv.org/pdf/1810.04805.pdf

Layer Weights by Transfer Task

26

Attention

27

seq2seq architecture [e.g. NMT]

28Sutskever et al 2013

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

seq2seq architecture [e.g. NMT]

28Sutskever et al 2013

encoder

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

seq2seq architecture [e.g. NMT]

28Sutskever et al 2013

encoder decoder

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

seq2seq architecture [e.g. NMT]

28Sutskever et al 2013

encoder decoder

Decoder can only see info in this one vector
all info about source must be “crammed” into here

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear +
softmax

w′ 1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear +
softmax

w′ 1

w′ i

d2

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Attention, Generally

30

Attention, Generally
● A query pays attention to some values based on similarity with

some keys .
q {vk}

{kv}

30

Attention, Generally
● A query pays attention to some values based on similarity with

some keys .
q {vk}

{kv}
● Dot-product attention: 
 
 
 
 
 

30

αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

Attention, Generally
● A query pays attention to some values based on similarity with

some keys .
q {vk}

{kv}
● Dot-product attention: 
 
 
 
 
 

● In the previous example: encoder hidden states played both the keys and
the values roles.

30

αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

Why attention?

31

Why attention?
● Incredibly useful (for performance)
● By “solving” the bottleneck issue

31

Why attention?
● Incredibly useful (for performance)
● By “solving” the bottleneck issue

● Aids interpretability:*
● * some debate; more next week

31

Why attention?
● Incredibly useful (for performance)
● By “solving” the bottleneck issue

● Aids interpretability:*
● * some debate; more next week

31

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Why attention?
● Incredibly useful (for performance)
● By “solving” the bottleneck issue

● Aids interpretability:*
● * some debate; more next week

● A general technique for combining
representations, applications in:
● NMT, parsing, image/video captioning, …

31

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Why attention?
● Incredibly useful (for performance)
● By “solving” the bottleneck issue

● Aids interpretability:*
● * some debate; more next week

● A general technique for combining
representations, applications in:
● NMT, parsing, image/video captioning, …

31

Badhanau et al 2014

Vinyals et al 2015

https://arxiv.org/abs/1409.0473
https://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf

Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape

32

Transformer Architecture

33

34

Paper link

(but see Annotated and
Illustrated Transformer)

https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/

Full Model

35

encoder

decoder

Transformer Block

36

Transformer Block

36

Single layer, applied to each position

Transformer Block

36

What’s this?

Single layer, applied to each position

Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)

37

Attention(q, K, V) = ∑
j

eq⋅kj

∑i eq⋅ki
vj

Attention(Q, K, V) = softmax (QKT

dk) V

Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)

37

αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

Attention(q, K, V) = ∑
j

eq⋅kj

∑i eq⋅ki
vj

Attention(Q, K, V) = softmax (QKT

dk) V

Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)

37

αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

Attention(q, K, V) = ∑
j

eq⋅kj

∑i eq⋅ki
vj

Attention(Q, K, V) = softmax (QKT

dk) V

Why multiple queries?

38

Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

38

Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention
● Every (token) position attends to every other position [including self!]
● Caveat: in the encoder, and only by default
● Mask in decoder to attend only to previous positions
● Masking technique applied in some Transformer-based LMs

38

Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention
● Every (token) position attends to every other position [including self!]
● Caveat: in the encoder, and only by default
● Mask in decoder to attend only to previous positions
● Masking technique applied in some Transformer-based LMs

● So vector at each position is a query
● And a key, and a value

38

Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay
attention to different vectors for
different reasons

● Multi-headed: several attention
mechanisms in parallel

39

Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay
attention to different vectors for
different reasons

● Multi-headed: several attention
mechanisms in parallel

39

Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay
attention to different vectors for
different reasons

● Multi-headed: several attention
mechanisms in parallel

39

Representing Order

40

Representing Order
● No notion of order in

Transformer. Represented
via positional encodings.

40

Representing Order
● No notion of order in

Transformer. Represented
via positional encodings.

40source

http://jalammar.github.io/illustrated-transformer/

Representing Order
● No notion of order in

Transformer. Represented
via positional encodings.

● Usually fixed, though can be
learned.

40source

http://jalammar.github.io/illustrated-transformer/

Representing Order
● No notion of order in

Transformer. Represented
via positional encodings.

● Usually fixed, though can be
learned.
● No significant improvement;

less generalization.

40source

http://jalammar.github.io/illustrated-transformer/

Initial WMT Results

41

Initial WMT Results

41

More on why
important later

Attention Visualization: Coreference?

42

source

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer: Summary
● Entirely feed-forward

● Therefore massively parallelizable

● RNNs are inherently sequential, a parallelization bottleneck

● (Self-)attention everywhere

● Long-term dependencies:

● LSTM: has to maintain representation of early item

● Transformer: very short “path-lengths”

43

BERT: Bidirectional Encoder Representations
from Transformers

Devlin et al NAACL 2019

44

https://www.aclweb.org/anthology/N19-1423/

Overview
● Encoder Representations from Transformers:

● Bidirectional: ………?
● BiLSTM (ELMo): left-to-right and right-to-left
● Self-attention: every token can see every other

● How do you treat the encoder as an LM (as computing
)?

● Don’t: modify the task

✓

P(wt |wt−1, wt−2, …, w1)

45

Masked Language Modeling
● Language modeling: next word prediction

● Masked Language Modeling (a.k.a. cloze task): fill-in-the-blank

● Nancy Pelosi sent the articles of ____ to the Senate.

● Seattle ____ some snow, so UW was delayed due to ____ roads.

● I.e.

● (very similar to CBOW: continuous bag of words from word2vec)

● Auxiliary training task: next sentence prediction.

● Given sentences A and B, binary classification: did B follow A in the corpus or not?

P(wt |wt+k, wt+(k−1), …, wt+1, wt−1, …, wt−(m+1), wt−m)

46

Schematically

47

Some details

48

Some details
● BASE model:
● 12 Transformer Blocks
● Hidden vector size: 768
● Attention heads / layer: 12
● Total parameters: 110M

48

Some details
● BASE model:
● 12 Transformer Blocks
● Hidden vector size: 768
● Attention heads / layer: 12
● Total parameters: 110M

● LARGE model:
● 24 Transformer Blocks
● Hidden vector size: 1024
● Attention heads / layer: 16
● Total parameters: 340M

48

Some details
● BASE model:
● 12 Transformer Blocks
● Hidden vector size: 768
● Attention heads / layer: 12
● Total parameters: 110M

● LARGE model:
● 24 Transformer Blocks
● Hidden vector size: 1024
● Attention heads / layer: 16
● Total parameters: 340M

48

Some details
● BASE model:
● 12 Transformer Blocks
● Hidden vector size: 768
● Attention heads / layer: 12
● Total parameters: 110M

● LARGE model:
● 24 Transformer Blocks
● Hidden vector size: 1024
● Attention heads / layer: 16
● Total parameters: 340M

48

Input Representation

49

Input Representation

49

● [CLS], [SEP]: special tokens

Input Representation

49

● [CLS], [SEP]: special tokens

● Segment: is this a token from sentence A or B?

Input Representation

49

● [CLS], [SEP]: special tokens

● Segment: is this a token from sentence A or B?

● Position embeddings: provide position in sequence (learned in this case, not fixed)

Input Representation

49

● [CLS], [SEP]: special tokens

● Segment: is this a token from sentence A or B?

● Position embeddings: provide position in sequence (learned in this case, not fixed)

🧐🧐🤔🤔

WordPiece Embeddings
● Another solution to OOV problem, from NMT context (see Wu et al 2016)

● Main idea:
● Fix vocabulary size |V| in advance [for BERT: 30k]
● Choose |V| wordpieces (subwords) such that total number of wordpieces in the

corpus is minimized

● Frequent words aren’t split, but rarer ones are

● NB: this is a small issue when you transfer to / evaluate on pre-existing
tagging datasets with their own vocabularies. (More on that in week 5.)

50

https://arxiv.org/pdf/1609.08144.pdf

Training Details
● BooksCorpus (800M words) + Wikipedia (2.5B)

● Masking the input text. 15% of all tokens are chosen. Then:
● 80% of the time: replaced by designated ‘[MASK]’ token
● 10% of the time: replaced by random token
● 10% of the time: unchanged

● Loss is cross-entropy of the prediction at the masked positions.

● Max seq length: 128 tokens for first 90%, 512 tokens for final 10%

● 1M training steps, batch size 256 = 4 days on 4 or 16 TPUs

51

Initial Results

52

Ablations

53

● Not a given (depth doesn’t help ELMo);
possibly a difference between fine-
tuning vs. feature extraction

● Many more variations to explore

Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape

54

Whirlwind Tour
● Some LMs that have come out since

● Brief description of main changes/innovations
● Can be useful for analysis projects, e.g. do those changes impact the nature of

the representations learned?

● Points to multi-lingual and multi-modal models

55

GPT(2)
● Generative Pre-training
● Radford et al 2018; 2019 (GPT2)

● Uses Transformer decoder instead of encoder
● “Self”-attention: masked so that only can attend to previous tokens
● Pure LM training objective
● Can be used for text generation

● GPT: same params as BERT-BASE; GPT2 much bigger; GPT3 muuuuuch
bigger

● Training data: crawled from outbound Reddit links w/ >3 karma, not public

56

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Comparison

57

Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf

Generated Samples (Cherry-picked)

58

Generated Samples (Cherry-picked)

59

GPT2 Release Controversy

● Worry: it’s so good, it could be used by malicious actors to make deep-
fakes for text (incl. fake news, character assassination, …)

● So the model was not initially released (but has been now)

● Some cynical interpretations

60https://openai.com/blog/better-language-models/

https://openai.com/blog/better-language-models/

https://talktotransformer.com/
● Prompt: Studying computational linguistics is a good idea. There are many

interesting problems.

● However, there are many bad problems. The research into computational
linguistics has not helped very much in the development of better solutions. One
problem with computer science and machine learning is that, until recently, the
problems they were supposed to solve were insufficiently well studied. Most of the
people who are doing research in computer science (at least in my profession)
have no understanding of how to design a particularly natural problem, for
example. In the case of the reasoning problem above, most of the people I know
who work on computer science or machine learning have no understanding of how
to make computer programs work in ways which do not have unavoidable adverse
consequences. In the best cases, computational linguistics was little help.

61

https://talktotransformer.com/

https://talktotransformer.com/
● Prompt: I didn't ride my bike to campus today because of the snowy

weather.

● There is a lot of construction and I wanted to have a few hours of skiing. All
that snow is a real pain in the ass. Good thing there was an LRT planned
for that area. See you guys on campus in a few days! Photo credit:
Tapto@archivosos.gr – August 26, 2016: Windy Weather on the Mountain
(photo credit: Diana Prat) 
From Diana Prat, via tapto@archivosos.gr: 
Ever since the camp that I organized to protest the modernisation of the
Barranco, my beautiful alma mater, you know, going in for a press
conference, I was asking why the Italian government

62

https://talktotransformer.com/
mailto:tapto@archivosos.gr

XLNet
● Main innovation: permutation

language modeling.
● Like LM, but across all possible orders

for factorizing

● Significantly outperforms BERT-
Large, with same hyper parameters
and same training data
● [NB: still not quite the exact same

model]

● Full model: 512 TPUs for 6 days

63

https://arxiv.org/pdf/1906.08237.pdf

RoBERTa
● Robustly optimized BERT approach

● Same BERT-large model, but try variations on the pre-training procedure

64

https://arxiv.org/pdf/1907.11692.pdf

A Lite BERT (ALBERT)
● Reducing parameters while keeping overall architecture:
● Smaller wordpiece embeddings (not same size as hidden layer)
● Share parameters across transformer blocks

● Instead of NSP: AB+, BA- examples. (Harder task.)

65

BART
● Full Transformer, i.e. encoder-decoder transducer
● Many composable transformations of raw text, presented to encoder
● Goal of decoder is to reconstruct the original text

● Good for both discrimination and generation

66

https://arxiv.org/pdf/1910.13461.pdf

Some Pointers
● Multi-lingual models (train MLM on, e.g. 100 languages with largest

Wikipedias):
● mBERT: https://github.com/google-research/bert/blob/master/multilingual.md
● XLM(-R):
● https://arxiv.org/abs/1911.02116,
● https://github.com/pytorch/fairseq/blob/master/examples/xlmr/README.md

● Multi-modal models (e.g. vision and language):
● VisualBERT: https://arxiv.org/abs/1908.03557
● ViLBERT: https://openreview.net/forum?id=S1eOXNHeUS

67

https://github.com/google-research/bert/blob/master/multilingual.md
https://arxiv.org/abs/1911.02116
https://github.com/pytorch/fairseq/blob/master/examples/xlmr/README.md
https://arxiv.org/abs/1908.03557
https://openreview.net/forum?id=S1eOXNHeUS

Note on the costs of LMs

68

Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook,

OpenAI, MS, Baidu

68

Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook,

OpenAI, MS, Baidu

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

68

Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook,

OpenAI, MS, Baidu

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

68

https://www.aclweb.org/anthology/P19-1355/

Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook,

OpenAI, MS, Baidu

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

68

Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook,

OpenAI, MS, Baidu

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

68

https://arxiv.org/pdf/1907.10597.pdf

Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook,

OpenAI, MS, Baidu

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

● A role for interpretability/analysis:
● Bigger is better, but:
● Which factors really matter

68

https://arxiv.org/pdf/1907.10597.pdf

More on the Costs of LMs

● For more on the reactions to this paper: https://faculty.washington.edu/
ebender/stochasticparrots.html

69

https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf

Wrap-up
● The landscape of language models is huge.

● Today: basic building blocks
● LSTMs
● Transformers
● Pointers to more models

● Next time: methods for analyzing these models.
● That will help formulate research questions.

● Start thinking of questions you might want to ask!

70

That’s all folks!

71

