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Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape
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Reminders
● Group formation due tonight
● Canvas discussion thread for people looking for a group
● Enter groups in the Google Doc linked from hw1 page
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Some Fun with CLIP

4

● One vision-and-language model [as asked about last time]: https://openai.com/blog/clip/ 

● Text-based adversarial attacks: 

https://openai.com/blog/clip/
https://openai.com/blog/multimodal-neurons/
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Some Fun with CLIP
● And the sea 

shanty “music 
video” I 
mentioned:
● https://

janellecshane.sub
stack.com/p/sea-
shanty-surrealism 
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Recap
● Transfer learning: pre-train on one task, ‘transfer’ to new task

● For NLP: language modeling [unannotated data]

● Current state-of-the-art involves very large-scale pre-training

● To understand what such models learn, we need to know a bit about what 
they are and how they build representations
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What is a language model?
● A language model parametrized by  computes

● Typically:

● E.g. of labeled data: “Today is the first day of 575.” —> 
● (<s>, Today)
● (<s> Today, is)
● (<s> Today is, the)
● (<s> Today is the, first)

θ
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Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)



Parameters of Variation
● Model architecture:
● Feed-forward, Recurrent (w/ sub-types), Transformer-based
● # parameters, #FLOPS per forward / backward pass

● Tokenization + token representation

● Pre-training variant:
● Pure LM
● Masked LM (plus …)
● Replaced token detection
● …

● Training procedure
● data source, size, shuffled at any level?, …

● Often hard to make direct comparisons! (Though see Clark et al 2020)
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https://openreview.net/forum?id=r1xMH1BtvB


The earliest (?) neural LM
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Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


The earliest (?) neural LM

9

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


The earliest (?) neural LM

9

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


The earliest (?) neural LM

9

Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1embeddings + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


The earliest (?) neural LM
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Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1embeddings + b1)

probabilities = softmax(W2hidden + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Some (but not all) details
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● Loss (the standard one): cross-entropy.  In the classification/LM case:
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Some (but not all) details
● Loss (the standard one): cross-entropy.  In the classification/LM case:

● Training data: Brown corpus (~1M tokens; |V| approx 14.5k after removing 
rare words), and AP news (~14M tokens; |V| approx 18k)

● Primary result: NNLM significantly better test-set perplexity than most 
sophisticated n-gram LMs
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L(θ) =
1
T

T

∑
i=1

− log probabilities(wi)



Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape
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Recurrent Neural Networks
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RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous LM: fixed sized window of previous words

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

13



RNNs
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Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

Linear + 
softmax

Linear + 
softmax

Linear + 
softmax
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LSTMs
● Long Short-Term Memory (Hochreiter and Schmidhuber 1997)

● The gold standard / default RNN
● If someone says “RNN” now, they almost always mean “LSTM”

● Originally: to solve the vanishing/exploding gradient problem for RNNs
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https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735


LSTMs
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ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)
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ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

🤔🤔🤷🤮

● Key innovation:
●
● : a memory cell

● Reading/writing (smooth) 
controlled by gates
● : forget gate

● : input gate

● : output gate

ct, ht = f(xt, ct−1, ht−1)
ct

ft
it
ot



LSTMs
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LSTMs
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Fun with LSTM (character) LMs
● “The Unreasonable Effectiveness of RNNs” 

(Karpathy 2015):  
http://karpathy.github.io/2015/05/21/rnn-
effectiveness/ 
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Some LSTM LMs
● Jozefowicz et al 2016 (“Exploring the Limits of Language Modeling”)
● https://github.com/tensorflow/models/tree/master/research/lm_1b 

● Gulordava et al 2018 (“Colorless Recurrent Neural Networks Dream 
Hierarchically”)
● Fairly easy to use, lots of analysis work using either their pre-trained LM and/or 

their protocol
● https://github.com/facebookresearch/colorlessgreenRNNs
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https://arxiv.org/abs/1602.02410
https://github.com/tensorflow/models/tree/master/research/lm_1b
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● Bidirectional RNNs:
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Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks


ELMo (Embeddings from Language Models)
Peters et al NAACL 2018
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ELMo
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ELMo Model
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ELMo Model

23Source: BERT paper

4096-d hidden state 
512d projection

+

residual connection

char CNN

c  l  a  s  s
Helps with rare / new words (no OOV)

https://arxiv.org/pdf/1810.04805.pdf


ELMo Training
● 10 epochs on 1B Word Benchmark

● NB: not SOTA perplexity even at time of publishing
● See “Exploring the Limits of Language Modeling” paper

● Regularization:
● Dropout
● L2 norm
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https://opensource.google/projects/lm-benchmark
http://jmlr.org/papers/v15/srivastava14a.html


Transferring ELMo
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Transferring ELMo
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Source: BERT paper

+

char CNN

c  l  a  s  s

https://arxiv.org/pdf/1810.04805.pdf


Layer Weights by Transfer Task
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Attention
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seq2seq architecture [e.g. NMT]

28Sutskever et al 2013

encoder decoder
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seq2seq architecture [e.g. NMT]

28Sutskever et al 2013

encoder decoder

Decoder can only see info in this one vector 
all info about source must be “crammed” into here

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear + 
softmax

w′ 1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

29w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear + 
softmax

w′ 1

w′ i

d2

Badhanau et al 2014

https://arxiv.org/abs/1409.0473
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Attention, Generally
● A query  pays attention to some values  based on similarity with 

some keys .
q {vk}

{kv}
● Dot-product attention: 
 
 
 
 
 

● In the previous example: encoder hidden states played both the keys and 
the values roles.
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ej = eαj/Σjeαj

c = Σjejvj



Why attention?
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Why attention?
● Incredibly useful (for performance)
● By “solving” the bottleneck issue

● Aids interpretability:*
● * some debate; more next week

● A general technique for combining 
representations, applications in:
● NMT, parsing, image/video captioning, …
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Badhanau et al 2014

Vinyals et al 2015

https://arxiv.org/abs/1409.0473
https://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf


Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape
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Transformer Architecture
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Paper link 
 
(but see Annotated and  
Illustrated Transformer)

https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/


Full Model
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encoder

decoder



Transformer Block

36



Transformer Block
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Single layer, applied to each position



Transformer Block
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What’s this?

Single layer, applied to each position



Scaled Dot-Product Attention
● Recall: 
 
 
 
 

● Putting it together:  
(keys/values in matrices) 

● Stacking multiple queries: 
(and scaling)
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Why multiple queries?
● seq2seq: single decoder token attends to all encoder states

● Transformer: self-attention
● Every (token) position attends to every other position [including self!]
● Caveat: in the encoder, and only by default
● Mask in decoder to attend only to previous positions
● Masking technique applied in some Transformer-based LMs

● So vector at each position is a query
● And a key, and a value

38



Multi-headed Attention
● So far: a single attention mechanism.

● Could be a bottleneck: need to pay 
attention to different vectors for 
different reasons

● Multi-headed: several attention 
mechanisms in parallel
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Representing Order
● No notion of order in 

Transformer. Represented 
via positional encodings.

● Usually fixed, though can be 
learned.
● No significant improvement; 

less generalization.
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More on why 
important later



Attention Visualization: Coreference?
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source

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Transformer: Summary
● Entirely feed-forward

● Therefore massively parallelizable

● RNNs are inherently sequential, a parallelization bottleneck

● (Self-)attention everywhere

● Long-term dependencies:

● LSTM: has to maintain representation of early item

● Transformer: very short “path-lengths”
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BERT: Bidirectional Encoder Representations 
from Transformers

Devlin et al NAACL 2019
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https://www.aclweb.org/anthology/N19-1423/


Overview
● Encoder Representations from Transformers: 

● Bidirectional: ………?
● BiLSTM (ELMo): left-to-right and right-to-left
● Self-attention: every token can see every other

● How do you treat the encoder as an LM (as computing 
)?

● Don’t: modify the task

✓

P(wt |wt−1, wt−2, …, w1)
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Masked Language Modeling
● Language modeling: next word prediction

● Masked Language Modeling (a.k.a. cloze task): fill-in-the-blank

● Nancy Pelosi sent the articles of ____ to the Senate.

● Seattle ____ some snow, so UW was delayed due to ____ roads.

● I.e. 

● (very similar to CBOW: continuous bag of words from word2vec) 

● Auxiliary training task: next sentence prediction.

● Given sentences A and B, binary classification: did B follow A in the corpus or not?

P(wt |wt+k, wt+(k−1), …, wt+1, wt−1, …, wt−(m+1), wt−m)
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Schematically
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● [CLS], [SEP]: special tokens

● Segment: is this a token from sentence A or B?

● Position embeddings: provide position in sequence (learned in this case, not fixed)

🧐🧐🤔🤔



WordPiece Embeddings
● Another solution to OOV problem, from NMT context (see Wu et al 2016)

● Main idea:
● Fix vocabulary size |V| in advance [for BERT: 30k]
● Choose |V| wordpieces (subwords) such that total number of wordpieces in the 

corpus is minimized

● Frequent words aren’t split, but rarer ones are

● NB: this is a small issue when you transfer to / evaluate on pre-existing 
tagging datasets with their own vocabularies.  (More on that in week 5.) 
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https://arxiv.org/pdf/1609.08144.pdf


Training Details
● BooksCorpus (800M words) + Wikipedia (2.5B)

● Masking the input text.  15% of all tokens are chosen.  Then:
● 80% of the time: replaced by designated ‘[MASK]’ token
● 10% of the time: replaced by random token
● 10% of the time: unchanged

● Loss is cross-entropy of the prediction at the masked positions.

● Max seq length: 128 tokens for first 90%, 512 tokens for final 10%

● 1M training steps, batch size 256 = 4 days on 4 or 16 TPUs
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Initial Results
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Ablations
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● Not a given (depth doesn’t help ELMo); 
possibly a difference between fine-
tuning vs. feature extraction

● Many more variations to explore



Outline
● Background

● Recurrent Neural Networks (LSTMs in particular)
● ELMo
● seq2seq + attention

● Transformers
● BERT

● Snapshot of the current landscape
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Whirlwind Tour
● Some LMs that have come out since

● Brief description of main changes/innovations
● Can be useful for analysis projects, e.g. do those changes impact the nature of 

the representations learned?

● Points to multi-lingual and multi-modal models

55



GPT(2)
● Generative Pre-training
● Radford et al 2018; 2019 (GPT2)

● Uses Transformer decoder instead of encoder
● “Self”-attention: masked so that only can attend to previous tokens
● Pure LM training objective
● Can be used for text generation

● GPT: same params as BERT-BASE; GPT2 much bigger; GPT3 muuuuuch 
bigger

● Training data: crawled from outbound Reddit links w/ >3 karma, not public
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https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


Comparison
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Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf


Generated Samples (Cherry-picked)
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Generated Samples (Cherry-picked)
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GPT2 Release Controversy

● Worry: it’s so good, it could be used by malicious actors to make deep-
fakes for text (incl. fake news, character assassination, …)

● So the model was not initially released (but has been now)

● Some cynical interpretations

60https://openai.com/blog/better-language-models/ 

https://openai.com/blog/better-language-models/


https://talktotransformer.com/ 
● Prompt: Studying computational linguistics is a good idea. There are many 

interesting problems. 

● However, there are many bad problems. The research into computational 
linguistics has not helped very much in the development of better solutions. One 
problem with computer science and machine learning is that, until recently, the 
problems they were supposed to solve were insufficiently well studied. Most of the 
people who are doing research in computer science (at least in my profession) 
have no understanding of how to design a particularly natural problem, for 
example. In the case of the reasoning problem above, most of the people I know 
who work on computer science or machine learning have no understanding of how 
to make computer programs work in ways which do not have unavoidable adverse 
consequences. In the best cases, computational linguistics was little help.
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https://talktotransformer.com/


https://talktotransformer.com/ 
● Prompt: I didn't ride my bike to campus today because of the snowy 

weather. 

● There is a lot of construction and I wanted to have a few hours of skiing. All 
that snow is a real pain in the ass. Good thing there was an LRT planned 
for that area. See you guys on campus in a few days! Photo credit: 
Tapto@archivosos.gr – August 26, 2016: Windy Weather on the Mountain 
(photo credit: Diana Prat) 
From Diana Prat, via tapto@archivosos.gr: 
Ever since the camp that I organized to protest the modernisation of the 
Barranco, my beautiful alma mater, you know, going in for a press 
conference, I was asking why the Italian government
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https://talktotransformer.com/
mailto:tapto@archivosos.gr


XLNet
● Main innovation: permutation 

language modeling.
● Like LM, but across all possible orders 

for factorizing

● Significantly outperforms BERT-
Large, with same hyper parameters 
and same training data
● [NB: still not quite the exact same 

model]

● Full model: 512 TPUs for 6 days
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https://arxiv.org/pdf/1906.08237.pdf


RoBERTa
● Robustly optimized BERT approach

● Same BERT-large model, but try variations on the pre-training procedure
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https://arxiv.org/pdf/1907.11692.pdf


A Lite BERT (ALBERT)
● Reducing parameters while keeping overall architecture:
● Smaller wordpiece embeddings (not same size as hidden layer)
● Share parameters across transformer blocks

● Instead of NSP: AB+, BA- examples.  (Harder task.)
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BART
● Full Transformer, i.e. encoder-decoder transducer
● Many composable transformations of raw text, presented to encoder
● Goal of decoder is to reconstruct the original text

● Good for both discrimination and generation

66

https://arxiv.org/pdf/1910.13461.pdf


Some Pointers
● Multi-lingual models (train MLM on, e.g. 100 languages with largest 

Wikipedias):
● mBERT: https://github.com/google-research/bert/blob/master/multilingual.md
● XLM(-R): 
● https://arxiv.org/abs/1911.02116, 
● https://github.com/pytorch/fairseq/blob/master/examples/xlmr/README.md 

● Multi-modal models (e.g. vision and language):
● VisualBERT: https://arxiv.org/abs/1908.03557 
● ViLBERT: https://openreview.net/forum?id=S1eOXNHeUS
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https://github.com/google-research/bert/blob/master/multilingual.md
https://arxiv.org/abs/1911.02116
https://github.com/pytorch/fairseq/blob/master/examples/xlmr/README.md
https://arxiv.org/abs/1908.03557
https://openreview.net/forum?id=S1eOXNHeUS
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Note on the costs of LMs
● Currently something of an ‘arms race’ between e.g. Google, Facebook, 

OpenAI, MS, Baidu

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

● A role for interpretability/analysis:
● Bigger is better, but:
● Which factors really matter

68

https://arxiv.org/pdf/1907.10597.pdf


More on the Costs of LMs

● For more on the reactions to this paper: https://faculty.washington.edu/
ebender/stochasticparrots.html 
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https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf


Wrap-up
● The landscape of language models is huge.  

● Today: basic building blocks
● LSTMs
● Transformers
● Pointers to more models

● Next time: methods for analyzing these models.
● That will help formulate research questions.

● Start thinking of questions you might want to ask!
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That’s all folks!
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