
Libraries and Tools
🤗 Transformers, AllenNLP

LING575 Analyzing Neural Language Models
Shane Steinert-Threlkeld

Apr 23 2021

1

Outline
● Very helpful tools
● 🤗 Transformers
● AllenNLP
● Walk-through of a classifier and a tagger

● Second half: tips/tricks for experiment running and paper writing

2

🤗 Transformers
https://huggingface.co/transformers

3

https://huggingface.co/transformers

Where to get LMs to analyze?
● RNNs: see week 3 slides
● Josefewicz et al “Exploring the limits…”
● Gulordava et al “Colorless green ideas…”
● ELMo via AllenNLP (about which more later)

● Effectively a unique API for each model

● All (essentially) Transformer-based models: HuggingFace!

4

Overview of the Library
● Access to many variants of many very large LMs (BERT, RoBERTa,

XLNET, ALBERT, T5, language-specific models, …) with fairly consistent
API
● Build tokenizer + model from string for name or config
● Then use just like any PyTorch nn.Module

● Emphasis on ease-of-use
● E.g. low barrier-to-entry to using the models, including for analysis

● Interoperable with PyTorch or TensorFlow 2.0

5

Example: Tokenization

6See http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html (h/t Naomi Shapiro)

http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html

Example: Forward Pass

7

Outputs from the forward pass
● Outputs are always tuples of Tensors
● BERT, by default, gives two things:
● Top layer embeddings for each token.  

Shape: (batch_size, max_length, embedding_dimension)
● Pooled representation: embedding of ‘[CLS]’ token, passed through one tanh

layer 
Shape: (batch_size, embedding_dimension)

8

Getting more out of a model

9

from transformers import BertModel
model = BertModel.from_pretrained(“bert-base-uncased”)

outputs = model(inputs, output_hidden_states=True,
output_attentions=True)

Getting more out of a model

9

from transformers import BertModel
model = BertModel.from_pretrained(“bert-base-uncased”)

outputs = model(inputs, output_hidden_states=True,
output_attentions=True)

● Now, it’s a 4-tuple as output, additionally containing:
● Hidden states. A tuple of tensors, one for each layer. Length: # layers 

Shape of each: (batch_size, max_length, embedding_dimension)
● Attention heads: tuple of tensors, one for each layer. Length: # layers 

Shape of each: (batch_size, num_heads, max_length, max_length)
● [Can also be done with BertConfig object]

What the library does well
● Very easy tokenization

● Forward pass of models
● Exposing as many internals as possible
● All layers, attention heads, etc

● As unified an interface as possible
● But: different models have different properties, controlled by Configs
● Read the docs carefully!
● e.g. https://huggingface.co/transformers/model_doc/bert.html#bertmodel

10

https://huggingface.co/transformers/model_doc/bert.html#bertmodel

What the library does not do
● Anything related to training
● Padding
● Batching
● Optimizing probe models, etc. Use PyTorch (or TF) for that

● Model search: https://huggingface.co/models

● Dataset search: https://huggingface.co/datasets

11

https://huggingface.co/models
https://huggingface.co/datasets

AllenNLP
https://allennlp.org/

12

https://allennlp.org/

Overview of AllenNLP
● Built on top of PyTorch

● Flexible data API

● Abstractions for common use cases in NLP
● e.g. take a sequence of representations and give me a single one

● Modular:
● Because of that, can swap in and out different options, for good experiments

● Declarative model-building / training via config files

● See https://github.com/allenai/writing-code-for-nlp-research-emnlp2018

● Guide: https://guide.allennlp.org/ <— very helpful for explaining some of the abstractions

13

https://github.com/allenai/writing-code-for-nlp-research-emnlp2018
https://guide.allennlp.org/

Some Advantages

14

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

14

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

14

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results
● ….

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results
● ….

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

allennlp train myexperiment.jsonnet

Example Abstractions
● TextFieldEmbedder

● Seq2SeqEncoder

● Seq2VecEncoder

● Attention

● …

● Allows for easy swapping of different choices at every level in your model.

15

Overall Structure (Classification)

16

Overall Structure (Classification)

16

DatasetReader

Overall Structure (Classification)

16

DatasetReader

Model

Overall Structure (Classification)

16

DatasetReader

Model

Iterator

Overall Structure (Classification)

16

DatasetReader

Model

Trainer

Iterator

Basic Components: Dataset Reader
● Datasets are collections of Instances, which are collections of Fields
● For text classification, e.g.: one TextField, one LabelField
● Many more: https://guide.allennlp.org/reading-data

● DatasetReaders….. read data sets. Two primary methods:
● _read(file): reads data from disk, yields Instances. By calling:
● text_to_instance (variable signature)
● Processing of the “raw” data from disk into final form
● Produces one Instance at a time

17

https://guide.allennlp.org/reading-data

DatasetReader: Stanford Sentiment
Treebank

● One line from train.txt:  
(3 (2 (2 The) (2 Rock)) (4 (3 (2 is) (4 (2 destined) (2 (2 (2 (2 (2 to) (2 (2 be) (2 (2 the) (2 (2 21st) (2 (2 (2 Century) (2 's)) (2 (3 new) (2 (2 ``) (2 Conan)))))))) (2 '')) (2 and)) (3 (2 that) (3 (2 he) (3 (2 's) (3

(2 going) (3 (2 to) (4 (3 (2 make) (3 (3 (2 a) (3 splash)) (2 (2 even) (3 greater)))) (2 (2 than) (2 (2 (2 (2 (1 (2 Arnold) (2 Schwarzenegger)) (2 ,)) (2 (2 Jean-Claud) (2 (2 Van) (2 Damme)))) (2 or)) (2 (2

Steven) (2 Segal))))))))))))) (2 .)))

● Core of _read:

● Core of text_to_instance:

18

…

Model

19

Model

19

Fine tune or not

Model

20

NB: frozen embeddings can be
pre-computed for efficiency

Where was BERT?
● In the PretrainedTransformerEmbedder
● AllenNLP has wrappers around HuggingFace
● But note: to extract more from a model, you’ll probably need to write your own

class, using the existing ones as inspiration

21

Config file (classifying_experiment.jsonnet)

22

Arguments to SSTReader!

@DatasetReader.register(“sst_reader”)

Config file (classifying_experiment.jsonnet)

23

allennlp train classifying_experiment.jsonnet \
--serialization-dir test \
--include-package classifying

TensorBoard

24

tensorboard --logdir /serialization_dir/log

Use SSH port forwarding to
view server-side results locally

https://stackoverflow.com/questions/37987839/how-can-i-run-tensorboard-on-a-remote-server

Tagging
● The repository also has an example of training a

semantic tagger
● Like POS tagging, but with a richer set of “semantic” tags

● Issue: the data comes with its own tokenization:
● BERT: ['the', 'ya', '##zuka', 'are', 'the', 'japanese', 'mafia', ‘.’]

● Need to get word-level representations out of BERT’s
subword representations

25

Tagging: Modeling
● My example: keep track of which spans of BERT tokens the original words

correspond to
● Some complication in the DatasetReader because of this

● And then combine those representations with an arbitrary
Seq2VecEncoder

● Since then, they’ve added a PretrainedMismatchedTransformerEmbedder
that has essentially the same functionality
● (Spans are pooled by summing, not by an arbitrary Seq2Vec)
● Might be safest to use that (and corresponding MismatchedIndexer)

26

http://docs.allennlp.org/main/api/modules/token_embedders/pretrained_transformer_mismatched_embedder/

On These Libraries
● If you’re using transformer-based LMs, I strongly recommend HuggingFace

● On the other hand, it’s possible that learning AllenNLP’s abstractions may
cost you more time than it saves in the short term

● As always, try and use the best tool for the job at hand

● One more that makes fine-tuning and/or diagnostic classification easy:
● jiant

27

https://jiant.info/

Other tools for experiment management
● Disclaimer: I’ve never used them!
● Might be over-kill in the short term

● Guild (entirely local): https://guild.ai/

● CodaLab: https://codalab.org/

● Weights and Biases: https://www.wandb.com/

● Neptune: https://neptune.ai/

28

https://guild.ai/
https://codalab.org/
https://www.wandb.com/
https://neptune.ai/

Using GPUs on Patas

29

Setting up local environment
● Three GPU nodes:
● 2xTesla P40
● 8xTesla M10
● 2xQuadro 8000

● For info on setting up your local environment to use these nodes in a fairly
painless way:
● https://www.shane.st/teaching/575/spr21/patas-gpu.pdf

30

https://www.shane.st/teaching/575/spr21/patas-gpu.pdf

Condor job file for patas

31

executable = run_exp_gpu.sh
getenv = True
error = exp.error
log = exp.log
notification = always
transfer_executable = false
request_memory = 8*1024
request_GPUs = 1
+Research = True
Queue

Example executable

32

#!/bin/sh
conda activate my-project

allennlp train tagging_experiment.jsonnet --serialization-dir test \
--include-package tagging \
--overrides "{'trainer': {'cuda_device': 1}}"

