
Libraries and Tools
🤗 Transformers, AllenNLP

LING575 Analyzing Neural Language Models
Shane Steinert-Threlkeld

Apr 27 2022

1

Outline
● Very helpful tools
● 🤗 Transformers
● AllenNLP
● Walk-through of a classifier and a tagger

● Second half: tips/tricks for experiment running and paper writing

2

🤗 Transformers
https://huggingface.co/transformers

3

https://huggingface.co/transformers

Where to get LMs to analyze?
● RNNs: see week 3 slides
● Josefewicz et al “Exploring the limits…”
● Gulordava et al “Colorless green ideas…”
● ELMo via AllenNLP (about which more later)

● Effectively a unique API for each model

● All (essentially) Transformer-based models: HuggingFace!

4

Overview of the Library
● Access to many variants of many very large LMs (BERT, RoBERTa, XLNET,

ALBERT, T5, language-specific models, …) with fairly consistent API
● Build tokenizer + model from string for name or config
● Then use just like any PyTorch nn.Module

● Emphasis on ease-of-use
● E.g. low barrier-to-entry to using the models, including for analysis
● [new `pipeline` abstraction too, but I think this is too easy for most analysis /

probing purposes, but can work if all you need are model judgments on data]

● Interoperable with PyTorch or TensorFlow 2.0

5

Example: Tokenization

6See http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html (h/t Naomi Shapiro)

https://huggingface.co/docs/transformers/preprocessing
http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html

Example: Tokenization

6See http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html (h/t Naomi Shapiro)

https://huggingface.co/docs/transformers/preprocessing
http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html

Example: Tokenizing a Batch

7

https://huggingface.co/docs/transformers/preprocessing

Example: Tokenizing a Batch

7

Add `return_tensors=“pt”` to get these outputs as PyTorch Tensors

https://huggingface.co/docs/transformers/preprocessing

Example: Forward Pass

8

Outputs from the forward pass
● Outputs are usually Python objects with various attributes corresponding to

different model outputs (NB: can be tuples of Tensors if specified, but I
recommend against that)
● BERT, by default, gives two things:
● last_hidden_state: sequence of hidden states at the last layer of the

model.  
Shape: (batch_size, max_length, embedding_dimension)

● pooler_output: embedding of ‘[CLS]’ token, passed through one tanh layer
(more on this later) 
Shape: (batch_size, embedding_dimension)

9

Getting more out of a model

10

from transformers import BertModel
model = BertModel.from_pretrained(“bert-base-uncased”)

outputs = model(inputs, output_hidden_states=True,
output_attentions=True)

Getting more out of a model

10

from transformers import BertModel
model = BertModel.from_pretrained(“bert-base-uncased”)

outputs = model(inputs, output_hidden_states=True,
output_attentions=True)

● Now, the output object has additional attributes:
● hidden_states: A tuple of tensors, one for each layer. Length: # layers 

Shape of each: (batch_size, max_length, embedding_dimension)
● attentions: tuple of tensors, one for each layer. Length: # layers 

Shape of each: (batch_size, num_heads, max_length, max_length)
● [Can also be done with BertConfig object]

What the library does well
● Very easy tokenization

● Forward pass of models
● Exposing as many internals as possible
● All layers, attention heads, etc

● As unified an interface as possible
● But: different models have different properties, controlled by Configs or by arguments
● Read the docs carefully!
● e.g. https://huggingface.co/docs/transformers/model_doc/

bert#transformers.BertModel
● The docs for `forward` just below explain the inputs/outputs

11

https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel

More Info
● Model search: https://huggingface.co/models

● Dataset search: https://huggingface.co/datasets

● Relatively new portions of the library (Trainer) may be useful for probing,
but we’ll look at another route for that now.

12

https://huggingface.co/models
https://huggingface.co/datasets
https://huggingface.co/docs/transformers/training

AllenNLP
https://allenai.org/allennlp/software/allennlp-library

13

https://allenai.org/allennlp/software/allennlp-library

Overview of AllenNLP
● Built on top of PyTorch

● Flexible data API

● Abstractions for common use cases in NLP
● e.g. take a sequence of representations and give me a single one

● Modular:
● Because of that, can swap in and out different options, for good experiments

● Declarative model-building / training via config files

● See https://github.com/allenai/writing-code-for-nlp-research-emnlp2018

● Guide: https://guide.allennlp.org/ <— very helpful for explaining some of the abstractions

14

https://github.com/allenai/writing-code-for-nlp-research-emnlp2018
https://guide.allennlp.org/

Some Advantages

15

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

15

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

15

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results
● ….

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results
● ….

15

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

allennlp train myexperiment.jsonnet

Example Abstractions
● TextFieldEmbedder

● Seq2SeqEncoder

● Seq2VecEncoder

● Attention

● …

● Allows for easy swapping of different choices at every level in your model.

16

AllenNLP Bert Example
● See https://github.com/shanest/allennlp-bert-example [linked on course

webpage as well]

● Using AllenNLP to probe BERT for two tasks:
● Classification [Stanford Sentiment Treebank]
● Tagging [Semantic Tagging]

17

https://github.com/shanest/allennlp-bert-example
https://nlp.stanford.edu/sentiment/
https://pmb.let.rug.nl/

Classifying

18

Overall Structure (Classification)

19

Overall Structure (Classification)

19

DatasetReader

Overall Structure (Classification)

19

DatasetReader

Model

Overall Structure (Classification)

19

DatasetReader

Model

Data Loader/Iterator

Overall Structure (Classification)

19

DatasetReader

Model

Trainer

Data Loader/Iterator

Basic Components: Dataset Reader
● Datasets are collections of Instances, which are collections of Fields
● For text classification, e.g.: one TextField, one LabelField
● Many more: https://guide.allennlp.org/reading-data

● DatasetReaders….. read data sets. Two primary methods:
● _read(file): reads data from disk, yields Instances. By calling:
● text_to_instance (variable signature)
● Processing of the “raw” data from disk into final form
● Produces one Instance at a time

20

https://guide.allennlp.org/reading-data

DatasetReader: Stanford Sentiment
Treebank

● One line from train.txt:  
(3 (2 (2 The) (2 Rock)) (4 (3 (2 is) (4 (2 destined) (2 (2 (2 (2 (2 to) (2 (2 be) (2 (2 the) (2 (2 21st) (2 (2 (2 Century) (2 's)) (2 (3 new) (2 (2 ``) (2 Conan)))))))) (2 '')) (2 and)) (3 (2 that) (3 (2 he) (3 (2 's) (3

(2 going) (3 (2 to) (4 (3 (2 make) (3 (3 (2 a) (3 splash)) (2 (2 even) (3 greater)))) (2 (2 than) (2 (2 (2 (2 (1 (2 Arnold) (2 Schwarzenegger)) (2 ,)) (2 (2 Jean-Claud) (2 (2 Van) (2 Damme)))) (2 or)) (2 (2

Steven) (2 Segal))))))))))))) (2 .)))

● Core of _read:

● Core of text_to_instance:

21

…

Model

22

Model

22

Fine tune or not

Model

23

NB: frozen embeddings can be
pre-computed for efficiency

Where was BERT?
● In the TextFieldEmbedder!

● In run_classifying.py: initialized a PretrainedTransformerEmbedder
● AllenNLP has wrappers around HuggingFace
● But note: to extract more from a model, you’ll probably need to write your own

class, using the existing ones as inspiration

24

Config file (classifying_experiment.jsonnet)

25

Arguments to SSTReader!

@DatasetReader.register(“sst_reader”)

Config file (classifying_experiment.jsonnet)

26

allennlp train classifying_experiment.jsonnet \
--serialization-dir test \
--include-package classifying

TensorBoard

27

tensorboard --logdir /serialization_dir/log

Use SSH port forwarding to
view server-side results locally

https://stackoverflow.com/questions/37987839/how-can-i-run-tensorboard-on-a-remote-server

Tagging

28

Tagging

29

Tagging
● The repository also has an example of

training a semantic tagger
● Like POS tagging, but with a richer set of

“semantic” tags

29

https://aclanthology.org/W17-6901.pdf

Tagging
● The repository also has an example of

training a semantic tagger
● Like POS tagging, but with a richer set of

“semantic” tags

● Issue: the data comes with its own
tokenization:
● BERT: ['the', 'ya', '##zuka', 'are', 'the',

'japanese', 'mafia', ‘.’]

29

https://aclanthology.org/W17-6901.pdf

Tagging
● The repository also has an example of

training a semantic tagger
● Like POS tagging, but with a richer set of

“semantic” tags

● Issue: the data comes with its own
tokenization:
● BERT: ['the', 'ya', '##zuka', 'are', 'the',

'japanese', 'mafia', ‘.’]

● Need to get word-level representations
out of BERT’s subword representations

29

https://aclanthology.org/W17-6901.pdf

Tagging: Modeling
● Used to be complicated, BUT:

● They’ve added a PretrainedMismatchedTransformerEmbedder (and a
corresponding PretrainedMismatchedTransformerIndexer for tokens)
● Handles all of the mis-alignment between dataset tokens and model tokens for

you!
● How to pool subwords—>words:
● `sub_token_mode` kwarg: default = avg, but can do first/last, etc

30

http://docs.allennlp.org/main/api/modules/token_embedders/pretrained_transformer_mismatched_embedder/

Tagging: Modeling

31

On These Libraries
● If you’re using transformer-based LMs, I strongly recommend HuggingFace

● On the other hand, it’s possible that learning AllenNLP’s abstractions may
cost you more time than it saves in the short term

● As always, try and use the best tool for the job at hand

● One more that makes fine-tuning and/or diagnostic classification easy:
● jiant

32

https://jiant.info/

Other tools for experiment management
● Disclaimer: I’ve never used them!
● Might be over-kill in the short term

● Guild (entirely local): https://guild.ai/

● CodaLab: https://codalab.org/

● Weights and Biases: https://www.wandb.com/

● Neptune: https://neptune.ai/

33

https://guild.ai/
https://codalab.org/
https://www.wandb.com/
https://neptune.ai/

Using GPUs on Patas

34

Setting up local environment
● Three GPU nodes:
● 2xTesla P40
● 8xTesla M10
● 2xQuadro 8000

● For info on setting up your local environment to use these nodes in a fairly
painless way:
● https://www.shane.st/teaching/575/spr22/patas-gpu.pdf

35

https://www.shane.st/teaching/575/spr22/patas-gpu.pdf

Condor job file for patas

36

executable = run_exp_gpu.sh
getenv = True
error = exp.error
log = exp.log
notification = always
transfer_executable = false
request_memory = 8*1024
request_GPUs = 1
+Research = True
Queue

Example executable

37

#!/bin/sh
conda activate my-project

allennlp train tagging_experiment.jsonnet --serialization-dir test \
--include-package tagging \
--overrides "{'trainer': {'cuda_device': 1}}"

