
Analysis Methods
LING575 Analyzing Neural Language Models

Shane Steinert-Threlkeld
January 23 2020

1



Recap
● Last time: a tour through current space of neural language models

● Architectures: recurrent vs. Transformer-based

● Pre-training task: 
● Pure LM
● Masked LM
● Variants (other ways of adding noise to input)

● Training data, protocol, …
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Today
● We will look at several prominent analysis methods

● By surveying some prominent exemplars of each kind of analysis
● NOT exhaustive
● Papers in the Reading List on the website are tagged for methods used, if you 

use “Group By > Keyword”, so follow up there

● Try to keep in mind:
● What’s the logic behind each method
● What can and can’t we learn from it (and how can we tell that)
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Outline
● Visualization / neuron-level analysis

● Psycholinguistic / surprisal-based methods

● Diagnostic classifiers

● Attention-based

● Examples of other methods (e.g. adversarial data)
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Visualization / neuron-level analysis
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Main Idea
● Individual neurons in a network have activations that depend on the input

● Check to see whether any of them have activations which depend on / 
correlate with (linguistically) interesting features of the input

● [Think of the alleged “Jennifer Anniston cells”, aka grandmother cells] 
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https://arxiv.org/pdf/1506.02078.pdf


Recall: LSTMs
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Element-wise multiplication: 
0: erase 
1: retain

: which cells to outputot ∈ [0,1]m

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Protocol
● Train character-level LSTM LMs on various text

● Visually inspect whether any memory cells (elements of ) have 
activations which depend on interesting features

ct
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Interpretable cell 1: line position
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Interpretable cell 2: inside quotes
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Interpretable cell 3: inside ‘if’ statements
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Interpretable cell 4: depth
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Normal case: uninterpretable cell
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https://arxiv.org/pdf/1704.01444.pdf


Approach
● Character-level language model (LSTM variant)
● One layer; 4096 dim hidden state
● Training: ~1 month on 4 GPUs

● Data: Amazon product reviews

● Fine-tune: sentiment analysis
● NB: this data partially overlaps with training data [but a different task]
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A sentiment neuron
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Samples of the sentiment neuron
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Sentiment unit does all the work!
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https://www.aclweb.org/anthology/N19-1002/


Approach
● Evaluating the Gulordava et al 2018 LSTM LM (last week’s slides + later)

● Number agreement tasks: as in Linzen et al 2016 (to be discussed shortly!)
● Plus synthetic: 
 
 
 
 
 

● Find important cells by ablation: set activation to 0, see if performance 
suffers.  (Also by regression; more in a minute)
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Cell dynamics for storing number info
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Finding a syntax unit
● Predict, via linear regression, from the cell:
● Depth of the word in syntactic parse of the sentence
● (Works pretty well: R^2 = 0.85.  More on this idea later.)

● Identify cells that are assigned very high weight in the regression

23



Cell dynamics for a syntax unit
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Neuron-level analysis: summary
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Neuron-level analysis: summary
● Very promising and exciting when it does work: a good look “inside the 

black box”, with very interpretable neural/cell dynamics.  But:
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Neuron-level analysis: summary
● Very promising and exciting when it does work: a good look “inside the 

black box”, with very interpretable neural/cell dynamics.  But:

● “A needle in a haystack”: how to find the “good” neurons?
● Some principled methods (ablation, regression); not all of them scale well
● But also: 
● Is there a neuron that tracks property P?
● Not: what are you tracking?
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Neuron-level analysis: summary
● Very promising and exciting when it does work: a good look “inside the 

black box”, with very interpretable neural/cell dynamics.  But:

● “A needle in a haystack”: how to find the “good” neurons?
● Some principled methods (ablation, regression); not all of them scale well
● But also: 
● Is there a neuron that tracks property P?
● Not: what are you tracking?

● Deleting interpretable neurons may not effect performance in the original or 
downstream task (Morcos et al 2018)
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Outline
● Visualization / neuron-level analysis

● Psycholinguistic / surprisal-based methods

● Diagnostic classifiers

● Attention-based

● Examples of other methods (e.g. adversarial data)
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Psycholinguistic methods
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Animating Idea
● NLMs are a bit of a “black box”.  How can we figure out what they’re 

doing?

● Well: humans are also (approximately) black boxes!

● So: let’s treat NLMs the way we treat people when we try to figure out the 
nature of their linguistic knowledge.
● In other words: treat NLMs as if they were participants in the kinds of 

experiments that (psycho-)linguists perform.
● [NB: lots more to do here!]
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https://www.mitpressjournals.org/doi/10.1162/tacl_a_00115


Subject-verb agreement
● Adjacent:
● The key is on the table [SS]
● * The key are on the table [SP]
● * The keys is on the table [PS]
● The keys are on the table [PP]

● Arbitrarily many attractors (nouns w/ different number) in between:
● But even the city with several tall buildings and many thriving industries is 

struggling.
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Method
● Does LM predict the right form of the verb?
● “The keys on the cabinet …”

●

● Single layer LSTM w/ 50 hidden units 

● NB: a lot more in the paper than we’ll talk about here.

● Later: other methods for getting LM grammaticality judgments.

PLM(are) > PLM(is)?
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Accuracy vs. Attractors
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Effect of Task
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Take Home
● LSTMs can in general learn hierarchical dependencies

● But language modeling may not provide enough signal on its own
● i.e. explicit supervision on the task is required
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https://www.aclweb.org/anthology/N18-1108/


Innovations
● Same basic protocol, but:
● More constructions / contexts to test agreement on
● Multiple languages
● Comparison to human judgments (in Italian)
● Nonsense (nonce) constructions: think “colorless green ideas sleep furiously”
● It presents the case for marriage equality and states …
● It stays the shuttle for honesty insurance and finds …

● [Note: no “wug” / pseudo-words (“It blergs the shuttle …”); why not?] 
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Four languages; two constructions
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Four languages; two constructions
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Maybe English’s poor morphology 
and high POS ambiguity:
“If you have any questions or 
need/needs, …”



Comparison with Italians
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On the Linzen et al 2016 Data
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On the Linzen et al 2016 Data
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Be careful with what you can 
conclude from one experiment!



Take Home
● Language modeling may after all provide enough of a signal to learn hierarchical 

syntactic dependencies
● But may be very sensitive to hyper-parameters, including training data
● [NB: the Gulordava et al model is a lot smaller than the Google LM]
● “suggests that the input itself contains enough information to trigger some form of 

syntactic learning in a system, such as an RNN, that does not contain an explicit prior 
bias in favour of syntactic structures”

● Good model and data to play with (https://github.com/facebookresearch/
colorlessgreenRNNs)

● A follow-up, with more constructions than just subject/verb agreement, and 
artificially generated data: https://www.aclweb.org/anthology/D18-1151/ 
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https://github.com/facebookresearch/colorlessgreenRNNs
https://github.com/facebookresearch/colorlessgreenRNNs
https://www.aclweb.org/anthology/D18-1151/


41

https://www.aclweb.org/anthology/N19-1004/


Surprisal in Sentence Comprehension
● Surprisal = -log prob

● A good predictor of human reading times (Hale 2001; Levy 2008)
● Usually derived from probabilistic grammars

● Surprisal is just the contribution of each next-word prediction of an LM to 
its training loss
● Do these values show evidence of incremental structure-building?
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https://www.aclweb.org/anthology/N01-1021/
https://www.sciencedirect.com/science/article/pii/S0010027707001436


Matrix Licensing
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Matrix Licensing
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Negative values: with subordinator (“As”)  
absent, the matrix clause is surprising



Garden Paths
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Garden Paths
● When the dog scratched the vet with his new assistant took off the muzzle.
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● When the dog scratched the vet with his new assistant took off the muzzle.

● When the dog scratched the vet with his new assistant took off the 
muzzle.
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Garden Paths
● When the dog scratched the vet with his new assistant took off the muzzle.

● When the dog scratched the vet with his new assistant took off the 
muzzle.

● When the dog scratched, the vet with his new assistant took off the 
muzzle.
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Garden Paths
● When the dog scratched the vet with his new assistant took off the muzzle.

● When the dog scratched the vet with his new assistant took off the 
muzzle.

● When the dog scratched, the vet with his new assistant took off the 
muzzle.

● When the dog struggled the vet with his new assistant took off the muzzle. 
[intransitive verb]
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Garden Paths
● When the dog scratched the vet with his new assistant took off the muzzle.

● When the dog scratched the vet with his new assistant took off the 
muzzle.

● When the dog scratched, the vet with his new assistant took off the 
muzzle.

● When the dog struggled the vet with his new assistant took off the muzzle. 
[intransitive verb]

● When the dog struggled, the vet with his new assistant took off the muzzle. 
[intransitive verb]
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Garden Paths
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Interim Summary
● Treating NLMs as psycholinguistic subjects reveals subtle and non-trivial 

syntactic behavior
● Some hierarchical structure being built, even from linear input
● Some incremental interpretation

● NB: methods surveyed here really depend on “pure” LMs:
● LSTMs, or left-to-right Transformers (e.g. GPT(2))
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Whither semantics?
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Whither semantics?
● “Most of the dots are yellow.”
●
●
● …. 
 
 
 
 

|dots ∩ yellow | > |dots∖yellow |
∃f : dots∖yellow → dots ∩ yellow that is 1-1, not onto

48
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Whither semantics?
● “Most of the dots are yellow.”
●
●
● …. 
 
 
 
 

|dots ∩ yellow | > |dots∖yellow |
∃f : dots∖yellow → dots ∩ yellow that is 1-1, not onto

● Pietroski et al 2009: no difference between (b)-(d) conditions, so people do not 
represent “most” via 1-1 mapping.  (Many follow-ups since.)
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https://onlinelibrary.wiley.com/doi/full/10.1111/j.1468-0017.2009.01374.x
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https://www.aclweb.org/anthology/W19-2916/
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● We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

https://www.aclweb.org/anthology/W19-2916/
https://www.aclweb.org/anthology/W19-4806/
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● We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

● Pre-trained (multi-modal!) models could be evaluated on this paradigm
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● We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

● Pre-trained (multi-modal!) models could be evaluated on this paradigm

● See also Kuhlne and Copestake 2019

https://www.aclweb.org/anthology/W19-2916/
https://www.aclweb.org/anthology/W19-4806/


Some other candidate phenomena
● The distinction between implicature and presupposition:
● Some students passed. implicates Not all students passed.
● Shane knows that the paper was published.  Presupposes  The paper was published.
● (Compare: Shane doesn’t know that the paper was published.)

● Semantic sources of ungrammaticality:
● Negative polarity items (lots of work on these right now)
● Exceptives
● There are Q NP VP…

● Many, many more!  If you find/know an experimental semantics paper, think how 
you could replace the people with models.
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Outline
● Visualization / neuron-level analysis

● Psycholinguistic / surprisal-based methods

● Diagnostic classifiers

● Attention-based

● Examples of other methods (e.g. adversarial data)
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Diagnostic classifiers
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Main Idea
● What’s in a representation (a vector)?  How can we tell?

● For example: does an LSTM’s memory encode grammatical number?
● If we’re lucky: a single cell might, as we saw earlier.  (Sparse representation)
● In general: if we can easily predict the number from the memory, it’s “already in 

there”.

● Given a representation, train a simple model (usually a linear classifier) to 
predict a property of interest (usually linguistic) from that representation.
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Note on Terminology

● Roughly synonyms: diagnostic classifiers, probing classifiers, auxiliary 
prediction tasks, …

● [Basically: very simple transfer learning]
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https://jair.org/index.php/jair/article/view/11196/26408
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https://www.aclweb.org/anthology/N19-1112/


Tagging Results
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Tagging Results
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Context matters!



Coreference
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No significant improvement over
global embedding baseline 
[BERT does a bit better, so 
bidirectionality seems to matter]



Layer-wise Prediction
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(each column is  
a different task) 



Effect of Pretraining Task
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● See also:

● Zhang and Bowman 2018

● Peters et al 2018b

● Blevins et al 2018

https://arxiv.org/pdf/1809.10040.pdf
https://www.aclweb.org/anthology/D18-1179/
https://www.aclweb.org/anthology/P18-2003/
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https://openreview.net/pdf?id=SJzSgnRcKX


Edge Probing Set-up
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Results
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Conclusion
● “in general, contextualized embeddings improve over their non-

contextualized counterparts largely on syntactic tasks (e.g. constituent 
labeling) in comparison to semantic tasks (e.g. coreference), suggesting 
that these embeddings encode syntax more so than higher-level 
semantics”

63



64

https://www.aclweb.org/anthology/P19-1452/
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Is it in the probe or the representation?
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Is it in the probe or the representation?
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https://www.aclweb.org/anthology/D19-1275/


Summary
● Use simple classifiers to see what can be extracted from a model’s 

representations.

● Some clear trends:
● Contextualized representations have more info than global ones (GloVe e.g.)
● Especially for syntax
● Layer-wise: early recurrent layers are more transferrable, less clear on 

Transformers
● Language modeling a very good task for building transferrable representations

● Note: this is a rather easy method to use, so do consider it! I’ll demo the 
method in 2 weeks.
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Outline
● Visualization / neuron-level analysis

● Psycholinguistic / surprisal-based methods

● Diagnostic classifiers

● Attention-based

● Examples of other methods (e.g. adversarial data)
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Attention-based
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https://www.aclweb.org/anthology/W19-4828/


Qualitative Patterns
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Attention Head as Classifier

● No new training required

● Do any of these work for pairwise classification tasks “off-the-shelf”?
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Attention Head as Classifier

● No new training required

● Do any of these work for pairwise classification tasks “off-the-shelf”?
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αj = q ⋅ kj

ej = eαj/Σjeαj

c = Σjejvj

class(q) = arg max
j

αj



Dependency Parsing
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Coreference
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Examples

75
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https://www.aclweb.org/anthology/D19-1445/


Overall
● Same observation as previous: many heads only pay attention to [SEP] 

and [CLS] tokens

● Changes in attention before and after fine-tuning

● Pruning some heads can actually improve performance (see also Voita et 
al on the original Transformer)
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https://www.aclweb.org/anthology/P19-1580/
https://www.aclweb.org/anthology/P19-1580/


Effect of Fine-tuning
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Effect of fine-tuning on attention
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Pruning all attention in a layer
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NB: pay attention to 
the scales



Summary
● Sometimes, attention heads seem to encode some linguistically interesting 

properties
● But there appears to be lots of redundancy
● And there’s much more terrain to explore here

● As before: we can ask if property P can be found in attention, but not what 
role (independently of a hypothesis) a head is playing

● For the curious: ongoing debate about the connection between attention 
and model predictions (not as applied to LMs yet): Attention is not 
explanation; Attention is not not explanation
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https://www.aclweb.org/anthology/N19-1357/
https://www.aclweb.org/anthology/N19-1357/
https://www.aclweb.org/anthology/D19-1002/


Outline
● Visualization / neuron-level analysis

● Psycholinguistic / surprisal-based methods

● Diagnostic classifiers

● Attention-based

● Examples of other methods (e.g. adversarial data)
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Other methods
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Hewitt and Manning 2019
blog post

https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
https://nlp.stanford.edu/~johnhew/structural-probe.html


“The chef who ran to the store was out of 
food.”
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“The chef who ran to the store was out of 
food.”
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“The chef who ran to the store was out of 
food.”
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Results
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[SOTA: directed UAS >97%]



Examples
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Black = gold parse.  
Model parses: Maximum Spanning Tree from distances in transformed space. 
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https://www.aclweb.org/anthology/P19-1334/
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Results

(performance improves if fine-tuned on this challenge set)



Fine-tuning augmented with examples
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Conclusion
● Solving a dataset != solving a task
● Models are very powerful, can be very “clever”
● Adopt heuristics that exploit spurious cues in the data

● Careful design of “adversarial” data can both expose the heuristics being 
relied on and hopefully improve the representations learned
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https://www.aclweb.org/anthology/P19-1459/


Results, with and w/o adversarial set 
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Results, with and w/o adversarial set 
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Results, with and w/o adversarial set 
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eliminates reliance on “not” as a cue; found to be helpful
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Results, with and w/o adversarial set 
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eliminates reliance on “not” as a cue; found to be helpful

even though trained on adversarial examples



Adversarial Datasets
● Can help identify heuristics and/or statistical cues that models are relying 

on to make decisions

● Sometimes, but not always, the models just need to see some examples 
from the adversarial set to learn it

● NB: constructing such a set is a great place for linguistic knowledge to be 
useful!
● (e.g. one way for LING elective)
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One last meta-point
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https://www.aclweb.org/anthology/D19-1286/


Negative polarity items
● NPIs are expressions like any, ever that are only grammatical in “negative” 

environments:
● * Shaan has done any of the reading.
● Shaan hasn’t done any of the reading.

● Question: does BERT “understand” NPIs?

● [NB: see also Marvin and Linzen 2018; Jumelet and Hupkes 2018; a 
submission of mine to ACL2020…]
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https://www.aclweb.org/anthology/D18-1151/
https://www.aclweb.org/anthology/W18-5424/


Does BERT “understand” NPIs?
● It depends!

● “We find that BERT has significant knowledge of these features, but its 
success varies widely across different experimental methods. We conclude 
that a variety of methods is necessary to reveal all relevant aspects of a 
model’s grammatical knowledge in a given domain.”

● Keep this in mind when designing and reporting experiments.
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Wrapping Up
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Some methods surveyed
● Visualization / neuron-level analysis
● One can often find interpretable single cells! Ablation can help find them.
● Fairly under-explored in terms of the range of phenomena.

● Psycholinguistic / surprisal-based methods
● Treat NLM as a psycholinguistic subject.  Very productive for syntax.

● Diagnostic classifiers
● A representation encodes a feature if that feature can be easily predicted from it.
● Conceptually and computationally simple; scales well.

● Attention-based

● Examples of other methods (e.g. adversarial data)
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Some methods surveyed
● Attention-based
● Some interesting patterns in BERT’s attention heads
● But lots of uninteresting patterns (attention to [CLS], [SEP])
● Still fairly under-explored

● Examples of other methods (e.g. adversarial data)
● Investigations into geometry
● Lots of room for creativity here: generate data to evaluate a model on, to see if 

its exploiting heuristics/cues
● Does this reflect just limited exposure or a more fundamental limitation?
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Moving Forward
● For your projects (more in a minute): think about the question you want to 

ask (or hypothesis you want to test), and which methods are best for that.

● Next week: Rachel Rudinger on the Universal Decompositional Semantics 
Initiative (decomp.io) 
● Think about how you could use that data with some of the methods we’ve 

discussed today.
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http://decomp.io

