FFNNs for Classification and Language
Modeling

LING 575K Deep Learning for NLP
Shane Steinert-Threlkeld
April 14 2021

Today's Plan

e Deep Averaging Networks for text classification
e Neural Probabllistic Language Model

e Additional Training Notes
e Regularization
e Early stopping

e Hyper-parameter searching

e HW3 /edugrad / PyTorch

Announcements

e Running time:
e Many factors influence this, including the load on nodes on patas
e S0 don’t worry too much about your raw numbers!

e Do: run in advance; it will take several hours

e Avoiding node 3 (thanks Levon):

e Requirements = (Machine !="patas-n3.ling.washington.edu")

e Number of parameters: each real number is a parameter, as opposed to
entire vectors/matrices

YA/ UNIVERSITY of WASHINGTON 3

Note on Random Seeds

e In word2vec.py / util.py:

set random seed

e Random seed: util.set_seed(args.seed)
e Behavior of pseudo-random number generators is def set_seed(seed: int) —> None:
determined by their “seed” value """Sets various random seeds. """

. . _ random. seed(seed)
e |f not specified, determined by e.g. # of seconds since 1970

np.random.seed(seed)

e Same seed —> same (nhon-random behavior)

e Sources of randomness in DL: shuffling the data each
epoch, weight initialization, negative sampling, ...

e Very important for reproducibility!

e In general, run on several seeds and report means / std’s

YA/ UNIVERSITY of WASHINGTON 4

Random Seeds and Reproducibility

Just try a different random seed]

Programmers: You can't just rerun your program
without changing it and expect it to work

Dee
Ro-i-niuoapmont Learning Practitioners:

Random Seeds, cont

e Ideally: “randomly generate” seeds, but save/store them!

e Random seed is not a hyper-parameter! (Some discussions in these threads.)

9,000 +

8,000 -

7,000

6,000 -

5,000 -

4,000 -

3,000 -

2,000

1,000

42

S50

123

Frequency of "seed(x)" on Github

777 1
666 849 J
T o ——— ! — ! —rh +- - ! ! A ! ! l ! L ! ! l
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000

Source

YA/ UNIVERSITY of WASHINGTON

https://twitter.com/milesaturpin/status/1251218514272301057
https://twitter.com/jakevdp/status/1247742792861757441

Deep Averaging Networks

Deep Unordered Composition Rivals Syntactic Methods
for Text Classification

Mohit Iyyer,! Varun Manjunatha,' Jordan Boyd-Graber,” Hal Daumé III'
'University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science

{miyyer, varunm, hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu

Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-

Fal

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).
However, there 1s a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products

YA/ UNIVERSITY of WASHINGTON

https://www.aclweb.org/anthology/P15-1162/

Deep, Unordered, Classification

Deep, Unordered, Classification

e Deep:

e One or more hidden layers in a neural network

Deep, Unordered, Classification

e Deep:

e One or more hidden layers in a neural network

e Unordered:
e Textis represented as a “bag of words”

e No notion of syntactic order

Deep, Unordered, Classification

e Deep:

e One or more hidden layers in a neural network

e Unordered:
e Textis represented as a “bag of words”

e No notion of syntactic order

e Classification:
e Applied to several classification tasks, including SST

e \ia softmax layer

Model Architecture, One Input

softmax

4
— Cq
aw =) 7
e 1=1
Predator 1S a masterpiece

C1 C2 C3 C4

NNNNNNNNNNNNNNNNNNNNNN

Model Architecture, One Input

softmax

4
— Cq
aw =) 7
e 1=1
Predator is a masterpiece

C1 C2 C3 C4

NNNNNNNNNNNNNNNNNNNNNN

Model Architecture, One Input

softmax
ho = f(Wa - hy + bs)
Word embeddings: hi = f(Wy-av+ b)) «—— flavW' + b')
Pre-trained or learned)
av =) F
i—1
Predator is a masterpiece
C1 Co C3 C4

Hyper-parameters

NNNNNNNNNNNNNNNNNNNNNN

Hyper-parameters

e Embedding dimension

NNNNNNNNNNNNNNNNNNNNNN

Hyper-parameters

e Embedding dimension

e Number of hidden layers

Hyper-parameters

e Embedding dimension
e Number of hidden layers

e For each layer:
e Activation function

e Hidden dimension size

Hyper-parameters

e Embedding dimension
e Number of hidden layers

e For each layer:
e Activation function

e Hidden dimension size

e EXxercise: find the values for these hyper-parameters in the paper

Note on Embedding Layer

Let 7 be the integer index of word w

One-hot vector (t=4):w,=[0 0 0 1 --- O]

For £ an embedding matrix of shape [vocab_size, embedding_dimension]
and £, the embedding for t:

L, =w/L

NB: direct look-up Is faster than matrix multiplication, but the latter
generalizes in useful ways that we will see soon

Batched Computation in DAN

e \We saw how to pass one piece of text through the DAN

e How can we leverage larger batch sizes and their advantages?
e “Predator is a masterpiece”

e “Parasite won Best Picture for 2019”
e \What issues here?

e Different lengths —> different number of embeddings —> different input
size (intuitively)

e But we need a matrix of shape [batch_size, representation_size] for inputs

Batching with Bag of Words

e Bag of words representation:
e {wordl: 3, word36: 1, word651: 1, ...}

e Let sbe a sentence words #; occurring count; times: bag,_ := {t; : count;}

e Bag of words vector:vec, =[3 O .- 1 .- 1 ...}
len(s)

vec,L = Z L,
i=0

e For every sentence, these vectors have the same size (vocab size)
e S0 they can be stacked into a matrix, of shape [batch_size, vocab_size]

e Divide each row by length of that sentence to get average of embeddings

YA/ UNIVERSITY of WASHINGTON 14

Output and Loss for Classification

logits = hiddenW + b
y = probs = softmax(logits)

Output and Loss for Classification

logits = hiddenW + b
y = probs = softmax(logits)

iclasses|
Cee(y,y) = — Z yilogy;
i=0

Output and Loss for Classification

logits = hiddenW + b
y = probs = softmax(logits)

iclasses|
Cee(y,y) = — Z yilogy;
=0

/

One hot for true class label

Results

Model RT SST
fine
DAN-ROOT — 46.9
DAN-RAND 77.3 454
DAN 80.3 47.7
NBOW-RAND 76.2 4273
NBOW 79.0 43.6
BiNB — 41.9
NBSVM-bi 79.4 —
RecNN™ 77.7 43.2
RecNTN™ — 45.7
DRecNN — 49.8
TreeLSTM — 50.6

YA/ UNIVERSITY of WASHINGTON

16

Results

Model RT SST
fine
DAN-ROOT — 46.9
DAN-RAND 77.3 454
DAN 80.3 47.7
NBOW-RAND 76.2 4273
NBOW 79.0 436
BiNB — 41.9
NBSVM-bi 79.4 —
RecNN™ 77.7 43.2
RecNTN™ — 45.7
DRecNN — 49.8
TreeLSTM — 50.6

T

“Rivals syntactic

methods”

YA/ UNIVERSITY of WASHINGTON

16

Error Analysis

Sentence N DRecNN Ground Truth
a (BUSy) movie that’s @GP merely @nWatchable, but also - - -
unlistenable

if you’re @i6b a prepubescent girl, you’ll be laughing at negative negative negative
britney) spears) movie-starring debut whenever it does @9

have you impatiently §quinting at your watch

blessed with immense (physical prowess he may well be, but positive neutral negative
@hola is simply @6b an actor

who knows what exactly godard is on about in this film, but positive positive positive
his ‘words and images do @’ have to ‘add up to ‘mesmerize

you.

it’s so (good that its relentless, (polished wit can withstand negative positive positive
@b only nepd school (productions, but even (oliver (parker s

movie adaptation

too Bad, but thanks to some lovely comedic moments and negative negative positive
several fine performances, it’s @i6b a fotal 10ss

this movie was b (good negative negative negative
this movie was good positive positive positive
this movie was 62@ megative negative negative
the movie was @ob . - negative pOSitiVC J UNIVERSITY of WASHINGTON 17

Two Additional “Tricks”

e \Word dropout

e Atype of reqularization [more later]

e Adagrad optimizer

Word Dropout

e For each input sequence, flip VI coins with probabillity p

e If the i'th coin lands tails, set embedding for w; to all Os for this example

Word Dropout

e For each input sequence, flip VI coins with probabillity p

e If the i'th coin lands tails, set embedding for w; to all Os for this example

vec, = [20110]
mask = [01110]
vec, ® mask = [00110]

Word Dropout

e For each input sequence, flip VI coins with probabillity p

e If the i'th coin lands tails, set embedding for w; to all Os for this example

vec, = [20110]
mask = [01110] ————

vec, ® mask = [00110]

Generated randomly
for each sentence

Adagrad

e “Adaptive Gradients”
e Key idea: adjust the learning rate per parameter
e Frequent features —> more updates

e Adagrad will make the learning rate smaller for those

YA/ UNIVERSITY of WASHINGTON 20

o Lotg, ;:=Vy 2L
e SGD:0,,,,=0,;,—ag,;
e Adagrad: Ht+1 ;= Hl‘,i -

Adagrad

Adagrad

® Pros:
e “Balances” parameter importance

e |Less manual tuning of learning rate needed (0.01 default)

e Cons:

e U, ;Increases monotonically, so step-size always gets smaller
e Newer optimizers try to have the pros without the cons

e Resources:
e Original paper (veeery math-y): https://imlir.org/papers/volumeil2/duchiiia/duchiiia.pdf

e Overview of optimizers: https://ruder.io/optimizing-gradient-descent/index.html#adagrad

YA/ UNIVERSITY of WASHINGTON 22

https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://ruder.io/optimizing-gradient-descent/index.html#adagrad

Neural Probabilistic Language Model

Language Modeling

e Alanguage model parametrized by @ computes Py(wy, ..., w,)
e Typically (though we'll see variations): Py(wy, ..., w,) = HPQ(Wi Wi, W)
l

e E.g. of labeled data: “Today is the third day of 575k.” —>

e (<s>, Today)

(

e (<s> Today, is)
(<s> Today is, the)
(

e (<s> Today is the, third)

YA/ UNIVERSITY of WASHINGTON 24

N-gram LMs

e Dominant approach for a long time uses n-grams:
P(w:\wy,....w_) & P w:\w._i,w._o, ..., w;_)

e Estimate the probabilities by counting in a corpus

e Fancy variants (back-off, smoothing, etc)

® Some problems:
e Huge number of parameters: ~ | V|"

e Doesn’t generalize to unseen n-grams

YA/ UNIVERSITY of WASHINGTON 25

Neural LM

e Core idea behind the Neural Probabilistic LM
e Make n-gram assumption
e But: learn word embeddings
e “N-gram of word vectors”

e Probabillities: represented by a neural network, not counts

YA/ UNIVERSITY of WASHINGTON 26

Pros of Neural LM

e Number of parameters:

e Significantly lower, thanks to “low”-dimensional embeddings

e (Generalization: embeddings enable generalizing to similar words

The cat is walking in the bedroom
to A dog was running in a room
and likewise to The cat is running in a room
A dog 1s walking in a bedroom
The dog was walking in the room

YA/ UNIVERSITY of WASHINGTON 27

Neural LM Architecture

i-th output = P(w, = i| context)
Bengio et al 2003

l softmax

1
tanh !
I

C(Wt—n+

(ee . o)

Table ~.
look—up
in C

shared parameters
across words

index for w;_,, 11 index for w;_» index for w;_

YA/ UNIVERSITY of WASHINGTON 28

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Bengio et al 2003

Neural LM Architecture

i-th output = P(w, = i| context)

l softmax

C(Wt—n+

(ee . o)

Table ~.
look—up
in C

index for w;_,, 11

most| computation here

tanh

shared parameters
across words

index for w;_» index for w;_

w,: one-hot vector

YA/ UNIVERSITY of WASHINGTON

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

i-th output = P(w;, = i| context)
Bengio et al 2003

l softmax
o0

/ / most| computation here \

1
tanh !
I

C(Wt—n+
e o embeddings = concat(w,_C,w,_,C, ..., w;,_(,41,C)
Table |~ . o7
look—up [memsmmmmmmmmmmmm shared -I;gl;elr-xieters
in C across words

N
index for w;_,, 11 index for w;_» index for w;_ WT: one- h Ot ve CtO I

YA/ UNIVERSITY of WASHINGTON 28

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

i-th output = P(w;, = i| context)
Bengio et al 2003

l softmax
o0

/ / most| computation here \

hidden = tanh(embeddingsW! + b!)

embeddings = concat(w,_C,w,_,C, ..., w;,_(,41,C)

Table ~.. ~. Matrix C 7
!oog—up shared parameters
1n across words
N
index for w;_,, 11 index for w;_» index for w;_ WT: one- h Ot ve CtO I

YA/ UNIVERSITY of WASHINGTON 28

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

i-th output = P(w;, = i| context)

Bengio et al 2003
l softmax o . o o
see (X —— _eee) probabilities = softmax(hiddenW= + bH~)
/l / ! most| computation here t \
/ / \
/ / \

hidden = tanh(embeddingsW! + b!)

I
I
I
I \
I
1
\

C(Wt—n+
e o embeddings = concat(w,_C,w,_,C, ..., w;,_(,41,C)
Table ~..
look_up ----------------------
ac | hared parantes
index for w;_,, 11 index for w;_» index for w;_ Wt: one- hOt VeCtO I

YA/ UNIVERSITY of WASHINGTON 28

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

More Detailed Diagram of Architecture

<
[L =—log P(fish | for, all, the) J

f

p(aardvark|...) p(do|...) p(fish]...) p(zebral...)
! 1 T 1
Output]
wputtaver (9] o (5 o (B B L) v
U VIxdy,

Hidden layer

Projection layer

embeddings
/ N\ i Eis shared
1‘|"'1 59\ |V] " across words

Input layer |V|x1 ©Gc@2ee000) '

one-hot vectors 00"'1\° 00 'P 00 0 /'1 00 :

“for’ = index “all”’=index “the” =index 1

word 9925 word 45180 :

o / : JM sec 7.5
N\ I .
.| and |than ks[for all the | fish [-3
J
Wt-3 Wi Wi-1 Wi
ﬁ

YA/ UNIVERSITY of WASHINGTON 29

Output and Loss

e Softmax + cross-entropy
e Essentially, language modeling is |VI-way classification

e Each word in the vocabulary is a class

Evaluation of LMs

e EXxtrinsic: use in other NLP systems

e Intrinsic: intuitively, want probability of a test

COorpus PP(W) = P(W1W2“‘Wn)_1/N
e Perplexity: inverse probability, weighted by 1
size of corpus _ N
e NB: lower is better! \ P(wiwy--wy)
e Only comparable w/ same vocab 1
— N
W
\ l.:(lP(w,- Wi, ., W)

— 2_% leg log P(Wi‘wla- : "Wi—l)

W UNIVERSITY o f WASHINGT ON 31

Results

n C h | m | direct | mix | train. | valid. | test.
MLP1 S 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0|60 | yes no 201 327 | 310
MLP4 S 0|60 | yes | yes 286 | 272
MLP5 S 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS 3 50 | 30 | yes yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 | no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 | 200 354 | 340
class-based back-off | 3 | 500 326 | 312
class-based back-off | 3 | 1000 335 | 319
class-based back-off | 3 | 2000 343 | 326
class-based back-off | 4 | 500 327 | 312
class-based back-off | 5 | 500 327 | 312

YA/ UNIVERSITY of WASHINGTON

32

More Complete Picture of This Model

Revisiting Simple Neural Probabilistic Language Models

Simeng Sun and Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst
{simengsun, miyyer}@cs.umass.edu

P (Adaptive)
Abstract Predict: years «— Softms
Recent progress in language modeling has Linear

A

been driven not only by advances in neural ar-

chitectures, but also through hardware and op- SddIATNOI

timization improvements. In this paper, we re- The drought had F::ve:rd

visit the neural probabilistic language model - r g Y

(NPLM) of Bengio et al. (2003), which sim- ! ~

ply concatenates word embeddings within a

fixed window and passes the result through a concaienate Jasted . now for ten million
feed-forward network to predict the next word.

When scaled up to modern hardware, this Figure 1: A modernized version of the neural proba-
model (despite its many limitations) performs bilistic language model of Bengio et al. (2003), which

source (NAACL "2 |) WA UNIVERSITY of WASHINGTON 33

https://arxiv.org/pdf/2104.03474.pdf

Additional Training Notes:
Regularization and Hyper-Parameters

Overfitting

e Over-fitting: model too closely mimics the training data

e Therefore, cannot generalize well

e Common when models are “over-parameterized”
e E.g. fitting a high-degree polynomial

e Key questions:
e How to detect overfitting?

e How to prevent it?

15

10

YA/ UNIVERSITY of WASHINGTON

35

Train, Dev, Test Set Splits

e Split total data into three chunks: train, dev (aka valid), test
e Common: 70/15/15, 80/10/10%

e Train: used for individual model training, as we’'ve seen so far

e Dev/valid:
e Evaluation during training
e Hyper-parameter tuning

e Model selection

e J[est:
e Final evaluation; DO NOT TOUCH otherwise

YA/ UNIVERSITY of WASHINGTON 36

Early stopping

SSSSSS

NNNNNNNNNNNNNNNNNNNNNN

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping

e One: Pick # of epochs, hope for no overfitting

source

NNNNNNNNNNNNNNNNNNNNNN

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

source

W UNIVERSITY o f WASHINGT ON 37

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

Error
Tl

: Validation error

L |
I I
| |
: ! _
| y T'raining error source
k —p k Steps
return this model stop

YA/ UNIVERSITY of WASHINGTON 37

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
e One: Pick # of epochs, hope for no overfitting

e Better: pick max # of epochs, and “patience”

e Halt when validation error does not improve over patience-many epochs

Error
Tl

- Overfitting

: Validation error

L |
! !
! |
. ! _ '
| y I'raining error source
k—p k Steps
return this model stop

YA/ UNIVERSITY of WASHINGTON 37

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Regularization

e NNs are often overparameterizedq,

SO regularization helps

o L1/L2: Z'(0.y) = L6, y) + 1|02

e Dropout:

e During training, randomly turn off X%

of neurons in each layer

e (Don’t do this during testing/predicting)

e Batch Normalization / Layer Norm

e NB: batch size &

Input: Values of x over a mini-batch: B = {z1._.,};
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

Un — % Zm: T; // mini-batch mean
1 ZT:nl

0g — 7Z_;(:z:z — uB)° // mini-batch variance

T; < \3;0;3 /—T—Be // normalize

y; < vZ; + f = BN, 5(x;) // scale and shift

YA/ UNIVERSITY of WASHINGTON

38

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1609.04836

Hyper-parameters

e In addition to the model architecture ones mentioned earlier

e Optimizer: SGD, Adam, Adagrad, RMSProp,

e Optimizer-specific hyper-parameters: learning rate, alpha, beta, ...

e NB: backprop computes gradients; optimizer uses them to update parameters

e Regularization: L1/L2, Dropout, BN, ...

® regularizer-specific ones: e.g. dropout rate
e Batch size

e Number of epochs to train for

e Early stopping criterion (e.g. number of epochs, “patience”)

WA/ UNIVERSITY of WASHINGTON 39

A note on hyper-parameter tuning

e Grid search: specify range of values for each hyper-parameter, try all
possible combinations thereof

e Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

A note on hyper-parameter tuning

e Grid search: specify range of values for each hyper-parameter, try all
possible combinations thereof

e Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

Grid Layout Random Layout

4

Bergstra and Bengio 2012

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

YA/ UNIVERSITY of WASHINGTON 40

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Craft/Art of Deep Learning

!

‘ |
WHAT IF THE ANSWERS ARE. LWJRONG? /

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

JUaT STiR THE PILE

UNTIL

THEY START LOOKING RIGHT

https://xkcd.com/1838/

YA/ UNIVERSITY of WASHINGTON

4]

https://xkcd.com/1838/

Some Practical Pointers

e Hyper-parameter tuning and the like are not the focus of this course

e For some helpful hand-on advice about training NNs from scratch,
debugging under “silent failures”, etc:

e http://karpathy.qgithub.io/2019/04/25/recipe/

http://karpathy.github.io/2019/04/25/recipe/

Hyper-parameter Tuning

It’s done.

h/t CM Downey

Homework 3

NNNNNNNNNNNNNNNNNNNNNN

SGNS in Computation Graphs

e Learning goals:
e Deepen understanding / familiarity with computation graphs
e Develop understanding of back propagation

e Implement several operations in forward/backward API

e Main objective:

e Implementing Skip-gram with Negative Sampling in edugrad, a minimal / bare-
bones implementation of the PyTorch API

e Components: sigmoid, log, element-wise multiplication, dot products

YA/ UNIVERSITY of WASHINGTON 45

https://github.com/shanest/edugrad

YA/ UNIVERSITY of WASHINGTON 46

Edugrad, Intro

e https://github.com/shanest/edugrad

e Minimal re-implementation of PyTorch API, for educational purposes

e Forward/backward API for operations
e Automatic differentiation via backprop

e Dynamic computation graph

e Why? Modern DL libraries have so much additional cruft that you cannot
chase back lots of method calls to their implementations.

e E.g. what really happens when you call "loss.backward() ?

e NB: no performance optimizations, no GPU usage, etc. in edugrad

WA UNIVERSITY o f WASHINGT ON 47

https://github.com/shanest/edugrad

Edugrad: Tensor

>>> 1mport numpy as np
>>> from edugrad.tensor import Tensor

e Tensor: wrapper around a numpy

array (stored in .value attribute) >>> t1 = Tensor(np.array([[1, 2], [3, 41]))
>>> t2 = Tensor(np.array([[1, 2], [3, 4]]))
e value: np array >>> 11 + 12 |
<edugrad.tensor.Tensor object at 0x71f97a81d5940>
e grad: current gradient! (Setto O :?a(’fl[[; tii-value
initially, populated during back g 6, 8]11)

propagation)

e Primary operators overloaded: +, -, **
(raise to a power)

e More on implementation of those in a
second

YA/ UNIVERSITY of WASHINGTON 48

Edugrad: Operation

e Operation: defines forward/backward

e Operates on np arrays, not Tensors

e @tensor_op:

e Takes an Operation, turns it into a method that
takes Tensor arguments and returns Tensor
outputs

e And which builds the computation graph

e @:decorator; add = tensor_op(add)

e Basic ops provided:

e https://github.com/shanest/edugrad/blob/master/
edugrad/ops.py

YA/ UNIVERSITY of WASHINGTON 49

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: Operation

e Operation: defines forward/backward @tensor_op

class add(Operation):
@staticmethod
e @tensor_op: def forward(ctxt,) a, b):
return a +

e Operates on np arrays, not Tensors

e Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor
outputs @staticmethod

def backward(ctx, grad_output):

e And which builds the computation graph
return grad_output, grad_output

e @:decorator; add = tensor_op(add)

e Basic ops provided:

e https://github.com/shanest/edugrad/blob/master/
edugrad/ops.py

YA/ UNIVERSITY of WASHINGTON 49

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: Operation

e Operation: defines forward/backward @tensor_op

class add(Operation):
@staticmethod
e @tensor_op: def forward(ctxt,) a, b):
return a +

e Operates on np arrays, not Tensors

e Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor
outputs @staticmethod

e And which builds the computation graph def backward(ctx, grad_output):

return grad_output, grad_output
e @:decorator; add = tensor_op(add)

| | >>> from'edugrad.ops import add
e Basic ops provided: >>> add(tl, t2).value

e https://github.com/shanest/edugrad/blob/master/ [EIEIASIPIREIF

edugrad/ops.py 6, 8]])

YA/ UNIVERSITY of WASHINGTON 49

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: nn.Module

e edugrad.nn.Module:
e As in PyTorch, basic model class

e Stores parameters [accessed via .parameters()]

e Can be nested (modules within modules) YO DAWE | HEARD YOU LIKE MODULES

e Implements forward

e Defining a custom module:

e Sub-class nn.Module

=
e Initialize paramsin __init__ !

e Implement custom forward method SO | PUT A MODULE IN YOUR MODULE S0
YOU GAN GALL FORWARD WHILE YOU CALL FORWARD

YA/ UNIVERSITY of WASHINGTON 50

Edugrad: Linear Module example

class Linear(Module):
def __init_ (
self,
input_size: 1int,
output_size: int,
bias: bool = True,

"U"UA Linear module computes defines weights W, optionally biases b, and
computers wX + b.

Weight vector will have shape (input size, output size)

Args:
input_size: dimension of input vectors
output_size: dimension of output vectors
initializer: how to initialize weights and biases
bias: whether or not to include the bias term; not needed for, e.g. embeddings

super(Linear, self).__init_ ()

scale = 1 / np.sqrt(input_size)

self.weight = Tensor(uniform_initializer((input_size, output_size), scale=scale), name="W")
self.has _bias = bias

if self.has_bias:

biases initialize to 0 WA/ UNIVERSITY of WASHINGTON 5]
self.bias = Tensor(uniform_initializer((output_size,), scale=scale), name="b")

Edugrad: Linear Module example

class Linear(Module):
def __init_ (
1f, .
R Always do this
input_size: 1nt,

output_size: int, f| I”St! !

bias: bool = True,

"U"UA Linear module computes defines weights W, optionally biases b, and
computers wX + b.

Weight vector will have shape (input size, output size)

Args:
input_size: dimension of input vectors
output_size: dimension of output vectors
initializer: how to initialize weigh&S and biases
bias: whether or not to include~the bias term; not needed for, e.g. embeddings

super(Linear, self).__init_ ()

scale = 1 / np.sqrt(input_size)

self.weight = Tensor(uniform_initializer((input_size, output_size), scale=scale), name="W")
self.has _bias = bias

if self.has_bias:

biases initialize to 0 WA/ UNIVERSITY of WASHINGTON 5]
self.bias = Tensor(uniform_initializer((output_size,), scale=scale), name="b")

Edugrad: Linear Module example

class Linear(Module):
def __init_ (
1f, .
RO Always do this
input_size: 1nt,

output_size: int, f| I”St! !

bias: bool = True,

"U"UA Linear module computes defines weights W, optionally biases b, and
computers wX + b.

Weight vector will have shape (input size, output size)

Args:
input_size: dimension of input vectors
output_size: dimension of output vectors
initializer: how to initialize weigh&S and biases
bias: whether or not to include~the bias term; not needed for, e.g. embeddings

super(Linear, self).__init_ ()

scale = 1 / np.sqrt(input_size) Deﬁne

self.weight = Tensor(uniform_initializer((input_size, output_size), scale=scale), name="W") [-E——

self.has_bias = bias pal‘ametel‘s

if self.has_bias:

biases initialize to O YA/ UNIVERSITY of WASHINGTON 51

self.bias = Tensor(uniform_initializer((output_size,), scale=scale), name="b")

Edugrad: Linear Module

def forward(self, inputs: Tensor):

mul_node = ops.matmul(inputs, self.weight)
if self.has bias:

NOTE: this 1s a hack-ish way of handling shape 1ssues with bilases

expanded_biases = ops.copy_rows(self.bias, num=inputs.value.shapel0])
return ops.add(mul_node, expanded_biases)
return mul _node

YA/ UNIVERSITY of WASHINGTON 57

Edugrad: Basic Training Demo

e https://github.com/shanest/edugrad/blob/
master/examples/toy_half _sum/main.py

e Trains an MLP on f(x) = sum(x)/2 for bit

VeC’[OFS X class MLP(nn.Module):

def __init__ (self, input_size, output_size):
» MLP dS d nn.MOdUIe: super(MLP, self). _init_ ()
self.fcl = nn.Linear(input_size, 32)
self.fc2 = nn.Linear(32, 32)

self.output = nn.Linear(32, output_size)

e NB: don't hard-code hyper-parameters like forward(self, inputs):
111i55 -) hidden = edugrad.ops.relu(self.fcl(inputs))
' hidden = edugrad.ops.relu(self.fc2(hidden))

return self.output(hidden)

YA/ UNIVERSITY of WASHINGTON 53

https://github.com/shanest/edugrad/blob/master/examples/toy_half_sum/main.py
https://github.com/shanest/edugrad/blob/master/examples/toy_half_sum/main.py

Training Loop

model = MLP(input_size, 1)
optimizer = edugrad.optim.SGD(model.parameters(), lr=1le-3)
train_iterator = edugrad.data.BatchIterator(batch_size=batch_size)

for epoch in range(num_epochs):

total loss = 0.0

for batch in train_iterator(inputs, targets):
predicted = model(batch.inputs)
loss = edugrad.ops.mse_loss(predicted, batch.targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total loss += loss.value

print(f"Epoch {epoch} loss: {total_loss / train_iterator.num_batches}")

YA/ UNIVERSITY of WASHINGTON 54

