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Today's Plan

e Lasttime:

e Deep Averaging Networks for text classification
e Neural Probabilistic Language Model

e Additional Training Notes
e Regularization
e Early stopping

e Hyper-parameter searching

e Intro to Recurrent Neural Networks
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Announcements

e HW?2 reference code (and symlinks from hw3) available now

e HWS3 tests: hw3/test_all.py. NB: necessary, but not sufficient, to check correctness
of your code. pytest test_all.py , from your directory, with environment activated.

e Implementing ops in edugrad:
e YOU can use any numpy operations you want; goal it to understand forward/backward API

e https://github.com/shanest/edugrad

e Log: base e, don’'t need to do special handling of bad input arguments (like 0)
e Edugrad is installed in the course conda environment, so be sure to activate it

o f(X) = x* X 3x and static computation graphs
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https://github.com/shanest/edugrad

Decorators

e @tensor_op in edugrad code: what is this??

e Example of a decorator

e Design pattern to extend an object with more functionality

e Decorators wrap their arguments, add features (e.g. registering in a central DB)

e In python, syntactic sugar: @my_decorator

fn(...):
e Canonical examples:

e @classmethod

fn(...):
e @staticmethod n(...)

fn = my_decorator(fn)
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https://en.wikipedia.org/wiki/Decorator_pattern

Decorator Demo

lef printer(method, *args):
fn(xkargs):
output = method(*args)
print(f"Output: {output}")
return fn

@printer
lef add(a, b):
return a + b

add(1, 2)




Unordered Models in the Large LM Era

e Lasttime: “Deep Unordered Composition Rivals Syntactic Methods for Text
Classification” —2015

_ Masked Language Modeling and the Distributional Hypothesis:
e Brand new paper. Order Word Matters Pre-training for Little

Koustuv Sinha'! Robin Jia' Dieuwke Hupkes' Joelle Pineau'*

Adina Williams" Douwe Kiela'
" Facebook AI Research; ¥ McGill University / Montreal Institute of Learning Algorithms
{koustuvs,adinawilliams,dkiela}@fb.com

Abstract NLP pipeline” (Tenney et al., 2019), suggesting
that it has learned “the kind of abstractions that we
intuitively believe are important for representing
natural language” rather than “simply modeling
complex co-occurrence statistics” (ibid., p. 1).

A possible explanation for the impressive per-
formance of masked language model (MLM)
pre-training is that such models have learned
to represent the syntactic structures prevalent

in classical NLP pipelines. In this paper, we In this work, we try to uncover how much of
propose a different explanation: MLMs suc- MLM’s success comes from simple distributional
ceed on downstream tasks almost entirely due information, as opposed to “the types of syntac-

to their ability to model higher-order word
co-occurrence statistics. To demonstrate this,
we pre-train MLMs on sentences with ran-
domlv shuffled word order. and show that

tic and semantic abstractions traditionally believed
necessary for language processing” (Tenney et al.,
2019; Manning et al., 2020). We disentangle these
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https://arxiv.org/pdf/2104.06644.pdf
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Unordered Models in the Large LM Era

e “We observed overwhelmingly that MLM’s success is most likely not
[emphasis added] due to its ability to discover syntactic and semantic
mechanisms necessary for a traditional language processing pipeline.
Instead, our experiments suggest that MLM'’s success can be mostly
explained by it having learned higher-order distributional statistics that
make for a useful prior for subsequent fine-tuning.”



Recurrent Neural Networks



RNNs: high-level
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step
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RNNs: high-level

e Feed-forward networks: fixed-size input, fixed-size output
e Previous classifier: average embeddings of words

e Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

e RNNs process sequences of vectors
e Maintaining “hidden” state

e Applying the same operation at each step

e Different RNNSs:

e Different operations at each step
e Operation also called “recurrent cell”

e Other architectural considerations (e.g. depth; bidirectionally)
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Long-distance dependencies, |: number

e Language modeling (fill-in-the-blank)
e The keys

e [he keys on the table

e [he keys next to the book on top of the table

e To get the number on the verb, need to look at the subject, which can be very far
away

e And number can disagree with linearly-close nouns



Selectional Restrictions

e The family moved from the city because they wanted a larger

e The team moved from the city because they wanted a larger




Selectional Restrictions

e The family moved from the city because they wanted a larger house.

e The team moved from the city because they wanted a larger market.

e Need models that can capture long-range dependencies like this.

e N-gram (whether count-based or neural) cannot. E.g., with n=4:

e P(word | “they wanted a larger”)



Steinert-Threlkeld and Szymanik 2019; Olah 2015
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Steinert-Threlkeld and Szymanik 2019; Olah 2015
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Simple / Vanilla / EIman RNNs

e Same kind of feed-forward computation we’ve been studying, but:
e X, sequence element at time t

e /1,_: hidden state of the model at previous time t-1



Simple / Vanilla / EIman RNNs

e Same kind of feed-forward computation we’ve been studying, but:
e X, sequence element at time t

e /1,_: hidden state of the model at previous time t-1

Simple/“Vanilla” RNN: h , = tanh(xth + ht—IWh + b)



Training: BPITT

e Backpropagation Through Time
e “Unroll” the network across time-steps

e Apply backprop to the “wide” network
e Each cell has the same parameters

e Gradients sum across time-steps

O MUIti-Variable Chain FUIe In our example: J(t)(g) Apply the multivariable chain rule:
=1
/\ 8J(t) i aJ(t) aWh‘(i)
Wh|(1) Wh|(2) Wh‘(t) OWh i=1 oW, (7) oW,

Q

e t (t)

Qug) % aue® %
) ’ Z—; IWnl
Wh o
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http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture05-rnnlm.pdf

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

Power of RNNs
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Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

Power of RNNs
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Using RNNSs

one to one one to many many to one many to many many to many
! t 1 T t 1t 1 Pt 1
! ! bt bt Pt
MLP ¢.g Image / /
captioning
e.g. text classification e.g. POS tagging
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one to one

MLP

Using RNNs

one to many many to one many to many

e.g. Image
captioning / seq2seq (later)

e.g. text classification

many to many

e.g. POS tagging
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RNN for Text Classification
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RNNSs for Language Modeling

Next word
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Two Extensions

e Deep RNNSs:
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https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

e Deep RNNSs:
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https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

e Deep RNNSs:
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:
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Two Extensions
e Deep RNNSs: e Bidirectional RNNSs:
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https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Batching in RNNs

e Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]

e But what is sequence length??
e “This is the first example </s>": 6

e “This is another </s>": 4



Padding and Masking

e Step 1: pad all sequences in batch to be of the same length

e “This is the first example </s>":. 6
e “This is another </s> PAD PAD”: 6

e Step 2: build a “mask” (1 = True token, 0 = padding)
1 1 1 1 1 1
1 1T 1 1 O O

e Step 3: use mask to tell model what to ignore, either

e Select correct final states [classification]

e Multiply losses in tagging tasks [LM]
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Summary

e RNNs allow for neural processing of sequential data

e In principle, should help models capture long-distance dependencies (e.g.
number agreement, selectional preferences, ...)

e Maintain a state over time
e Repeatedly apply the same weights

® as opposed to n-gram models, which cannot build such dependencies
e Uses: classification, tagging

e EXxtensions: deep, bidirectional
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Next Time

e Discuss a technical problem in training Vanilla RNNs

e \anishing gradients

e Introduce gating-based RNNs
o LSTMs
o GRUs

e Strengths, weaknesses, differences
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