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Announcements

e “Turning point” in the course: final day of the “main” sequence
e Reminder: NO CLASS MONDAY
e Then: three special topics lectures

e (05/18: Agatha Downey on multilingual / low-resource NLP

e 05/23: Jack Hessel on multimodal NLP

e 05/25: Angelina McMillan-Major on risks and ethical concerns

e Because of the nine-hour time zone difference and my conference schedule next
week: no Shane office hours next week

e Will be very active on Canvas though, so do make use of it :)
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AMA Questions for June 1

e Part of final day of class (Wed June 1): Ask Me/Us Anything!

e Please ask any questions about the course content, deep learning for NLP
in general, future directions, etc, here:

e https://forms.gle/uCvDpxu6NKDzcNak7



https://forms.gle/uCvDpxu6NKDzcNak7

Today's Plan

e NLP’s “Clever Hans” Moment: motivating interpretability and analysis

e Survey of several different methods:
e Neuron-level
e Psycholinguistic experiments
e Diagnostic classifiers
e Attention analysis

e Adversarial datasets
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NLP’s “Clever Hans Moment”

'The .
Gradient

ME EDITOR'S NOTE OVERVIEWS PERSPECTIVES ABOUT SUBSCRIBE Q Clever Hans

BERT

NLP's Clever Hans i
Moment has Arrived —

26.AUG.2019
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Clever Hans

e Early 1900s, a horse trained by his owner to do:
e Addition
e Division
e Multiplication
o Tell time

e Read German

e Wow! Hans is really smart!



Clever Hans Effect



Clever Hans Effect

e Upon closer examination / experimentation...



Clever Hans Effect

e Upon closer examination / experimentation...

e Hans’ success:



Clever Hans Effect

e Upon closer examination / experimentation...

e Hans’ success:

e 89% when questioner knows answer



Clever Hans Effect

e Upon closer examination / experimentation...

® Hans’ success:
e 89% when questioner knows answer

® 6% when guestioner doesn’t know answer



Clever Hans Effect

e Upon closer examination / experimentation...

® Hans’ success:
e 89% when questioner knows answer

® 6% when guestioner doesn’t know answer

e Further experiments: as Hans’ taps got closer to correct answer, facial
tension in questioner increased
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Clever Hans Effect

e Upon closer examination / experimentation...

® Hans’ success:
e 89% when questioner knows answer

® 6% when guestioner doesn’t know answer

e Further experiments: as Hans’ taps got closer to correct answer, facial
tension in questioner increased

e Hans didn’t solve the task but exploited a spuriously correlated cue
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Central question

e Do BERT et al’'s major successes at solving NLP tasks show that we have
achieved robust natural language understanding in machines?

e Or: are we seeing a “Clever BERT” phenomenon?



Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in
Natural Language Inference

R. Thomas McCoy,' Ellie Pavlick,” & Tal Linzen'
'Department of Cognitive Science, Johns Hopkins University
‘Department of Computer Science, Brown University
tom.mccoy@jhu.edu,ellie_pavlick@brown.edu,tal.linzen@jhu.edu

McCoy et al 2019
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https://arxiv.org/pdf/1902.01007.pdf

Heuristic Premise Hypothesis Label
Lexical The banker near the judge saw the actor. The banker saw the actor. E
overlap The lawyer was advised by the actor. The actor advised the lawyer. E
heuristic The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
Subsequence The artist and the student called the judge. The student called the judge. E
heuristic Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N
Constituent  Before the actor slept, the senator ran. The actor slept. E
heuristic The lawyer knew that the judges shouted.  The judges shouted. E
If the actor slept, the judge saw the artist.  The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N
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(performance improves if fine-tuned on this challenge set)

YA/ UNIVERSITY of WASHINGTON

11



Probing Neural Network Comprehension of Natural Language Arguments
Timothy Niven and Hung-Yu Kao

Intelligent Knowledge Management Lab
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan
tim.niven.public@gmail.com, hykao@mail.ncku.edu.tw

Abstract Claim Google 1s not a harmful monopoly
Reason People can choose not to use Google
. Warrant  Other search engines don’t redirect to Google
We are surprised to find that BERT’s peak per- Alternative All other search engines redirect to Google

formance of 77% on the Argument Reasoning
Comprehension Task reaches just three points
below the average untrained human baseline.
However, we show that this result is entirely
accounted for by exploitation of spurious sta-
tistical cues in the dataset. We analyze the
nature of these cues and demonstrate that a
range of models all exploit them. This anal-
ysis informs the construction of an adversarial
dataset on which all models achieve random

Reason (and since) Warrant — Claim
Reason (but since) Alternative — — Claim

Figure 1: An example of a data point from the ARCT
test set and how it should be read. The inference from
R and A to —C is by design.

The Argument Reasoning Comprehension Task

accuracy. Our adversarial dataset provides a (ARCT) (Habernal et al., 2018a) deters the prob-
- ~ Tase ~d Aomamerracdiss e swromasssmmneadss maoed o qavemanm soes aas
link
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Why care”

e Effects of learning what neural language models understand:

e Engineering: can help build better language technologies via improved models,
data, training protocaols, ...

e T[rust, critical applications

e Theoretical: can help us understand biases in different architectures (e.qg.
LSTMs vs Transformers), similarities to human learning biases

e Which linguistic features / properties are learnable from raw text alone?

e Ethical: e.g. do some models reflect problematic social biases more than others?

YA/ UNIVERSITY of WASHINGTON 13



Visualization / neuron-level analysis



Main ldea

e Individual neurons in a network have activations that depend on the input

e Check to see whether any of them have activations which depend on /
correlate with (linguistically) interesting features of the input

e [Think of the alleged “Jdennifer Anniston cells”, aka grandmother cells]



Learning to Generate Reviews and Discovering Sentiment

Alec Radford' Rafal Jozefowicz' Ilya Sutskever !

Abstract

We explore the properties of byte-level recur-
rent language models. When given sufficient
amounts of capacity, training data, and compute
time, the representations learned by these models
include disentangled features corresponding to
high-level concepts. Specifically, we find a single
unit which performs sentiment analysis. These
representations, learned in an unsupervised man-
ner, achieve state of the art on the binary subset of
the Stanford Sentiment Treebank. They are also
very data efficient. When using only a handful
of labeled examples, our approach matches the
performance of strong baselines trained on full
datasets. We also demonstrate the sentiment unit
has a direct influence on the generative process
of the model. Simply fixing its value to be pos-
itive or negative generates samples with the cor-
responding positive or negative sentiment.

it 1s now commonplace to reuse these representations on
a broad suite of related tasks - one of the most successful
examples of transfer learning to date (Oquab et al., 2014).

There 1s also a long history of unsupervised representation
learning (Olshausen & Field, 1997). Much of the early re-
search into modern deep learning was developed and val-
idated via this approach (Hinton & Salakhutdinov, 2006)
(Huang et al., 2007) (Vincent et al., 2008) (Coates et al.,
2010) (Le, 2013). Unsupervised learning is promising due
to its ability to scale beyond only the subsets and domains
of data that can be cleaned and labeled given resource, pri-
vacy, or other constraints. This advantage is also its diffi-
culty. While supervised approaches have clear objectives
that can be directly optimized, unsupervised approaches
rely on proxy tasks such as reconstruction, density estima-
tion, or generation, which do not directly encourage useful
representations for specific tasks. As a result, much work
has gone into designing objectives, priors, and architectures
meant to encourage the learning of useful representations.

YA/ UNIVERSITY of WASHINGTON
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https://arxiv.org/pdf/1704.01444.pdf

Approach

e Character-level language model (LSTM variant)
e One layer; 4096 dim hidden state
e T[raining: ~1 month on 4 GPUs

e Data: Amazon product reviews

e Fine-tune: sentiment analysis

e NB: this data partially overlaps with training data [but a different task]

YA/ UNIVERSITY of WASHINGTON 17
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Samples of the sentiment neuron

I found this to be a charming adaptation, very lively and full of fun.
With the exception of a couple of major errors, the cast is wonderful. I
have to echo some of the earlier comments -- Chynna Phillips is horribly
miscast as a teenager. At 27, she's just too old (and, yes, it DOES show),
and lacks the singing '"chops" for Broadway-style music. Vanessa Williams

| | I » / sparkle -- with special kudos to Brlgltta
Dau and Chiara Zanni. I also enjoyed Tyne Daly's performance, though I'm
not generally a fan of her work. Finally, the dancing Shriners are a riot,
especially the dorky three in the bar. The movie is suitable for the whole
family, and I highly recommend 1it.

Judy Holliday struck gold in 1950

"Born Yesterday," and from that point forward,

her career consisted of

trying to find material good enough to allow her to strike gold again. It
never happened. In "It Should Happen to You" (I can't think of a blander
title, by the way), Holliday does yet one more variation on the dumb
blonde who's maybe not so dumb after all, but everything about this movie
feels warmed over and half hearted. Even Jack Lemmon, in what I believe
was his first film role, can't muster up enough energy to enl

YA/ UNIVERSITY of WASHINGTON 19



Sentiment unit does all the work!

Table 2. IMDB sentiment classification

METHOD ERROR

FULLUNLABELEDBOW (MAAS ET AL.,2011) 11.11%
NB-SVM TRIGRAM (MESNIL ET AL., 2014) 8.13%

SENTIMENT UNIT (OURS) 7.70%
SA-LSTM (DAI & LE, 2015) 7.24%
BYTE MLSTM (OURS) 7.12%
TOPICRNN (DIENG ET AL., 2016) 6.24%

VIRTUAL ADV (MIYATO ET AL., 2016) 5.91%

YA/ UNIVERSITY of WASHINGTON 20



The Emergence of Number and Syntax Units in LSTM Language Models

Yair Lakretz
Cognitive Neuroimaging Unit
NeuroSpin center
91191, Gif-sur-Yvette, France
vair.lakretz@gmail.com

Theo Desbordes
Facebook AI Research
Paris, France
tdesbordes@fb.com

Stanislas Dehaene
Cognitive Neuroimaging Unit
NeuroSpin center
91191, Gif-sur-Yvette, France

stanislas.dehaene@gmail.com

German Kruszewski
Facebook AI Research
Paris, France
germank@gmail.com

Dieuwke Hupkes
ILLC, University of Amsterdam
Amsterdam, Netherlands
d.hupkes@uva.nl

Marco Baroni
Facebook AI Research
Paris, France
mbaroni@fb.com
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Approach

e Evaluating the Gulordava et al 2018 LSTM LM (last week’s slides + later)

e Number agreement tasks: as in Linzen et al 2016 (to be discussed shortly!)

e Plus synthetic: Simple the boy greets the guy

Adv the boy probably greets the guy

2Adv the boy most probably greets the guy

CoAdyv the boy openly and deliberately greets the guy
NamePP  the boy near Pat greets the guy

NounPP  the boy near the car greets the guy
NounPPAdyv the boy near the car kindly greets the guy

e Find important cells by ablation: set activation to O, see if performance
suffers. (Also by regression; more in a minute)

YA/ UNIVERSITY of WASHINGTON 22



Cell dynamics for storing number info
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Finding a syntax unit

e Predict, via linear regression, from the cell:
e Depth of the word in syntactic parse of the sentence

e (Works pretty well: R*2 = 0.85. More on this idea later.)

e Identity cells that are assigned very high weight in the regression
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Neuron-level analysis: summary

e Very promising and exciting when it does work: a good look “inside the
black box”, with very interpretable neural/cell dynamics. But:
e “A needle in a haystack™: how to find the “good” neurons?
e Some principled methods (ablation, regression); not all of them scale well

e But also:
e |s there a neuron that tracks property P?
e Not: what are you tracking?

e Deleting interpretable neurons may not effect performance in the original or
downstream task (Morcos et al 2018)



http://www.apple.com

Psycholinguistic methods
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Animating ldea

e NLMs are a bit of a “black box”. How can we figure out what they’re
doing?

e Well: humans are also (approximately) black boxes!

e So: let’s treat NLMs the way we treat people when we try to figure out the
nature of their linguistic knowledge.

e In other words: treat NLMs as if they were participants in the kinds of
experiments that (psycho-)linguists perform.

e [NB: lots more to do here!]



Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen!
LSCP! & IJN?, CNRS,

EHESS and ENS, PSL Research University

{tal.linzen,

emmanuel .dupoux}@ens. fr

Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing 1s typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,

Emmanuel Dupoux’

Yoav Goldberg
Computer Science Department
Bar Ilan University
yoav.goldberg@gmail.com

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs! is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, 1s more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured

YA/ UNIVERSITY of WASHINGTON
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Subject-verb agreement

e Adjacent:
e The key is on the table [SS]
e * The key are on the table [SP]
e * The keys is on the table [PS]
e The keys are on the table [PP]

e Arbitrarily many attractors (nouns w/ different number) in between:

e But even the city with several tall buildings and many thriving industries is
struggling.
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Method

e Does LM predict the right form of the verb?
e “The keys on the cabinet ...”
o Py lare) > P;,y(is)?

e Single layer LSTM w/ 50 hidden units
e NB: a lot more in the paper than we’ll talk about here.

e Later: other methods for getting LM grammaticality judgments.
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Take Home

e LSTMs can in general learn hierarchical dependencies

e But language modeling may not provide enough signal on its own

e |.e. explicit supervision on the task is required

YA/ UNIVERSITY of WASHINGTON 35



Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski Edouard Grave
Department of Linguistics Facebook AI Research Facebook AI Research
University of Geneva Paris New York
kristina.gulordava@unige.ch bojanowski@fb.com egrave(@fb.com
Tal Linzen Marco Baroni
Department of Cognitive Science Facebook Al Research
Johns Hopkins University Paris
tal.linzen@jhu.edu mbaroni@fb.com
Abstract achieved impressive results in large-scale tasks

such as language modeling for speech recognition
and machine translation, and are by now standard
tools for sequential natural language tasks (e.g.,

Mikolov et al., 2010; Graves, 2012; Wu et al.,

Recurrent neural networks (RNNs) have
achieved impressive results in a variety of lin-
guistic processing tasks, suggesting that they
can induce non-trivial properties of language.

We investigate here to what extent RNNs learn 2016). This suggests that RNNs may learn to track
to track abstract hierarchical syntactic struc- grammatical structure even when trained on nois-
ture. We test whether RNNs trained with a ier natural data. The conjecture is supported by the
generic language modeling objective in four success of RNNs as feature extractors for syntac-

languages (Italian, English, Hebrew, Russian)
can predict long-distance number agreement
in various constructions. We include in our

tic parsing (e.g., Cross and Huang, 2016; Kiper-
wasser and Goldberg, 2016; Zhang et al., 2017).

4 -1 fNN1 1
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Innovations

e Same basic protocol, but:
e More constructions / contexts to test agreement on
e Multiple languages
e Comparison to human judgments (in ltalian)

e Nonsense (nonce) constructions: think “colorless green ideas sleep furiously”
e [t presents the case for marriage equality and states ...
e [t stays the shuttle for honesty insurance and finds ...

e [Note: no "wug” / pseudo-words (“It blergs the shuttle ..."); why not?]

YA/ UNIVERSITY of WASHINGTON 37



Four languages; two constructions

NVV VNPconV

Italian
English
Hebrew

Russian

Original
Nonce
Original
Nonce
Original
Nonce
Original
Nonce

93.3
92.5
89.6
638.7
86.7
65.7

4.1
2.1
3.6
0.9
9.3
4.1

83°3::10.4

78.5-

-1.7

67.5-
82.5.

-9.2

83.3-

4.8

83.1.

-5.9

95.2.

-2.8

86.7-

-1.9

-1.6



Four languages; two constructions

NVV VNPconV

Italian  Orniginal 93.3141 83.3+10.4

Nonce  92.549; 718.541.7 Maybe English’s poor morphology
English Original 89.64356 67.5159 and high POS ambiguity:

Nonce  68.7109 82.5.48 —_ “If you have any questions or
Hebrew Original 86.7193  83.3159 need/needs, ..."

Nonce 65.7 4.1 83.1:2.8
Russian  Original - 95.2119

Nonce - 86.7+1 ¢




Comparison with Italians

Construction #original Original Nonce
Subjects LSTM Subjects LSTM
DET [AdjP] NOUN 14 98.7 98.64139 98.1 91.7404
NOUN [RelC / PartP] clitic VERB 6 93.1 100400 954 97.84058
NOUN [RelC / PartP | VERB 27 97.0 9334141 92.3 9254191
ADIJ [conjoined ADJs]| ADJ 13 98.5 10040.0 98.0 98.1411
NOUN [AdjP] relpron VERB 10 95.9 98.0445 89.5 84.0133
NOUN [PP] ADVERB ADJ 13 91.5 98.5134 79.4 769114
NOUN [PP] VERB (participial) 18 87.1 T7.8439 73.4 T1.1433
VERB [NP] CONJ VERB 18 94.0 83.31104 86.8 78.5417
(Micro) average 945 92.111¢ 88.4  85.510.7

Table 3: Subject and LSTM accuracy on the Italian test set, by construction and averaged.

YA/ UNIVERSITY of WASHINGTON
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Take Home

e Language modeling may after all provide enough of a signal to learn hierarchical
syntactic dependencies

e But may be very sensitive to hyper-parameters, including training data
e [NB: the Gulordava et al model is a lot smaller than the Google LM]

® “suggests that the input itself contains enough information to trigger some form of
syntactic learning in a system, such as an RNN, that does not contain an explicit prior

bias in favour of syntactic structures”

e Good model and data to play with (https://github.com/facebookresearch/
colorlessgreenBRNNS)

e A follow-up, with more constructions than just subject/verb agreement, and
artificially generated data: https://www.aclweb.org/anthology/D18-1151/
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Diagnostic classifiers
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Main ldea

e What’s in a representation (a vector)? How can we tell?

e For example: does an LSTM’s memory encode grammatical number?

e |f we’re lucky: a single cell might, as we saw earlier. (Sparse representation)

e In general: if we can easily predict the number from the memory, it’s
there”.

already In

e (iven a representation, train a simple model (usually a linear classifier) to
predict a property of interest (usually linguistic) from that representation.

YA/ UNIVERSITY of WASHINGTON 43



Note on lerminology

Journal of Artificial Intelligence Research 61 (2018) 907-926 Submitted 10/17; published 04/18

Visualisation and ‘Diagnostic Classifiers’ Reveal
how Recurrent and Recursive Neural Networks
Process Hierarchical Structure

Dieuwke Hupkes D.HUPKESQUVA.NL
Sara Veldhoen SARA.VELDHOEN@GMAIL.COM
Willem Zuidema ZUIDEMAQUVA.NL
ILLC, Uniwversity of Amsterdam

P.O.Box 94242

1090 CE Amsterdam, Netherlands

e Roughly synonyms: diagnostic classifiers, probing classifiers, auxiliary
prediction tasks, ...

e [Basically: very simple transfer learning]
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Linguistic Knowledge and Transferability of Contextual Representations

Nelson F. Liu®*¥* Matt Gardner® Yonatan Belinkov®
Matthew E. Peters®* Noah A. Smith®*
#Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA
YDepartment of Linguistics, University of Washington, Seattle, WA, USA
* Allen Institute for Artificial Intelligence, Seattle, WA, USA
“Harvard John A. Paulson School of Engineering and Applied Sciences and
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
{nfliu, nasmith}@cs.washington.edu
{mattg,matthewp}QRallenai.org, belinkov@seas.harvard.edu

Abstract oo 508 ae . NNP NNP VBZ NNP
Contextual word representations derived from Probing Model |
large-scale neural language models are suc- |
cessful across a diverse set of NLP tasks, Contextual Word
. Representations
suggesting that they encode useful and trans-
ferable features of language. To shed light Pretrained Contextualizer
on the linguistic knowledge they capture, we } f } f
study the representations produced by sev- Input Tokens Ms. Haag plays Elianti

eral recent pretrained contextualizers (variants
of ELMo, the OpenAl transformer language Figure 1: An illustration of the probing model setup
model, and BERT) with a suite of sixteen di- used to study the linguistic knowledge within contex-

verse probing tasks. We find that linear mod- tual word representations.

ale trained an taon nf frazen cantevtnal renre-
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Tagging Results

: . POS Supersense ID
Pretrained Representation
Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF

ELMo (original) best layer 81.58 93.31 97.26 95.61 90.04 8285 93.82 2937 7544  84.87 73.20
ELMo (4-layer) best layer 81.58 9381 97.31 95.60 89.78 82.06 94.18 29.24 74.78 85.96 73.03
ELMo (transformer) best layer 80.97 92.68 97.09 95.13 93.06 81.21 93.78 30.80 72.81 82.24 70.88
OpenAl transformer best layer 75.01 82.69 93.82 91.28 86.06 58.14 &87.81 33.10 66.23 76.97 74.03
BERT (base, cased) best layer 84.09 93.67 96.95 95.21 92.64 82.71 93.72 4330 79.61 87.94 75.11
BERT (large, cased) best layer 835.07 94.28 96.73 95.80 93.64 84.44 93.83 46.46 79.17 90.13 76.25
GloVe (840B.300d) 50.94 71.58 90.49 8393 62.28 53.22 8092 1494 40.79 51.54 49.70
Previous state of the art 83.44 947 9796 9582 9577 9138 95.15 39.83 6689 7829 77.10

(without pretraining)
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Tagging Results

: . POS Supersense ID
Pretrained Representation
Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF

ELMo (original) best layer 81.58 93.31 97.26 95.61 90.04 8285 93.82 2937 7544  84.87 73.20
ELMo (4-layer) best layer 81.58 93.81 97.31 95.60 89.78 82.06 94.18 29.24 74.78 85.96 73.03
ELMo (transformer) best layer 80.97 92.68 97.09 95.13 93.06 81.21 93.78 30.80 72.81 82.24 70.88
OpenAl transformer best layer 75.01 82.69 93.82 91.28 86.06 58.14 &87.81 33.10 66.23 76.97 74.03
BERT (base, cased) best layer 84.09 93.67 96.95 95.21 92.64 82.71 93.72 4330 79.61 87.94 75.11
BERT (large, cased) best layer 835.07 94.28 96.73 95.80 93.64 84.44 93.83 46.46 79.17 90.13 76.25
GloVe (840B.300d) 50.94 71.58 90.49 8393 62.28 53.22 8092 1494 40.79 51.54 49.70
Previous state of the art 83.44 947 9796 9582 9577 9138 95.15 39.83 6689 7829 77.10

(without pretraining)

Context matters!
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Coreference

D.S Pairwise Relations (ELMo and OpenAl Transformer)

Syntactic Dep. Syntactic Dep.

. . . . . Semantic Dep. Semantic Dep. Coreference

Pretrained Representation Arc Prediction Arc Classification Arc Prediction  Arc Classificationl Arc Prediction
PTB EWT PTB EWT

ELMo (original), Layer 0 7827 77.73 82.05  78.52 70.65 77.48
ELMo (original), Layer 1 89.04 86.46 96.13  93.01 87.71 93.31
ELMo (original), Layer 2 88.33 8534 9472  91.32 86.44 90.22
ELMo (original), Scalar Mix 89.30 86.56 95.81 91.69 87.79 93.13
ELMo (4-layer), Layer 0 78.09 77.57 82.13 77.99 69.96 77.22
ELMo (4-layer), Layer 1 88.79 86.31 96.20  93.20 87.15 93.27
ELMo (4-layer), Layer 2 87.33 84.75 9538  91.87 85.29 90.57
ELMo (4-layer), Layer 3 86.74 84.17 95.06 91.55 84.44 90.04
ELMo (4-layer), Layer 4 87.61 85.09 94.14  90.68 85.81 89.45
ELMo (4-layer), Scalar Mix 88.98 8594 95.82 91.77 87.39 93.25
ELMo (transformer), Layer O 78.10 78.04 81.09 77.67 70.11 77.11 : MY M
ELMo (transformer), Layer 1 88.24 8548 93.62 89.18 85.16 90.66 N O S Ign Ifl Cant I m P rove m e nt Ove r
ELMo (transformer), Layer 2 88.87 84.72 94.14  89.40 85.97 91.29 I b I b d d . b I .
ELMo (transformer), Layer 3 89.01 84.62 94.07 89.17 86.83 90.35
ELMo (transformer), Layer 4 88.55 85.62 94.14  89.00 86.00 89.04 g obal embe | ng aseline
ELMo (transformer), Layer 5 88.09 8323 92.70  88.84 85.79 89.66 .
ELMo (transformer), Layer 6 87.22 8328 92.55  87.13 84.71 87.21 [B ERT does a bit bette I, SO
ELMo (transformer), Scalar Mix 90.74 86.39 96.40 91.06 89.18 94.35 . . .
OpenAl transformer, Layer 0 80.80 79.10 83.35  80.32 76.39 80.50 ad Irection a| It)’ seems to matte I"]
OpenAl transformer, Layer 1 81.91 79.99 88.22 84.51 77.70 83.88
OpenAl transformer, Layer 2 82.56 80.22 89.34  85.99 78.47 85.85
OpenAl transformer, Layer 3 82.87 81.21 90.89 87.67 78.91 87.76
OpenAl transformer, Layer 4 83.69 82.07 92.21 89.24 80.51 89.59
OpenAl transformer, Layer 5 84.53 82.77 93.12 90.34 81.95 90.25
OpenAl transformer, Layer 6 85.47 83.89 93.71 90.63 83.88 90.99
OpenAl transformer, Layer 7 86.32 84.15 9395  90.82 85.15 91.18
OpenAl transformer, Layer 8 86.84 84.06 94.16 91.02 85.23 90.86
OpenAl transformer, Layer 9 87.00 84.47 9395  90.77 85.95 90.85
OpenAl transformer, Layer 10 86.76 84.28 93.40 90.26 85.17 89.94
OpenAl transformer, Layer 11 85.84 83.42 92.82 89.07 83.39 88.46
OpenAl transformer, Layer 12 85.06 83.02 92.37 89.08 81.88 87.47
OpenAl transformer, Scalar Mix 87.18 85.30 94.51 91.55 86.13 91.55
GloVe (840B.300d) 74.14 7394 7754 7274 68.94 71.84

Table 9: Pairwise relation task performance of a linear probing model trained on top of the ELMo and OpenAl
contextualizers, compared against a GloVe-based probing baseline.
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Layer-wise Prediction

(a) ELMo (original)

(b) ELMo (4-1ayer)

S e S —
[ L |

= - = B
Layer 4 . e E.

(c) ELMo (transformer)

==------------- |
e e —

Layer O

Layer 2

Layer O

Layer O

Layer 6

each column is
(d) OpenAl transformer ( .
= E=R=l a different task)

I
Lower Performance Higher Performance
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Effect of Pretraining Task

Layer Average

Pretraining Task Target Task Performance

o 1 2 Mx e See also:
CCG 56.70 64.45 63.71 66.06
Chunk 5427 62.69 63.25 63.96
POS 5621 63.86 64.15 65.13 e /hang and Bowman 2018
Parent 54.57 6246 61.67 64.31
GParent 55.50 62.94 6291 64.96
GGParent 54.83 61.10 59.84 63.81 ¢ PeterS el al 201 8b
Syn. Arc Prediction 53.63 5994 58.62 62.43 _
Syn. Arc Classification 56.15 64.41 63.60 66.07 ® Blevins et al 2018
Sem. Arc Prediction 53.19 54.69 53.04 59.84
Sem. Arc Classification 56.28 62.41 61.47 64.67
Conj 50.24 4993 4842 56.92
BilLM 66.53 6591 65.82 66.49
GloVe (840B.300d) 60.55
Untrained ELMo (original) 52.14 39.26 39.39 54.42
ELMo (original)

(BiLM on 1B Benchmark) 64.40 79.05 77.72 78.90
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Published as a conference paper at ICLR 2019

WHAT DO YOU LEARN FROM CONTEXT? PROBING FOR
SENTENCE STRUCTURE IN CONTEXTUALIZED WORD
REPRESENTATIONS

Ian Tenney,* ' Patrick Xia,? Berlin Chen,> Alex Wang,* Adam Poliak,?
R. Thomas McCoy,? Najoung Kim,?> Benjamin Van Durme,? Samuel R. Bowman,*
Dipanjan Das,' and Ellie Pavlick'-°

1Google AI Language, 2Johns Hopkins University, >Swarthmore College,
“New York University, °Brown University

ABSTRACT

Contextualized representation models such as ELMo (Peters et al.| 2018a) and
BERT (Devlin et al.| 2018) have recently achieved state-of-the-art results on a
diverse array of downstream NLP tasks. Building on recent token-level probing
work, we introduce a novel edge probing task design and construct a broad suite
of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.
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Edge Probing Set-up

......................................................................

----------------------------------------------------------------------

h—_—————————————————————_—————————————————

Labels

Binary classifiers

Span
representations

Contextual
vectors

Input tokens
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Results

CoVe ELMo GPT
Lex. Full Abs.A | Lex. Full Abs.A | Lex. cat mix
Part-of-Speech 85.7 94.0 8.4 | 904 96.7 6.3 | 8.2 949 950
Constituents 56.1 8&81.6 254 | 69.1 84.6 154 | 65.1 81.3 84.6
Dependencies 75.0 83.6 8.6 | 804 939 13.6 | 77.7 92.1 94.1
Entities 88.4 90.3 1.9 | 92.0 95.6 35| 8.6 929 925
SRL (all) 59.7 804 20.7 | 74.1 90.1 16.0 | 67.7 86.0 89.7
Core roles 56.2 81.0 24.7 | 73.6 92.6 19.0 | 65.1 88.0 92.0
Non-core roles | 67.7 78.8 11.1 | 75.4 84.1 88 | 73.9 81.3 84.1
OntoNotes coref. | 72.9 79.2 6.3 | 753 84.0 87 | 71.8 83.6 86.3
SPR1 73.7 T7.1 34 | 80.1 84.8 47 | 79.2 83.5 83.1
SPR2 76.6 80.2 36 | 82.1 83.1 1.0 | 82.2 83.8 83.5
Winograd coref. | 52.1 354.3 22 | 543 3535 -0.8 | 51.7 52.6 353.8
Rel. (SemEval) 51.0 60.6 96 | 55.7 77.8 22.1 | 58.2 81.3 81.0
Macro Average 69.1 78.1 90 | 754 844 9.1 | 73.0 832 844
BERT-base BERT-large
F1 Score Abs. A F1 Score Abs. A
Lex. cat mix ELMo | Lex. cat mix (base) ELMo
Part-of-Speech 88.4 97.0 96.7 0.0 | 88.1 96.5 969 0.2 0.2
Constituents 68.4 83.7 86.7 2.1 | 69.0 80.1 87.0 04 2.5
Dependencies 80.1 93.0 095.1 1.1 | 80.2 915 954 0.3 1.4
Entities 90.9 96.1 96.2 0.6 | 91.8 96.2 96.5 0.3 0.9
SRL (all) 754 894 91.3 1.2 | 76.5 88.2 923 1.0 2.2
Core roles 74.9 914 936 1.0 | 76.3 89.9 94.6 1.0 2.0
Non-coreroles | 76.4 84.7 85.9 1.8 | 76.9 84.1 86.9 1.0 2.8
OntoNotes coref. | 74.9 88.7 90.2 6.3 | 757 89.6 914 1.2 7.4
SPR1 79.2 847 86.1 1.3 ] 796 85.1 85.8 -0.3 1.0
SPR2 81.7 83.0 83.8 0.7 | 81.6 83.2 84.1 0.3 1.0
Winograd coref. | 54.3 53.6 54.9 14 | 53.0 538 614 6.5 7.8
Rel. (SemEval) 574 783 82.0 42 | 56.2 77.6 824 0.5 4.6
Macro Average 75.1 84.8 86.3 1.9 | 752 842 873 1.0 2.9
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Conclusion

® ‘in general, contextualized embeddings improve over their non-
contextualized counterparts largely on syntactic tasks (e.g. constituent
labeling) in comparison to semantic tasks (e.g. coreference), suggesting
that these embeddings encode syntax more so than higher-level
semantics”

YA/ UNIVERSITY of WASHINGTON 53



IS it In the probe or the representation?

Designing and Interpreting Probes with Control Tasks

John Hewitt Percy Liang
Stanford University Stanford University
johnhew@stanford.edu pliang@cs.stanford.edu


https://www.aclweb.org/anthology/D19-1275/

IS it In the probe or the representation?

Designing and Interpreting Probes with Control Tasks

John Hewitt Percy Liang
Stanford University Stanford University
johnhew@stanford.edu pliang@cs.stanford.edu
Control 3am, 10 199
Task ! ) ran quickly
after  The do
Vocab 42 37 - 9

Sentence 1  The cat ran quickly
Part-of-speech DT NN VBD RB :
Control task 10 37 10 15 3

Sentence 2 The dog ran  after !
Part-of-speech DT NN VBD IN :
Controltask 10 15 10 42 42
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IS it In the probe or the representation?

Designing and Interpreting Probes with Control Tasks

John Hewitt
Stanford University
johnhew@stanford.edu

3 10 15
Control | . an quickly o
Task The
after cat dog S
Vocab 42 37 o
< ().70
=
)
Sentence 1 The cat ran quickly é i
Part-of-speech DT NN VBD RB : 0.50
Controltask 10 37 10 15 3
Sentence2 The dog ran  after ! 0.30

Part-of-speech DT NN VBD IN :
Controltask 10 15 10 42 42

Percy Liang
Stanford University
pliang@cs.stanford.edu

High Accuracy

High Selectivits\

|

High Accuracy
Low Selectivity

Part-of-speech task
—@&— Control task
Bl Sclectivity

‘L N A0 AD \\\\\\\

MLP Hidden Units (Complexity)

YA/ UNIVERSITY of WASHINGTON

54


https://www.aclweb.org/anthology/D19-1275/

Summary

e Use simple classifiers to see what can be extracted from a model’s
representations.
® Some clear trends:

e (Contextualized representations have more info than global ones (GloVe e.g.)
e Especially for syntax

e Layer-wise: early recurrent layers are more transferrable, less clear on
Transformers

e |Language modeling a very good task for building transferrable representations
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Summary, cont.

® Promises:

e |ets uslearn what's enCOde_d In a Probing Classifiers: Promises, Shortcomings,
model’'s opague representation and Advances

e Shortcomings: Yonatan Belinkov*

Technion — Israel Institute of Technology

» COmparISOn/COntrO| (Cf H+L) belinkov@technion.ac.il

e Correlation vs causation: rabing cassfor d e prominent methodologies for inermeting and
: robing classifiers have emerged as one of the prominent methodologies for interpreting an
enCOd|ng != Used by the mOdel analyzing deep neural network models of natural language processing. The basic idea is simple—

a classifier is trained to predict some linguistic property from a model’s representations—and

O N ew m eth Od S try tO overcome th IS has been used to examine a wide variety of models and properties. However, recent studies have

demonstrated various methodological limitations of this approach. This squib critically reviews
the probing classifiers framework, highlighting their promises, shortcomings, and advances.
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What does BERT look at?
An Analysis of BERT’s Attention

Kevin Clark’  Urvashi Khandelwall! Omer Levy? Christopher D. Manning'
TComputer Science Department, Stanford University
*Facebook Al Research
{kevclark,urvashik,manning}@cs.stanford.edu
omerlevyW@fb.com

Abstract study' the attention maps of a pre-trained model.

Attention (Bahdanau et al., 2015) has been a

Large pre-trained neural networks such as highly successful neural network component. It is
BERT have had great recent success in NLE, naturally interpretable because an attention weight

motivating a growing body of research investi-
gating what aspects of language they are able
to learn from unlabeled data. Most recent anal-
ysis has focused on model outputs (e.g., lan-

has a clear meaning: how much a particular word
will be weighted when computing the next repre-
sentation for the current word. Our analysis fo-
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Head 3-1
Attends to next token

found found
in in
taiwan staiwan
[SEP{\\\\“\siSEP]
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SEP]_ " [SEP]

Qualitative Patterns

Head 8-7
Attends to [SEP]

found found
N In
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A[SEP]

Head 11-6
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/ [SEP]
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.[SEP]
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Attention Head as Classifier

e No new training required

e Do any of these work for pairwise classification tasks “off-the-shelf”?



Attention Head as Classifier

% =q -k

e = e“f/Zje“f

C = Zjejvj
class(g) = arg m]ax a;

e No new training required

e Do any of these work for pairwise classification tasks “off-the-shelf”?



Dependency Parsing

Relation Head Accuracy Baseline
All 7-6 34.5 26.3 (1)
prep 7-4 66.7 61.8 (-1)
pob ] 9-6 76.3 34.6 (-2)
det 8-11 94.3 51.7 (1)
nn 4-10 70.4 70.2 (1)
nsub j 8-2 58.5 45.5 (1)
amod 4-10 75.6 68.3 (1)
dob ] 8-10 86.8 40.0 (-2)
advmod 7-6 48.8 40.2 (1)
aux 4-10 81.1 71.5 (1)
POSS 7-6 80.5 47.7 (1)
auxpass 4-10 82.5 40.5 (1)
ccomp 8-1 48.8 12.4 (-2)
mark 8-2 50.7 14.5 (2)
prt 6-7 99.1 914 (-1)
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Coreference

Model All Pronoun Proper Nominal
Nearest 27 29 29 19
Head-word 52 47 67 40
match

Rule-based 69 70 77 60
Neural coref 83* — _ _

Head 5-4 635 64 73 53

*Only roughly comparable because on non-truncated docu-
ments and with different mention detection.
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Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

[CLS]
It

[CLS] [CLS]
It It
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It

goes -goes declined declined
on -on to to
to- -to discussv discuss
plug plug itsc\\L~ its
at a plans~\ -plans
few few for for

diversified. \\| diversified upgrading upgrading
Fidelity )/ \\| ~ Fidelity its \\ | its
funds/\\ \§ -funds current current

product
line

A[SEP]

Examples

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

[CLS] [CLS]
The The
[CLS] [CLS]
The The 45-year-old 45-year-old
) ) former former
complicated - complicated
lanquage lanauage General General
9 g . guag Electric Electric
in in Co A\ _Co
the the .\ .
executive\ executive
huge huge . \ :
figures. figures
new new -\ )
It It
law - will will
has. has be\ be
muddied- muddied . .
easier easier
the the . )
fiaht fiaht this this
9 9 time time
[SEP] [SEP]

Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent

with with
Kim Kim joining joining
today today peace peace
as as talks. talks
she she between /-between
got got Israel Israel
some some and and
expert expert the | the
opinions opinions Palestinians Palestinians
on on : :
the the The . The
damage damage negotiations: ‘negotiations
to to are. -are
her ‘her
home home
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Revealing the Dark Secrets of BERT

Olga Kovaleva, Alexey Romanov, Anna Rogers, Anna Rumshisky
Department of Computer Science
University of Massachusetts Lowell
Lowell, MA 01854

{okovalev, arum, aromanov}@cs.uml.edu

Abstract

BERT-based architectures currently give state-
of-the-art performance on many NLP tasks,
but little 1s known about the exact mechanisms
that contribute to its success. In the current
work, we focus on the interpretation of self-
attention, which i1s one of the fundamental un-
derlying components of BERT. Using a sub-
set of GLUE tasks and a set of handcrafted
features-of-interest, we propose the methodol-
ogy and carry out a qualitative and quantita-

inference. State-of-the-art performance 1s usu-
ally obtained by fine-tuning the pre-trained model
on the specific task. In particular, BERT-based
models are currently dominating the leaderboards
for SQuAD! (Rajpurkar et al., 2016) and GLUE
benchmarks? (Wang et al., 2018).

Howeyver, the exact mechanisms that contribute
to the BERT’s outstanding performance still re-
main unclear. We address this problem through
selecting a set of linguistic features of interest and
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Overall

® Same observation as previous: many heads only pay attention to [SEP]
and [CLS] tokens

e Changes in attention before and after fine-tuning

e Pruning some heads can actually improve performance (see also Voita et
al on the original Transformer)
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Summary

e Sometimes, attention heads seem to encode some linguistically interesting
properties

e But there appears to be lots of redundancy
e And there’s much more terrain to explore here

e As before: we can ask if property P can be found in attention, but not what
role (independently of a hypothesis) a head is playing

e For the curious: ongoing debate about the connection between attention
and model predictions (not as applied to LMs yet): Attention is not
explanation; Attention is not not explanation
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Adversarial Datasets
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Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in
Natural Language Inference

R. Thomas McCoy,' Ellie Pavlick,” & Tal Linzen'
'Department of Cognitive Science, Johns Hopkins University
‘Department of Computer Science, Brown University
tom.mccoy@jhu.edu,ellie pavlick@brown.edu,tal.linzen@jhu.edu
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Heuristic Premise Hypothesis Label
Lexical The banker near the judge saw the actor. The banker saw the actor. E
overlap The lawyer was advised by the actor. The actor advised the lawyer. E
heuristic The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
Subsequence The artist and the student called the judge. The student called the judge. E
heuristic Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N
Constituent  Before the actor slept, the senator ran. The actor slept. E
heuristic The lawyer knew that the judges shouted.  The judges shouted. E
If the actor slept, the judge saw the artist.  The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N
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(performance improves if fine-tuned on this challenge set)

YA/ UNIVERSITY of WASHINGTON

/1



Fine-tuning augmented with examples

Lexical overlap
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Conclusion

e Solving a dataset != solving a task
e Models are very powerful, can be very “clever”

e Adopt heuristics that exploit spurious cues in the data

e Careful design of “adversarial” data can both expose the heuristics being
relied on and hopefully improve the representations learned
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Probing Neural Network Comprehension of Natural Language Arguments
Timothy Niven and Hung-Yu Kao

Intelligent Knowledge Management Lab
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan
tim.niven.public@gmail.com, hykao@mail.ncku.edu.tw

Abstract Claim Google 1s not a harmful monopoly
Reason People can choose not to use Google
. Warrant  Other search engines don’t redirect to Google
We are surprised to find that BERTs peak per- Alternative All other search engines redirect to Google
formance of 77% on the Argument Reasoning _ .
Comprehension Task reaches just three points Reason (and since) Warrant — Claim

. . R but si Alt tive — — Clai
below the average untrained human baseline. eason (but since) Alternative aimm

However, we show that this result is entirely
accounted for by exploitation of spurious sta-
tistical cues in the dataset. We analyze the
nature of these cues and demonstrate that a
range of models all exploit them. This anal-

ysis informs the construction of an adversarial ] :
dataset on which all models achieve random The Argument Reasoning Comprehension Task

accuracy. Our adversarial dataset provides a (ARCT) (Haberr.lal et al., 2018a) defers the pr(?b-

.
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Figure 1: An example of a data point from the ARCT
test set and how it should be read. The inference from
R and A to —C is by design.
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Results, with and w/o adversarial set

Test

Mean Median Max
BERT 0.671 + 0.09 0.712 0.770
BERT (W) 0.656 + 0.05 0.675 0.712
BERT (R, W) 0.600 += 0.10 0.574 0.750
BERT (C, W) 0.532 + 0.09 0.503 0.732
BoV 0.564 + 0.02 0.569 0.595
BoV (W) 0.567 £ 0.02 0.572 0.606
BoV (R, W) 0.554 + 0.02 0.557 0.579
BoV (C, W) 0.545 £ 0.02 0.544 0.589
BiLSTM 0.552 + 0.02 0.552 0.592
BiLSTM (W) 0.550 + 0.02 0.547 0.577
BiLSTM (R, W) | 0.547 4 0.02 0.551 0.577
BiLSTM (C, W) | 0.552 £ 0.02 0.550 0.601
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Results, with and w/o adversarial set

Test Test
Mean Median Max .
BERT 0.671 £0.09 0712 0.770 Mean Median  Max
BERT (W) 0.656+0.05 0.675 0.712 BERT 0.504 + 0.01 0.505 0.533
BERT (R, W) 0.600 +0.10 0574  0.750
BERT (C, W) 0532+ 009 0503 0.732 BERT (W) 0.501 + 0.00 0.501 0.502
BoV 0564 £002 0569 059 BERT (R, W) | 0.500 £0.00  0.500  0.502
BoV (W) 0.567£0.02 0572 0.606 BERT (C,W) | 0.501 £0.01 0.500  0.518
BoV (R, W) 0554+ 002 0557 0.579
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Results, with and w/o adversarial set

Test

Mean Median Max
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BERT (C, W) | 0.501 = 0.01 0.500

0.533
0.502
0.502
0.518
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Mean Median Max
BERT 0.671 + 0.09 0.712 0.770
BERT (W) 0.656 + 0.05 0.675 0.712
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BoV 0.564 + 0.02 0.569 0.595
BoV (W) 0.567 £ 0.02 0.572 0.606
BoV (R, W) 0.554 + 0.02 0.557 0.579
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even though trained on adversarial examples
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Adversarial Datasets

e Can help identify heuristics and/or statistical cues that models are relying
on to make decisions

e Sometimes, but not always, the models just need to see some examples
from the adversarial set to learn it

e NB: constructing such a set often relies on deep linguistic knowledge!



Interventions / Causal Analysis

NNNNNNNNNNNNNNNNNNNNNN



Problem with Probing

e Recall the issue with diagnostic classifiers / probing:
e We can learn that property X is encoded in representation R

e But not: does the model use property X in making its decisions

e Main idea here: causally intervene on the model and/or data to figure out
which properties the model is relying on
e Somewhat analogous to individual neuron ablation

e E.g. if we “remove all number information” from R, does the model’s
performance on a given task suffer
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Amnesic Probing

Amnesic Probing: Behavioral Explanation with Amnesic Counterfactuals

Yanai Elazar!? Shauli Ravfogel'> Alon Jacovi' Yoav Goldberg'*
LComputer Science Department, Bar Ilan University
2 Allen Institute for Artificial Intelligence
{yanaiela, shauli.ravfogel,alonjacovi,yoav.goldberg}@gmail.com

Abstract

A growing body of work makes use of probing
in order to investigate the working of neural
models, often considered black boxes. Recently,
an ongoing debate emerged surrounding the
limitations of the probing paradigm. In this
work, we point out the inability to infer beha-
vioral conclusions from probing results, and
offer an alternative method that focuses on
how the information is being used, rather than

in understanding how these models work and what
i1s being encoded in them. One prominent meth-
odology that attempts to shed light on those ques-
tions is probing (Conneau et al., 2018) (also
known as auxilliary prediction [Adi et al., 2016]
and diagnostic classification [Hupkes et al., 2018]).
Under this methodology, one trains a simple model
—a probe—to predict some desired information
from the latent representations of the pre-trained
model. High prediction performance is interpreted
as evidence for the information being encoded
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Amnesic Probing Results

dep f-pos c-pos ner phrase start  phrase end
N. dir 738 585 264 133 36 22
Properties  N. classes 41 45 12 19 2 2
Majority 11.44 13.22  31.76 86.09  59.25 58.51
Probing Vanilla 76.00 89.50 9234 9353 85.12 83.09
Vanilla 94.12 94.12 9412 94.00 94.00 94.00
[ MoAcc Rand | 12.31 56.47 89.65 92.56  93.75 93.86
Selectivity  73.78 92.68 9726  96.06  96.96 96.93
Amnesic 7.05 12.31 61.92 83.14 9421 904.32
LMDy Rand | 8.11 4.61 0.36 0.08 0.0;- 0.01
Amnesic 8.53 7.63 3.21 1.24 0.01 0.01

e Model relies differentially on different linguistic properties

e Probing performance does not entail model reliance
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One last meta-point

Investigating BERT’s Knowledge of Language:
Five Analysis Methods with NPIs

Alex Warstadt,”2 Yu Cao," Ioana Grosu,’?> Wei Peng,"> Hagen Blix,
Yining Nie,"> Anna Alsop,"? Shikha Bordia,"* Haokun Liu,"* Alicia Parrish,*3
Sheng-Fu Wang,"> Jason Phang,"!* Anhad Mohananey,"'* Phu Mon Htut,'3

Paloma Jeretié,’

1,2

and Samuel R. Bowman

New York University

TEqual contribution with roles given below; order assigned randomly. Correspondence: bowman@nyu . edu

! Framing and organizing the paper “Creating diagnostic data °Constructing and running experiments

Abstract

Though state-of-the-art sentence representa-
tion models can perform tasks requiring sig-
nificant knowledge of grammar, it is an open
question how best to evaluate their grammat-
ical knowledge. We explore five experimen-
tal methods inspired by prior work evaluat-
ing pretrained sentence representation models.
We use a single linguistic phenomenon, nega-
tive polarity item (NPI) licensing in English,
as a case study for our experiments. NPIs
like any are grammatical only if they appear
in a licensing environment like negation (Sue
doesn’t have any cats vs. *Sue has any cats).

acceptability. Linzen et al. (2016), Warstadt et al.
(2018), and Kann et al. (2019) use Boolean accept-
ability judgments inspired by methodologies in
generative linguistics. However, we have not yet
seen any substantial direct comparison between
these methods, and it is not yet clear whether
they tend to yield similar conclusions about what
a given model knows.

We aim to better understand the trade-offs in
task choice by comparing different methods in-
spired by previous work to evaluate sentence un-
derstanding models in a single empirical domain.
We choose as our case study negative polarity
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Negative polarity items

e NPIs are expressions like any, ever that are only grammatical in “negative”
environments:
e * Shaan has done any of the reading.

e Shaan hasn’t done any of the reading.
e Question: does BERT “understand” NPIs?

e [NB: see also Marvin and Linzen 2018; Jumelet and Hupkes 2018; Jumelet
et al 2021 Findings of ACL (w/ me :))]



https://www.aclweb.org/anthology/D18-1151/
https://www.aclweb.org/anthology/W18-5424/

Does BERT “understand” NPIs?

e |t depends!

e “We find that BERT has significant knowledge of these features, but its
success varies widely across different experimental methods. We conclude
that a variety of methods is necessary to reveal all relevant aspects of a
model’s grammatical knowledge in a given domain.”



Wrapping Up
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Interpretability and Analysis

e Current NLP models are often a “black box”, trained on huge amounts of
data, which makes it very unclear what they are learning from their data

e Engineering: build better models for the future [though caveat emptor]

e Theoretical: what kinds of linguistic information are learnable (and not) from
what kinds of data

e Ethical: what harmful effects are learned from the data, and how can these be
mitigated

e Methods briefly surveyed: neuron-level, psycholinguistic, diagnostic
classifiers (+ causal variants), attention analysis, adversarial data

e A huge and growing area!
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